base.hh revision 10529
1/* 2 * Copyright (c) 2011-2012 ARM Limited 3 * Copyright (c) 2013 Advanced Micro Devices, Inc. 4 * All rights reserved 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2002-2005 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Steve Reinhardt 42 * Dave Greene 43 * Nathan Binkert 44 */ 45 46#ifndef __CPU_SIMPLE_BASE_HH__ 47#define __CPU_SIMPLE_BASE_HH__ 48 49#include "base/statistics.hh" 50#include "config/the_isa.hh" 51#include "cpu/base.hh" 52#include "cpu/checker/cpu.hh" 53#include "cpu/exec_context.hh" 54#include "cpu/pc_event.hh" 55#include "cpu/simple_thread.hh" 56#include "cpu/static_inst.hh" 57#include "mem/packet.hh" 58#include "mem/port.hh" 59#include "mem/request.hh" 60#include "sim/eventq.hh" 61#include "sim/full_system.hh" 62#include "sim/system.hh" 63 64// forward declarations 65class Checkpoint; 66class Process; 67class Processor; 68class ThreadContext; 69 70namespace TheISA 71{ 72 class DTB; 73 class ITB; 74} 75 76namespace Trace { 77 class InstRecord; 78} 79 80struct BaseSimpleCPUParams; 81class BPredUnit; 82 83class BaseSimpleCPU : public BaseCPU, public ExecContext 84{ 85 protected: 86 typedef TheISA::MiscReg MiscReg; 87 typedef TheISA::FloatReg FloatReg; 88 typedef TheISA::FloatRegBits FloatRegBits; 89 typedef TheISA::CCReg CCReg; 90 91 BPredUnit *branchPred; 92 93 protected: 94 Trace::InstRecord *traceData; 95 96 inline void checkPcEventQueue() { 97 Addr oldpc, pc = thread->instAddr(); 98 do { 99 oldpc = pc; 100 system->pcEventQueue.service(tc); 101 pc = thread->instAddr(); 102 } while (oldpc != pc); 103 } 104 105 public: 106 void wakeup(); 107 108 void zero_fill_64(Addr addr) { 109 static int warned = 0; 110 if (!warned) { 111 warn ("WH64 is not implemented"); 112 warned = 1; 113 } 114 }; 115 116 public: 117 BaseSimpleCPU(BaseSimpleCPUParams *params); 118 virtual ~BaseSimpleCPU(); 119 120 public: 121 /** SimpleThread object, provides all the architectural state. */ 122 SimpleThread *thread; 123 124 /** ThreadContext object, provides an interface for external 125 * objects to modify this thread's state. 126 */ 127 ThreadContext *tc; 128 129 CheckerCPU *checker; 130 131 protected: 132 133 enum Status { 134 Idle, 135 Running, 136 Faulting, 137 ITBWaitResponse, 138 IcacheRetry, 139 IcacheWaitResponse, 140 IcacheWaitSwitch, 141 DTBWaitResponse, 142 DcacheRetry, 143 DcacheWaitResponse, 144 DcacheWaitSwitch, 145 }; 146 147 Status _status; 148 149 public: 150 151 Addr dbg_vtophys(Addr addr); 152 153 bool interval_stats; 154 155 // current instruction 156 TheISA::MachInst inst; 157 158 StaticInstPtr curStaticInst; 159 StaticInstPtr curMacroStaticInst; 160 161 //This is the offset from the current pc that fetch should be performed at 162 Addr fetchOffset; 163 //This flag says to stay at the current pc. This is useful for 164 //instructions which go beyond MachInst boundaries. 165 bool stayAtPC; 166 167 void checkForInterrupts(); 168 void setupFetchRequest(Request *req); 169 void preExecute(); 170 void postExecute(); 171 void advancePC(const Fault &fault); 172 173 virtual void haltContext(ThreadID thread_num); 174 175 // statistics 176 virtual void regStats(); 177 virtual void resetStats(); 178 179 virtual void startup(); 180 181 // number of simulated instructions 182 Counter numInst; 183 Counter startNumInst; 184 Stats::Scalar numInsts; 185 Counter numOp; 186 Counter startNumOp; 187 Stats::Scalar numOps; 188 189 void countInst() 190 { 191 if (!curStaticInst->isMicroop() || curStaticInst->isLastMicroop()) { 192 numInst++; 193 numInsts++; 194 } 195 numOp++; 196 numOps++; 197 198 system->totalNumInsts++; 199 thread->funcExeInst++; 200 } 201 202 virtual Counter totalInsts() const 203 { 204 return numInst - startNumInst; 205 } 206 207 virtual Counter totalOps() const 208 { 209 return numOp - startNumOp; 210 } 211 212 //number of integer alu accesses 213 Stats::Scalar numIntAluAccesses; 214 215 //number of float alu accesses 216 Stats::Scalar numFpAluAccesses; 217 218 //number of function calls/returns 219 Stats::Scalar numCallsReturns; 220 221 //conditional control instructions; 222 Stats::Scalar numCondCtrlInsts; 223 224 //number of int instructions 225 Stats::Scalar numIntInsts; 226 227 //number of float instructions 228 Stats::Scalar numFpInsts; 229 230 //number of integer register file accesses 231 Stats::Scalar numIntRegReads; 232 Stats::Scalar numIntRegWrites; 233 234 //number of float register file accesses 235 Stats::Scalar numFpRegReads; 236 Stats::Scalar numFpRegWrites; 237 238 //number of condition code register file accesses 239 Stats::Scalar numCCRegReads; 240 Stats::Scalar numCCRegWrites; 241 242 // number of simulated memory references 243 Stats::Scalar numMemRefs; 244 Stats::Scalar numLoadInsts; 245 Stats::Scalar numStoreInsts; 246 247 // number of idle cycles 248 Stats::Formula numIdleCycles; 249 250 // number of busy cycles 251 Stats::Formula numBusyCycles; 252 253 // number of simulated loads 254 Counter numLoad; 255 Counter startNumLoad; 256 257 // number of idle cycles 258 Stats::Average notIdleFraction; 259 Stats::Formula idleFraction; 260 261 // number of cycles stalled for I-cache responses 262 Stats::Scalar icacheStallCycles; 263 Counter lastIcacheStall; 264 265 // number of cycles stalled for I-cache retries 266 Stats::Scalar icacheRetryCycles; 267 Counter lastIcacheRetry; 268 269 // number of cycles stalled for D-cache responses 270 Stats::Scalar dcacheStallCycles; 271 Counter lastDcacheStall; 272 273 // number of cycles stalled for D-cache retries 274 Stats::Scalar dcacheRetryCycles; 275 Counter lastDcacheRetry; 276 277 /// @{ 278 /// Total number of branches fetched 279 Stats::Scalar numBranches; 280 /// Number of branches predicted as taken 281 Stats::Scalar numPredictedBranches; 282 /// Number of misprediced branches 283 Stats::Scalar numBranchMispred; 284 /// @} 285 286 // instruction mix histogram by OpClass 287 Stats::Vector statExecutedInstType; 288 289 void serializeThread(std::ostream &os, ThreadID tid); 290 void unserializeThread(Checkpoint *cp, const std::string §ion, 291 ThreadID tid); 292 293 // These functions are only used in CPU models that split 294 // effective address computation from the actual memory access. 295 void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); } 296 Addr getEA() const { panic("BaseSimpleCPU::getEA() not implemented\n"); } 297 298 // The register accessor methods provide the index of the 299 // instruction's operand (e.g., 0 or 1), not the architectural 300 // register index, to simplify the implementation of register 301 // renaming. We find the architectural register index by indexing 302 // into the instruction's own operand index table. Note that a 303 // raw pointer to the StaticInst is provided instead of a 304 // ref-counted StaticInstPtr to redice overhead. This is fine as 305 // long as these methods don't copy the pointer into any long-term 306 // storage (which is pretty hard to imagine they would have reason 307 // to do). 308 309 IntReg readIntRegOperand(const StaticInst *si, int idx) 310 { 311 numIntRegReads++; 312 return thread->readIntReg(si->srcRegIdx(idx)); 313 } 314 315 FloatReg readFloatRegOperand(const StaticInst *si, int idx) 316 { 317 numFpRegReads++; 318 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base; 319 return thread->readFloatReg(reg_idx); 320 } 321 322 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx) 323 { 324 numFpRegReads++; 325 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base; 326 return thread->readFloatRegBits(reg_idx); 327 } 328 329 CCReg readCCRegOperand(const StaticInst *si, int idx) 330 { 331 numCCRegReads++; 332 int reg_idx = si->srcRegIdx(idx) - TheISA::CC_Reg_Base; 333 return thread->readCCReg(reg_idx); 334 } 335 336 void setIntRegOperand(const StaticInst *si, int idx, IntReg val) 337 { 338 numIntRegWrites++; 339 thread->setIntReg(si->destRegIdx(idx), val); 340 } 341 342 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val) 343 { 344 numFpRegWrites++; 345 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base; 346 thread->setFloatReg(reg_idx, val); 347 } 348 349 void setFloatRegOperandBits(const StaticInst *si, int idx, 350 FloatRegBits val) 351 { 352 numFpRegWrites++; 353 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base; 354 thread->setFloatRegBits(reg_idx, val); 355 } 356 357 void setCCRegOperand(const StaticInst *si, int idx, CCReg val) 358 { 359 numCCRegWrites++; 360 int reg_idx = si->destRegIdx(idx) - TheISA::CC_Reg_Base; 361 thread->setCCReg(reg_idx, val); 362 } 363 364 bool readPredicate() { return thread->readPredicate(); } 365 void setPredicate(bool val) 366 { 367 thread->setPredicate(val); 368 if (traceData) { 369 traceData->setPredicate(val); 370 } 371 } 372 TheISA::PCState pcState() const { return thread->pcState(); } 373 void pcState(const TheISA::PCState &val) { thread->pcState(val); } 374 Addr instAddr() { return thread->instAddr(); } 375 Addr nextInstAddr() { return thread->nextInstAddr(); } 376 MicroPC microPC() { return thread->microPC(); } 377 378 MiscReg readMiscRegNoEffect(int misc_reg) 379 { 380 return thread->readMiscRegNoEffect(misc_reg); 381 } 382 383 MiscReg readMiscReg(int misc_reg) 384 { 385 numIntRegReads++; 386 return thread->readMiscReg(misc_reg); 387 } 388 389 void setMiscReg(int misc_reg, const MiscReg &val) 390 { 391 numIntRegWrites++; 392 return thread->setMiscReg(misc_reg, val); 393 } 394 395 MiscReg readMiscRegOperand(const StaticInst *si, int idx) 396 { 397 numIntRegReads++; 398 int reg_idx = si->srcRegIdx(idx) - TheISA::Misc_Reg_Base; 399 return thread->readMiscReg(reg_idx); 400 } 401 402 void setMiscRegOperand( 403 const StaticInst *si, int idx, const MiscReg &val) 404 { 405 numIntRegWrites++; 406 int reg_idx = si->destRegIdx(idx) - TheISA::Misc_Reg_Base; 407 return thread->setMiscReg(reg_idx, val); 408 } 409 410 void demapPage(Addr vaddr, uint64_t asn) 411 { 412 thread->demapPage(vaddr, asn); 413 } 414 415 void demapInstPage(Addr vaddr, uint64_t asn) 416 { 417 thread->demapInstPage(vaddr, asn); 418 } 419 420 void demapDataPage(Addr vaddr, uint64_t asn) 421 { 422 thread->demapDataPage(vaddr, asn); 423 } 424 425 unsigned int readStCondFailures() const { 426 return thread->readStCondFailures(); 427 } 428 429 void setStCondFailures(unsigned int sc_failures) { 430 thread->setStCondFailures(sc_failures); 431 } 432 433 MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID) 434 { 435 panic("Simple CPU models do not support multithreaded " 436 "register access.\n"); 437 } 438 439 void setRegOtherThread(int regIdx, MiscReg val, 440 ThreadID tid = InvalidThreadID) 441 { 442 panic("Simple CPU models do not support multithreaded " 443 "register access.\n"); 444 } 445 446 //Fault CacheOp(uint8_t Op, Addr EA); 447 448 Fault hwrei() { return thread->hwrei(); } 449 bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); } 450 451 void 452 syscall(int64_t callnum) 453 { 454 if (FullSystem) 455 panic("Syscall emulation isn't available in FS mode.\n"); 456 457 thread->syscall(callnum); 458 } 459 460 bool misspeculating() { return thread->misspeculating(); } 461 ThreadContext *tcBase() { return tc; } 462 463 private: 464 TheISA::PCState pred_pc; 465 466 public: 467 // monitor/mwait funtions 468 void armMonitor(Addr address) { BaseCPU::armMonitor(address); } 469 bool mwait(PacketPtr pkt) { return BaseCPU::mwait(pkt); } 470 void mwaitAtomic(ThreadContext *tc) 471 { return BaseCPU::mwaitAtomic(tc, thread->dtb); } 472 AddressMonitor *getAddrMonitor() { return BaseCPU::getCpuAddrMonitor(); } 473}; 474 475#endif // __CPU_SIMPLE_BASE_HH__ 476