base.hh revision 2107
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
30#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
31
32#include "base/statistics.hh"
33#include "config/full_system.hh"
34#include "cpu/base.hh"
35#include "cpu/exec_context.hh"
36#include "cpu/pc_event.hh"
37#include "cpu/sampler/sampler.hh"
38#include "cpu/static_inst.hh"
39#include "sim/eventq.hh"
40
41// forward declarations
42#if FULL_SYSTEM
43class Processor;
44class AlphaITB;
45class AlphaDTB;
46class PhysicalMemory;
47
48class RemoteGDB;
49class GDBListener;
50
51#else
52
53class Process;
54
55#endif // FULL_SYSTEM
56
57class MemInterface;
58class Checkpoint;
59
60namespace Trace {
61    class InstRecord;
62}
63
64class SimpleCPU : public BaseCPU
65{
66  protected:
67    typedef TheISA::MachInst MachInst;
68  public:
69    // main simulation loop (one cycle)
70    void tick();
71
72  private:
73    struct TickEvent : public Event
74    {
75        SimpleCPU *cpu;
76        int width;
77
78        TickEvent(SimpleCPU *c, int w);
79        void process();
80        const char *description();
81    };
82
83    TickEvent tickEvent;
84
85    /// Schedule tick event, regardless of its current state.
86    void scheduleTickEvent(int numCycles)
87    {
88        if (tickEvent.squashed())
89            tickEvent.reschedule(curTick + cycles(numCycles));
90        else if (!tickEvent.scheduled())
91            tickEvent.schedule(curTick + cycles(numCycles));
92    }
93
94    /// Unschedule tick event, regardless of its current state.
95    void unscheduleTickEvent()
96    {
97        if (tickEvent.scheduled())
98            tickEvent.squash();
99    }
100
101  private:
102    Trace::InstRecord *traceData;
103
104  public:
105    //
106    enum Status {
107        Running,
108        Idle,
109        IcacheMissStall,
110        IcacheMissComplete,
111        DcacheMissStall,
112        DcacheMissSwitch,
113        SwitchedOut
114    };
115
116  private:
117    Status _status;
118
119  public:
120    void post_interrupt(int int_num, int index);
121
122    void zero_fill_64(Addr addr) {
123      static int warned = 0;
124      if (!warned) {
125        warn ("WH64 is not implemented");
126        warned = 1;
127      }
128    };
129
130  public:
131    struct Params : public BaseCPU::Params
132    {
133        MemInterface *icache_interface;
134        MemInterface *dcache_interface;
135        int width;
136#if FULL_SYSTEM
137        AlphaITB *itb;
138        AlphaDTB *dtb;
139        FunctionalMemory *mem;
140#else
141        Process *process;
142#endif
143    };
144    SimpleCPU(Params *params);
145    virtual ~SimpleCPU();
146
147  public:
148    // execution context
149    ExecContext *xc;
150
151    void switchOut(Sampler *s);
152    void takeOverFrom(BaseCPU *oldCPU);
153
154#if FULL_SYSTEM
155    Addr dbg_vtophys(Addr addr);
156
157    bool interval_stats;
158#endif
159
160    // L1 instruction cache
161    MemInterface *icacheInterface;
162
163    // L1 data cache
164    MemInterface *dcacheInterface;
165
166    // current instruction
167    MachInst inst;
168
169    // Refcounted pointer to the one memory request.
170    MemReqPtr memReq;
171
172    // Pointer to the sampler that is telling us to switchover.
173    // Used to signal the completion of the pipe drain and schedule
174    // the next switchover
175    Sampler *sampler;
176
177    StaticInstPtr curStaticInst;
178
179    class CacheCompletionEvent : public Event
180    {
181      private:
182        SimpleCPU *cpu;
183
184      public:
185        CacheCompletionEvent(SimpleCPU *_cpu);
186
187        virtual void process();
188        virtual const char *description();
189    };
190
191    CacheCompletionEvent cacheCompletionEvent;
192
193    Status status() const { return _status; }
194
195    virtual void activateContext(int thread_num, int delay);
196    virtual void suspendContext(int thread_num);
197    virtual void deallocateContext(int thread_num);
198    virtual void haltContext(int thread_num);
199
200    // statistics
201    virtual void regStats();
202    virtual void resetStats();
203
204    // number of simulated instructions
205    Counter numInst;
206    Counter startNumInst;
207    Stats::Scalar<> numInsts;
208
209    virtual Counter totalInstructions() const
210    {
211        return numInst - startNumInst;
212    }
213
214    // number of simulated memory references
215    Stats::Scalar<> numMemRefs;
216
217    // number of simulated loads
218    Counter numLoad;
219    Counter startNumLoad;
220
221    // number of idle cycles
222    Stats::Average<> notIdleFraction;
223    Stats::Formula idleFraction;
224
225    // number of cycles stalled for I-cache misses
226    Stats::Scalar<> icacheStallCycles;
227    Counter lastIcacheStall;
228
229    // number of cycles stalled for D-cache misses
230    Stats::Scalar<> dcacheStallCycles;
231    Counter lastDcacheStall;
232
233    void processCacheCompletion();
234
235    virtual void serialize(std::ostream &os);
236    virtual void unserialize(Checkpoint *cp, const std::string &section);
237
238    template <class T>
239    Fault * read(Addr addr, T &data, unsigned flags);
240
241    template <class T>
242    Fault * write(T data, Addr addr, unsigned flags, uint64_t *res);
243
244    // These functions are only used in CPU models that split
245    // effective address computation from the actual memory access.
246    void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
247    Addr getEA() 	{ panic("SimpleCPU::getEA() not implemented\n"); }
248
249    void prefetch(Addr addr, unsigned flags)
250    {
251        // need to do this...
252    }
253
254    void writeHint(Addr addr, int size, unsigned flags)
255    {
256        // need to do this...
257    }
258
259    Fault * copySrcTranslate(Addr src);
260
261    Fault * copy(Addr dest);
262
263    // The register accessor methods provide the index of the
264    // instruction's operand (e.g., 0 or 1), not the architectural
265    // register index, to simplify the implementation of register
266    // renaming.  We find the architectural register index by indexing
267    // into the instruction's own operand index table.  Note that a
268    // raw pointer to the StaticInst is provided instead of a
269    // ref-counted StaticInstPtr to redice overhead.  This is fine as
270    // long as these methods don't copy the pointer into any long-term
271    // storage (which is pretty hard to imagine they would have reason
272    // to do).
273
274    uint64_t readIntReg(const StaticInst *si, int idx)
275    {
276        return xc->readIntReg(si->srcRegIdx(idx));
277    }
278
279    float readFloatRegSingle(const StaticInst *si, int idx)
280    {
281        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
282        return xc->readFloatRegSingle(reg_idx);
283    }
284
285    double readFloatRegDouble(const StaticInst *si, int idx)
286    {
287        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
288        return xc->readFloatRegDouble(reg_idx);
289    }
290
291    uint64_t readFloatRegInt(const StaticInst *si, int idx)
292    {
293        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
294        return xc->readFloatRegInt(reg_idx);
295    }
296
297    void setIntReg(const StaticInst *si, int idx, uint64_t val)
298    {
299        xc->setIntReg(si->destRegIdx(idx), val);
300    }
301
302    void setFloatRegSingle(const StaticInst *si, int idx, float val)
303    {
304        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
305        xc->setFloatRegSingle(reg_idx, val);
306    }
307
308    void setFloatRegDouble(const StaticInst *si, int idx, double val)
309    {
310        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
311        xc->setFloatRegDouble(reg_idx, val);
312    }
313
314    void setFloatRegInt(const StaticInst *si, int idx, uint64_t val)
315    {
316        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
317        xc->setFloatRegInt(reg_idx, val);
318    }
319
320    uint64_t readPC() { return xc->readPC(); }
321    void setNextPC(uint64_t val) { xc->setNextPC(val); }
322
323    uint64_t readUniq() { return xc->readUniq(); }
324    void setUniq(uint64_t val) { xc->setUniq(val); }
325
326    uint64_t readFpcr() { return xc->readFpcr(); }
327    void setFpcr(uint64_t val) { xc->setFpcr(val); }
328
329#if FULL_SYSTEM
330    uint64_t readIpr(int idx, Fault * &fault) { return xc->readIpr(idx, fault); }
331    Fault * setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
332    Fault * hwrei() { return xc->hwrei(); }
333    int readIntrFlag() { return xc->readIntrFlag(); }
334    void setIntrFlag(int val) { xc->setIntrFlag(val); }
335    bool inPalMode() { return xc->inPalMode(); }
336    void ev5_trap(Fault * fault) { xc->ev5_trap(fault); }
337    bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
338#else
339    void syscall() { xc->syscall(); }
340#endif
341
342    bool misspeculating() { return xc->misspeculating(); }
343    ExecContext *xcBase() { return xc; }
344};
345
346#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
347