base.cc revision 595
1/*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cmath>
30#include <cstdio>
31#include <cstdlib>
32#include <iostream>
33#include <iomanip>
34#include <list>
35#include <sstream>
36#include <string>
37
38#include "base/cprintf.hh"
39#include "base/inifile.hh"
40#include "base/loader/symtab.hh"
41#include "base/misc.hh"
42#include "base/pollevent.hh"
43#include "base/range.hh"
44#include "base/trace.hh"
45#include "cpu/base_cpu.hh"
46#include "cpu/exec_context.hh"
47#include "cpu/exetrace.hh"
48#include "cpu/full_cpu/smt.hh"
49#include "cpu/simple_cpu/simple_cpu.hh"
50#include "cpu/static_inst.hh"
51#include "mem/base_mem.hh"
52#include "mem/mem_interface.hh"
53#include "sim/annotation.hh"
54#include "sim/builder.hh"
55#include "sim/debug.hh"
56#include "sim/host.hh"
57#include "sim/sim_events.hh"
58#include "sim/sim_object.hh"
59#include "sim/sim_stats.hh"
60
61#ifdef FULL_SYSTEM
62#include "base/remote_gdb.hh"
63#include "dev/alpha_access.h"
64#include "dev/pciareg.h"
65#include "mem/functional_mem/memory_control.hh"
66#include "mem/functional_mem/physical_memory.hh"
67#include "sim/system.hh"
68#include "targetarch/alpha_memory.hh"
69#include "targetarch/vtophys.hh"
70#else // !FULL_SYSTEM
71#include "eio/eio.hh"
72#include "mem/functional_mem/functional_memory.hh"
73#endif // FULL_SYSTEM
74
75using namespace std;
76
77SimpleCPU::TickEvent::TickEvent(SimpleCPU *c)
78    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
79{
80}
81
82void
83SimpleCPU::TickEvent::process()
84{
85    cpu->tick();
86}
87
88const char *
89SimpleCPU::TickEvent::description()
90{
91    return "SimpleCPU tick event";
92}
93
94
95SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
96    : Event(&mainEventQueue),
97      cpu(_cpu)
98{
99}
100
101void SimpleCPU::CacheCompletionEvent::process()
102{
103    cpu->processCacheCompletion();
104}
105
106const char *
107SimpleCPU::CacheCompletionEvent::description()
108{
109    return "SimpleCPU cache completion event";
110}
111
112#ifdef FULL_SYSTEM
113SimpleCPU::SimpleCPU(const string &_name,
114                     System *_system,
115                     Counter max_insts_any_thread,
116                     Counter max_insts_all_threads,
117                     Counter max_loads_any_thread,
118                     Counter max_loads_all_threads,
119                     AlphaItb *itb, AlphaDtb *dtb,
120                     FunctionalMemory *mem,
121                     MemInterface *icache_interface,
122                     MemInterface *dcache_interface,
123                     bool _def_reg, Tick freq)
124    : BaseCPU(_name, /* number_of_threads */ 1,
125              max_insts_any_thread, max_insts_all_threads,
126              max_loads_any_thread, max_loads_all_threads,
127              _system, freq),
128#else
129SimpleCPU::SimpleCPU(const string &_name, Process *_process,
130                     Counter max_insts_any_thread,
131                     Counter max_insts_all_threads,
132                     Counter max_loads_any_thread,
133                     Counter max_loads_all_threads,
134                     MemInterface *icache_interface,
135                     MemInterface *dcache_interface,
136                     bool _def_reg)
137    : BaseCPU(_name, /* number_of_threads */ 1,
138              max_insts_any_thread, max_insts_all_threads,
139              max_loads_any_thread, max_loads_all_threads),
140#endif
141      tickEvent(this), xc(NULL), defer_registration(_def_reg),
142      cacheCompletionEvent(this)
143{
144    _status = Idle;
145#ifdef FULL_SYSTEM
146    xc = new ExecContext(this, 0, system, itb, dtb, mem);
147
148    // initialize CPU, including PC
149    TheISA::initCPU(&xc->regs);
150#else
151    xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
152#endif // !FULL_SYSTEM
153
154    icacheInterface = icache_interface;
155    dcacheInterface = dcache_interface;
156
157    memReq = new MemReq();
158    memReq->xc = xc;
159    memReq->asid = 0;
160    memReq->data = new uint8_t[64];
161
162    numInst = 0;
163    startNumInst = 0;
164    numLoad = 0;
165    startNumLoad = 0;
166    lastIcacheStall = 0;
167    lastDcacheStall = 0;
168
169    execContexts.push_back(xc);
170}
171
172SimpleCPU::~SimpleCPU()
173{
174}
175
176void SimpleCPU::init()
177{
178    if (!defer_registration) {
179        this->registerExecContexts();
180    }
181}
182
183void
184SimpleCPU::switchOut()
185{
186    _status = SwitchedOut;
187    if (tickEvent.scheduled())
188        tickEvent.squash();
189}
190
191
192void
193SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
194{
195    BaseCPU::takeOverFrom(oldCPU);
196
197    assert(!tickEvent.scheduled());
198
199    // if any of this CPU's ExecContexts are active, mark the CPU as
200    // running and schedule its tick event.
201    for (int i = 0; i < execContexts.size(); ++i) {
202        ExecContext *xc = execContexts[i];
203        if (xc->status() == ExecContext::Active && _status != Running) {
204            _status = Running;
205            tickEvent.schedule(curTick);
206        }
207    }
208
209    oldCPU->switchOut();
210}
211
212
213void
214SimpleCPU::activateContext(int thread_num, int delay)
215{
216    assert(thread_num == 0);
217    assert(xc);
218
219    assert(_status == Idle);
220    notIdleFraction++;
221    scheduleTickEvent(delay);
222    _status = Running;
223}
224
225
226void
227SimpleCPU::suspendContext(int thread_num)
228{
229    assert(thread_num == 0);
230    assert(xc);
231
232    assert(_status == Running);
233    notIdleFraction--;
234    unscheduleTickEvent();
235    _status = Idle;
236}
237
238
239void
240SimpleCPU::deallocateContext(int thread_num)
241{
242    // for now, these are equivalent
243    suspendContext(thread_num);
244}
245
246
247void
248SimpleCPU::haltContext(int thread_num)
249{
250    // for now, these are equivalent
251    suspendContext(thread_num);
252}
253
254
255void
256SimpleCPU::regStats()
257{
258    using namespace Statistics;
259
260    BaseCPU::regStats();
261
262    numInsts
263        .name(name() + ".num_insts")
264        .desc("Number of instructions executed")
265        ;
266
267    numMemRefs
268        .name(name() + ".num_refs")
269        .desc("Number of memory references")
270        ;
271
272    idleFraction
273        .name(name() + ".idle_fraction")
274        .desc("Percentage of idle cycles")
275        ;
276
277    icacheStallCycles
278        .name(name() + ".icache_stall_cycles")
279        .desc("ICache total stall cycles")
280        .prereq(icacheStallCycles)
281        ;
282
283    dcacheStallCycles
284        .name(name() + ".dcache_stall_cycles")
285        .desc("DCache total stall cycles")
286        .prereq(dcacheStallCycles)
287        ;
288
289    idleFraction = constant(1.0) - notIdleFraction;
290    numInsts = Statistics::scalar(numInst) - Statistics::scalar(startNumInst);
291    simInsts += numInsts;
292}
293
294void
295SimpleCPU::resetStats()
296{
297    startNumInst = numInst;
298    notIdleFraction = (_status != Idle);
299}
300
301void
302SimpleCPU::serialize(ostream &os)
303{
304    SERIALIZE_ENUM(_status);
305    SERIALIZE_SCALAR(inst);
306    nameOut(os, csprintf("%s.xc", name()));
307    xc->serialize(os);
308    nameOut(os, csprintf("%s.tickEvent", name()));
309    tickEvent.serialize(os);
310    nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
311    cacheCompletionEvent.serialize(os);
312}
313
314void
315SimpleCPU::unserialize(Checkpoint *cp, const string &section)
316{
317    UNSERIALIZE_ENUM(_status);
318    UNSERIALIZE_SCALAR(inst);
319    xc->unserialize(cp, csprintf("%s.xc", section));
320    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
321    cacheCompletionEvent
322        .unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
323}
324
325void
326change_thread_state(int thread_number, int activate, int priority)
327{
328}
329
330Fault
331SimpleCPU::copySrcTranslate(Addr src)
332{
333    memReq->reset(src, (dcacheInterface) ?
334                  dcacheInterface->getBlockSize()
335                  : 64);
336
337    // translate to physical address
338    Fault fault = xc->translateDataReadReq(memReq);
339
340    if (fault == No_Fault) {
341        xc->copySrcAddr = src;
342        xc->copySrcPhysAddr = memReq->paddr;
343    } else {
344        xc->copySrcAddr = 0;
345        xc->copySrcPhysAddr = 0;
346    }
347    return fault;
348}
349
350Fault
351SimpleCPU::copy(Addr dest)
352{
353    int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
354    uint8_t data[blk_size];
355    assert(xc->copySrcPhysAddr);
356    memReq->reset(dest, blk_size);
357    // translate to physical address
358    Fault fault = xc->translateDataWriteReq(memReq);
359    if (fault == No_Fault) {
360        Addr dest_addr = memReq->paddr;
361        // Need to read straight from memory since we have more than 8 bytes.
362        memReq->paddr = xc->copySrcPhysAddr;
363        xc->mem->read(memReq, data);
364        memReq->paddr = dest_addr;
365        xc->mem->write(memReq, data);
366    }
367    return fault;
368}
369
370// precise architected memory state accessor macros
371template <class T>
372Fault
373SimpleCPU::read(Addr addr, T &data, unsigned flags)
374{
375    memReq->reset(addr, sizeof(T), flags);
376
377    // translate to physical address
378    Fault fault = xc->translateDataReadReq(memReq);
379
380    // do functional access
381    if (fault == No_Fault)
382        fault = xc->read(memReq, data);
383
384    if (traceData) {
385        traceData->setAddr(addr);
386        if (fault == No_Fault)
387            traceData->setData(data);
388    }
389
390    // if we have a cache, do cache access too
391    if (fault == No_Fault && dcacheInterface) {
392        memReq->cmd = Read;
393        memReq->completionEvent = NULL;
394        memReq->time = curTick;
395        MemAccessResult result = dcacheInterface->access(memReq);
396
397        // Ugly hack to get an event scheduled *only* if the access is
398        // a miss.  We really should add first-class support for this
399        // at some point.
400        if (result != MA_HIT && dcacheInterface->doEvents()) {
401            memReq->completionEvent = &cacheCompletionEvent;
402            lastDcacheStall = curTick;
403            unscheduleTickEvent();
404            _status = DcacheMissStall;
405        }
406    }
407
408    return fault;
409}
410
411#ifndef DOXYGEN_SHOULD_SKIP_THIS
412
413template
414Fault
415SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
416
417template
418Fault
419SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
420
421template
422Fault
423SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
424
425template
426Fault
427SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
428
429#endif //DOXYGEN_SHOULD_SKIP_THIS
430
431template<>
432Fault
433SimpleCPU::read(Addr addr, double &data, unsigned flags)
434{
435    return read(addr, *(uint64_t*)&data, flags);
436}
437
438template<>
439Fault
440SimpleCPU::read(Addr addr, float &data, unsigned flags)
441{
442    return read(addr, *(uint32_t*)&data, flags);
443}
444
445
446template<>
447Fault
448SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
449{
450    return read(addr, (uint32_t&)data, flags);
451}
452
453
454template <class T>
455Fault
456SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
457{
458    if (traceData) {
459        traceData->setAddr(addr);
460        traceData->setData(data);
461    }
462
463    memReq->reset(addr, sizeof(T), flags);
464
465    // translate to physical address
466    Fault fault = xc->translateDataWriteReq(memReq);
467
468    // do functional access
469    if (fault == No_Fault)
470        fault = xc->write(memReq, data);
471
472    if (fault == No_Fault && dcacheInterface) {
473        memReq->cmd = Write;
474        memcpy(memReq->data,(uint8_t *)&data,memReq->size);
475        memReq->completionEvent = NULL;
476        memReq->time = curTick;
477        MemAccessResult result = dcacheInterface->access(memReq);
478
479        // Ugly hack to get an event scheduled *only* if the access is
480        // a miss.  We really should add first-class support for this
481        // at some point.
482        if (result != MA_HIT && dcacheInterface->doEvents()) {
483            memReq->completionEvent = &cacheCompletionEvent;
484            lastDcacheStall = curTick;
485            unscheduleTickEvent();
486            _status = DcacheMissStall;
487        }
488    }
489
490    if (res && (fault == No_Fault))
491        *res = memReq->result;
492
493    return fault;
494}
495
496
497#ifndef DOXYGEN_SHOULD_SKIP_THIS
498template
499Fault
500SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
501
502template
503Fault
504SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
505
506template
507Fault
508SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
509
510template
511Fault
512SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
513
514#endif //DOXYGEN_SHOULD_SKIP_THIS
515
516template<>
517Fault
518SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
519{
520    return write(*(uint64_t*)&data, addr, flags, res);
521}
522
523template<>
524Fault
525SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
526{
527    return write(*(uint32_t*)&data, addr, flags, res);
528}
529
530
531template<>
532Fault
533SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
534{
535    return write((uint32_t)data, addr, flags, res);
536}
537
538
539#ifdef FULL_SYSTEM
540Addr
541SimpleCPU::dbg_vtophys(Addr addr)
542{
543    return vtophys(xc, addr);
544}
545#endif // FULL_SYSTEM
546
547Tick save_cycle = 0;
548
549
550void
551SimpleCPU::processCacheCompletion()
552{
553    switch (status()) {
554      case IcacheMissStall:
555        icacheStallCycles += curTick - lastIcacheStall;
556        _status = IcacheMissComplete;
557        scheduleTickEvent(1);
558        break;
559      case DcacheMissStall:
560        dcacheStallCycles += curTick - lastDcacheStall;
561        _status = Running;
562        scheduleTickEvent(1);
563        break;
564      case SwitchedOut:
565        // If this CPU has been switched out due to sampling/warm-up,
566        // ignore any further status changes (e.g., due to cache
567        // misses outstanding at the time of the switch).
568        return;
569      default:
570        panic("SimpleCPU::processCacheCompletion: bad state");
571        break;
572    }
573}
574
575#ifdef FULL_SYSTEM
576void
577SimpleCPU::post_interrupt(int int_num, int index)
578{
579    BaseCPU::post_interrupt(int_num, index);
580
581    if (xc->status() == ExecContext::Suspended) {
582                DPRINTF(IPI,"Suspended Processor awoke\n");
583        xc->activate();
584        Annotate::Resume(xc);
585    }
586}
587#endif // FULL_SYSTEM
588
589/* start simulation, program loaded, processor precise state initialized */
590void
591SimpleCPU::tick()
592{
593    traceData = NULL;
594
595    Fault fault = No_Fault;
596
597#ifdef FULL_SYSTEM
598    if (AlphaISA::check_interrupts &&
599        xc->cpu->check_interrupts() &&
600        !PC_PAL(xc->regs.pc) &&
601        status() != IcacheMissComplete) {
602        int ipl = 0;
603        int summary = 0;
604        AlphaISA::check_interrupts = 0;
605        IntReg *ipr = xc->regs.ipr;
606
607        if (xc->regs.ipr[TheISA::IPR_SIRR]) {
608            for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
609                 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
610                if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
611                    // See table 4-19 of 21164 hardware reference
612                    ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
613                    summary |= (ULL(1) << i);
614                }
615            }
616        }
617
618        uint64_t interrupts = xc->cpu->intr_status();
619        for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
620            i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
621            if (interrupts & (ULL(1) << i)) {
622                // See table 4-19 of 21164 hardware reference
623                ipl = i;
624                summary |= (ULL(1) << i);
625            }
626        }
627
628        if (ipr[TheISA::IPR_ASTRR])
629            panic("asynchronous traps not implemented\n");
630
631        if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
632            ipr[TheISA::IPR_ISR] = summary;
633            ipr[TheISA::IPR_INTID] = ipl;
634            xc->ev5_trap(Interrupt_Fault);
635
636            DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
637                    ipr[TheISA::IPR_IPLR], ipl, summary);
638        }
639    }
640#endif
641
642    // maintain $r0 semantics
643    xc->regs.intRegFile[ZeroReg] = 0;
644#ifdef TARGET_ALPHA
645    xc->regs.floatRegFile.d[ZeroReg] = 0.0;
646#endif // TARGET_ALPHA
647
648    if (status() == IcacheMissComplete) {
649        // We've already fetched an instruction and were stalled on an
650        // I-cache miss.  No need to fetch it again.
651
652        // Set status to running; tick event will get rescheduled if
653        // necessary at end of tick() function.
654        _status = Running;
655    }
656    else {
657        // Try to fetch an instruction
658
659        // set up memory request for instruction fetch
660#ifdef FULL_SYSTEM
661#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0
662#else
663#define IFETCH_FLAGS(pc)	0
664#endif
665
666        memReq->cmd = Read;
667        memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
668                     IFETCH_FLAGS(xc->regs.pc));
669
670        fault = xc->translateInstReq(memReq);
671
672        if (fault == No_Fault)
673            fault = xc->mem->read(memReq, inst);
674
675        if (icacheInterface && fault == No_Fault) {
676            memReq->completionEvent = NULL;
677
678            memReq->time = curTick;
679            MemAccessResult result = icacheInterface->access(memReq);
680
681            // Ugly hack to get an event scheduled *only* if the access is
682            // a miss.  We really should add first-class support for this
683            // at some point.
684            if (result != MA_HIT && icacheInterface->doEvents()) {
685                memReq->completionEvent = &cacheCompletionEvent;
686                lastIcacheStall = curTick;
687                unscheduleTickEvent();
688                _status = IcacheMissStall;
689                return;
690            }
691        }
692    }
693
694    // If we've got a valid instruction (i.e., no fault on instruction
695    // fetch), then execute it.
696    if (fault == No_Fault) {
697
698        // keep an instruction count
699        numInst++;
700
701        // check for instruction-count-based events
702        comInstEventQueue[0]->serviceEvents(numInst);
703
704        // decode the instruction
705        StaticInstPtr<TheISA> si(inst);
706
707        traceData = Trace::getInstRecord(curTick, xc, this, si,
708                                         xc->regs.pc);
709
710#ifdef FULL_SYSTEM
711        xc->regs.opcode = (inst >> 26) & 0x3f;
712        xc->regs.ra = (inst >> 21) & 0x1f;
713#endif // FULL_SYSTEM
714
715        xc->func_exe_inst++;
716
717        fault = si->execute(this, xc, traceData);
718#ifdef FS_MEASURE
719        if (!(xc->misspeculating()) && (xc->system->bin)) {
720            SWContext *ctx = xc->swCtx;
721            if (ctx && !ctx->callStack.empty()) {
722                if (si->isCall()) {
723                    ctx->calls++;
724                }
725                if (si->isReturn()) {
726                     if (ctx->calls == 0) {
727                        fnCall *top = ctx->callStack.top();
728                        DPRINTF(TCPIP, "Removing %s from callstack.\n", top->name);
729                        delete top;
730                        ctx->callStack.pop();
731                        if (ctx->callStack.empty())
732                            xc->system->nonPath->activate();
733                        else
734                            ctx->callStack.top()->myBin->activate();
735
736                        xc->system->dumpState(xc);
737                    } else {
738                        ctx->calls--;
739                    }
740                }
741            }
742        }
743#endif
744        if (si->isMemRef()) {
745            numMemRefs++;
746        }
747
748        if (si->isLoad()) {
749            ++numLoad;
750            comLoadEventQueue[0]->serviceEvents(numLoad);
751        }
752
753        if (traceData)
754            traceData->finalize();
755
756    }	// if (fault == No_Fault)
757
758    if (fault != No_Fault) {
759#ifdef FULL_SYSTEM
760        xc->ev5_trap(fault);
761#else // !FULL_SYSTEM
762        fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
763#endif // FULL_SYSTEM
764    }
765    else {
766        // go to the next instruction
767        xc->regs.pc = xc->regs.npc;
768        xc->regs.npc += sizeof(MachInst);
769    }
770
771#ifdef FULL_SYSTEM
772    Addr oldpc;
773    do {
774        oldpc = xc->regs.pc;
775        system->pcEventQueue.service(xc);
776    } while (oldpc != xc->regs.pc);
777#endif
778
779    assert(status() == Running ||
780           status() == Idle ||
781           status() == DcacheMissStall);
782
783    if (status() == Running && !tickEvent.scheduled())
784        tickEvent.schedule(curTick + 1);
785}
786
787
788////////////////////////////////////////////////////////////////////////
789//
790//  SimpleCPU Simulation Object
791//
792BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
793
794    Param<Counter> max_insts_any_thread;
795    Param<Counter> max_insts_all_threads;
796    Param<Counter> max_loads_any_thread;
797    Param<Counter> max_loads_all_threads;
798
799#ifdef FULL_SYSTEM
800    SimObjectParam<AlphaItb *> itb;
801    SimObjectParam<AlphaDtb *> dtb;
802    SimObjectParam<FunctionalMemory *> mem;
803    SimObjectParam<System *> system;
804    Param<int> mult;
805#else
806    SimObjectParam<Process *> workload;
807#endif // FULL_SYSTEM
808
809    SimObjectParam<BaseMem *> icache;
810    SimObjectParam<BaseMem *> dcache;
811
812    Param<bool> defer_registration;
813
814END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
815
816BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
817
818    INIT_PARAM_DFLT(max_insts_any_thread,
819                    "terminate when any thread reaches this inst count",
820                    0),
821    INIT_PARAM_DFLT(max_insts_all_threads,
822                    "terminate when all threads have reached this inst count",
823                    0),
824    INIT_PARAM_DFLT(max_loads_any_thread,
825                    "terminate when any thread reaches this load count",
826                    0),
827    INIT_PARAM_DFLT(max_loads_all_threads,
828                    "terminate when all threads have reached this load count",
829                    0),
830
831#ifdef FULL_SYSTEM
832    INIT_PARAM(itb, "Instruction TLB"),
833    INIT_PARAM(dtb, "Data TLB"),
834    INIT_PARAM(mem, "memory"),
835    INIT_PARAM(system, "system object"),
836    INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
837#else
838    INIT_PARAM(workload, "processes to run"),
839#endif // FULL_SYSTEM
840
841    INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
842    INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
843    INIT_PARAM_DFLT(defer_registration, "defer registration with system "
844                    "(for sampling)", false)
845
846END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
847
848
849CREATE_SIM_OBJECT(SimpleCPU)
850{
851    SimpleCPU *cpu;
852#ifdef FULL_SYSTEM
853    if (mult != 1)
854        panic("processor clock multiplier must be 1\n");
855
856    cpu = new SimpleCPU(getInstanceName(), system,
857                        max_insts_any_thread, max_insts_all_threads,
858                        max_loads_any_thread, max_loads_all_threads,
859                        itb, dtb, mem,
860                        (icache) ? icache->getInterface() : NULL,
861                        (dcache) ? dcache->getInterface() : NULL,
862                        defer_registration,
863                        ticksPerSecond * mult);
864#else
865
866    cpu = new SimpleCPU(getInstanceName(), workload,
867                        max_insts_any_thread, max_insts_all_threads,
868                        max_loads_any_thread, max_loads_all_threads,
869                        (icache) ? icache->getInterface() : NULL,
870                        (dcache) ? dcache->getInterface() : NULL,
871                        defer_registration);
872
873#endif // FULL_SYSTEM
874#if 0
875    if (!defer_registration) {
876        cpu->registerExecContexts();
877    }
878#endif
879    return cpu;
880}
881
882REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
883
884