base.cc revision 224
1/*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cmath>
30#include <cstdio>
31#include <cstdlib>
32#include <iostream>
33#include <iomanip>
34#include <list>
35#include <sstream>
36#include <string>
37
38#include "base/cprintf.hh"
39#include "base/inifile.hh"
40#include "base/loader/symtab.hh"
41#include "base/misc.hh"
42#include "base/pollevent.hh"
43#include "base/range.hh"
44#include "base/trace.hh"
45#include "cpu/base_cpu.hh"
46#include "cpu/exec_context.hh"
47#include "cpu/exetrace.hh"
48#include "cpu/full_cpu/smt.hh"
49#include "cpu/simple_cpu/simple_cpu.hh"
50#include "cpu/static_inst.hh"
51#include "mem/base_mem.hh"
52#include "mem/mem_interface.hh"
53#include "sim/annotation.hh"
54#include "sim/builder.hh"
55#include "sim/debug.hh"
56#include "sim/host.hh"
57#include "sim/sim_events.hh"
58#include "sim/sim_object.hh"
59#include "sim/sim_stats.hh"
60
61#ifdef FULL_SYSTEM
62#include "base/remote_gdb.hh"
63#include "dev/alpha_access.h"
64#include "dev/pciareg.h"
65#include "mem/functional_mem/memory_control.hh"
66#include "mem/functional_mem/physical_memory.hh"
67#include "sim/system.hh"
68#include "targetarch/alpha_memory.hh"
69#include "targetarch/vtophys.hh"
70#else // !FULL_SYSTEM
71#include "eio/eio.hh"
72#include "mem/functional_mem/functional_memory.hh"
73#include "sim/prog.hh"
74#endif // FULL_SYSTEM
75
76using namespace std;
77
78SimpleCPU::TickEvent::TickEvent(SimpleCPU *c)
79    : Event(&mainEventQueue, "SimpleCPU::TickEvent", 100), cpu(c)
80{
81}
82
83void
84SimpleCPU::TickEvent::process()
85{
86    cpu->tick();
87}
88
89const char *
90SimpleCPU::TickEvent::description()
91{
92    return "SimpleCPU tick event";
93}
94
95
96SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
97    : Event(&mainEventQueue, "SimpleCPU::CacheCompletionEvent"),
98      cpu(_cpu)
99{
100}
101
102void SimpleCPU::CacheCompletionEvent::process()
103{
104    cpu->processCacheCompletion();
105}
106
107const char *
108SimpleCPU::CacheCompletionEvent::description()
109{
110    return "SimpleCPU cache completion event";
111}
112
113#ifdef FULL_SYSTEM
114SimpleCPU::SimpleCPU(const string &_name,
115                     System *_system,
116                     Counter max_insts_any_thread,
117                     Counter max_insts_all_threads,
118                     Counter max_loads_any_thread,
119                     Counter max_loads_all_threads,
120                     AlphaItb *itb, AlphaDtb *dtb,
121                     FunctionalMemory *mem,
122                     MemInterface *icache_interface,
123                     MemInterface *dcache_interface,
124                     Tick freq)
125    : BaseCPU(_name, /* number_of_threads */ 1,
126              max_insts_any_thread, max_insts_all_threads,
127              max_loads_any_thread, max_loads_all_threads,
128              _system, freq),
129#else
130SimpleCPU::SimpleCPU(const string &_name, Process *_process,
131                     Counter max_insts_any_thread,
132                     Counter max_insts_all_threads,
133                     Counter max_loads_any_thread,
134                     Counter max_loads_all_threads,
135                     MemInterface *icache_interface,
136                     MemInterface *dcache_interface)
137    : BaseCPU(_name, /* number_of_threads */ 1,
138              max_insts_any_thread, max_insts_all_threads,
139              max_loads_any_thread, max_loads_all_threads),
140#endif
141      tickEvent(this), xc(NULL), cacheCompletionEvent(this)
142{
143    _status = Idle;
144#ifdef FULL_SYSTEM
145    xc = new ExecContext(this, 0, system, itb, dtb, mem);
146
147    // initialize CPU, including PC
148    TheISA::initCPU(&xc->regs);
149#else
150    xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
151#endif // !FULL_SYSTEM
152
153    icacheInterface = icache_interface;
154    dcacheInterface = dcache_interface;
155
156    memReq = new MemReq();
157    memReq->xc = xc;
158    memReq->asid = 0;
159    memReq->data = new uint8_t[64];
160
161    numInst = 0;
162    numLoad = 0;
163    last_idle = 0;
164    lastIcacheStall = 0;
165    lastDcacheStall = 0;
166
167    execContexts.push_back(xc);
168}
169
170SimpleCPU::~SimpleCPU()
171{
172}
173
174
175void
176SimpleCPU::switchOut()
177{
178    _status = SwitchedOut;
179    if (tickEvent.scheduled())
180        tickEvent.squash();
181}
182
183
184void
185SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
186{
187    BaseCPU::takeOverFrom(oldCPU);
188
189    assert(!tickEvent.scheduled());
190
191    // if any of this CPU's ExecContexts are active, mark the CPU as
192    // running and schedule its tick event.
193    for (int i = 0; i < execContexts.size(); ++i) {
194        ExecContext *xc = execContexts[i];
195        if (xc->status() == ExecContext::Active && _status != Running) {
196            _status = Running;
197            tickEvent.schedule(curTick);
198        }
199    }
200
201    oldCPU->switchOut();
202}
203
204
205void
206SimpleCPU::execCtxStatusChg(int thread_num) {
207    assert(thread_num == 0);
208    assert(xc);
209
210    if (xc->status() == ExecContext::Active)
211        setStatus(Running);
212    else
213        setStatus(Idle);
214}
215
216
217void
218SimpleCPU::regStats()
219{
220    BaseCPU::regStats();
221
222    numInsts
223        .name(name() + ".num_insts")
224        .desc("Number of instructions executed")
225        ;
226
227    numMemRefs
228        .name(name() + ".num_refs")
229        .desc("Number of memory references")
230        ;
231
232    idleCycles
233        .name(name() + ".idle_cycles")
234        .desc("Number of idle cycles")
235        ;
236
237    idleFraction
238        .name(name() + ".idle_fraction")
239        .desc("Percentage of idle cycles")
240        ;
241
242    icacheStallCycles
243        .name(name() + ".icache_stall_cycles")
244        .desc("ICache total stall cycles")
245        .prereq(icacheStallCycles)
246        ;
247
248    dcacheStallCycles
249        .name(name() + ".dcache_stall_cycles")
250        .desc("DCache total stall cycles")
251        .prereq(dcacheStallCycles)
252        ;
253
254    idleFraction = idleCycles / simTicks;
255
256    numInsts = Statistics::scalar(numInst);
257    simInsts += numInsts;
258}
259
260void
261SimpleCPU::serialize(ostream &os)
262{
263    SERIALIZE_ENUM(_status);
264    SERIALIZE_SCALAR(inst);
265    xc->serialize(os);
266    nameOut(os, csprintf("%s.tickEvent", name()));
267    tickEvent.serialize(os);
268    nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
269    cacheCompletionEvent.serialize(os);
270}
271
272void
273SimpleCPU::unserialize(const IniFile *db, const string &section)
274{
275    UNSERIALIZE_ENUM(_status);
276    UNSERIALIZE_SCALAR(inst);
277    xc->unserialize(db, section);
278    tickEvent.unserialize(db, csprintf("%s.tickEvent", name()));
279    cacheCompletionEvent
280        .unserialize(db, csprintf("%s.cacheCompletionEvent", name()));
281}
282
283void
284change_thread_state(int thread_number, int activate, int priority)
285{
286}
287
288// precise architected memory state accessor macros
289template <class T>
290Fault
291SimpleCPU::read(Addr addr, T& data, unsigned flags)
292{
293    memReq->reset(addr, sizeof(T), flags);
294
295    // translate to physical address
296    Fault fault = xc->translateDataReadReq(memReq);
297
298    // do functional access
299    if (fault == No_Fault)
300        fault = xc->read(memReq, data);
301
302    if (traceData) {
303        traceData->setAddr(addr);
304        if (fault == No_Fault)
305            traceData->setData(data);
306    }
307
308    // if we have a cache, do cache access too
309    if (fault == No_Fault && dcacheInterface) {
310        memReq->cmd = Read;
311        memReq->completionEvent = NULL;
312        memReq->time = curTick;
313        memReq->flags &= ~UNCACHEABLE;
314        MemAccessResult result = dcacheInterface->access(memReq);
315
316        // Ugly hack to get an event scheduled *only* if the access is
317        // a miss.  We really should add first-class support for this
318        // at some point.
319        if (result != MA_HIT && dcacheInterface->doEvents) {
320            memReq->completionEvent = &cacheCompletionEvent;
321            setStatus(DcacheMissStall);
322        }
323    }
324
325    return fault;
326}
327
328#ifndef DOXYGEN_SHOULD_SKIP_THIS
329
330template
331Fault
332SimpleCPU::read(Addr addr, uint64_t& data, unsigned flags);
333
334template
335Fault
336SimpleCPU::read(Addr addr, uint32_t& data, unsigned flags);
337
338template
339Fault
340SimpleCPU::read(Addr addr, uint16_t& data, unsigned flags);
341
342template
343Fault
344SimpleCPU::read(Addr addr, uint8_t& data, unsigned flags);
345
346#endif //DOXYGEN_SHOULD_SKIP_THIS
347
348template<>
349Fault
350SimpleCPU::read(Addr addr, double& data, unsigned flags)
351{
352    return read(addr, *(uint64_t*)&data, flags);
353}
354
355template<>
356Fault
357SimpleCPU::read(Addr addr, float& data, unsigned flags)
358{
359    return read(addr, *(uint32_t*)&data, flags);
360}
361
362
363template<>
364Fault
365SimpleCPU::read(Addr addr, int32_t& data, unsigned flags)
366{
367    return read(addr, (uint32_t&)data, flags);
368}
369
370
371template <class T>
372Fault
373SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
374{
375    if (traceData) {
376        traceData->setAddr(addr);
377        traceData->setData(data);
378    }
379
380    memReq->reset(addr, sizeof(T), flags);
381
382    // translate to physical address
383    Fault fault = xc->translateDataWriteReq(memReq);
384
385    // do functional access
386    if (fault == No_Fault)
387        fault = xc->write(memReq, data);
388
389    if (fault == No_Fault && dcacheInterface) {
390        memReq->cmd = Write;
391        memcpy(memReq->data,(uint8_t *)&data,memReq->size);
392        memReq->completionEvent = NULL;
393        memReq->time = curTick;
394        memReq->flags &= ~UNCACHEABLE;
395        MemAccessResult result = dcacheInterface->access(memReq);
396
397        // Ugly hack to get an event scheduled *only* if the access is
398        // a miss.  We really should add first-class support for this
399        // at some point.
400        if (result != MA_HIT && dcacheInterface->doEvents) {
401            memReq->completionEvent = &cacheCompletionEvent;
402            setStatus(DcacheMissStall);
403        }
404    }
405
406    if (res && (fault == No_Fault))
407        *res = memReq->result;
408
409    return fault;
410}
411
412
413#ifndef DOXYGEN_SHOULD_SKIP_THIS
414template
415Fault
416SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
417
418template
419Fault
420SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
421
422template
423Fault
424SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
425
426template
427Fault
428SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
429
430#endif //DOXYGEN_SHOULD_SKIP_THIS
431
432template<>
433Fault
434SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
435{
436    return write(*(uint64_t*)&data, addr, flags, res);
437}
438
439template<>
440Fault
441SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
442{
443    return write(*(uint32_t*)&data, addr, flags, res);
444}
445
446
447template<>
448Fault
449SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
450{
451    return write((uint32_t)data, addr, flags, res);
452}
453
454
455#ifdef FULL_SYSTEM
456Addr
457SimpleCPU::dbg_vtophys(Addr addr)
458{
459    return vtophys(xc, addr);
460}
461#endif // FULL_SYSTEM
462
463Tick save_cycle = 0;
464
465
466void
467SimpleCPU::processCacheCompletion()
468{
469    switch (status()) {
470      case IcacheMissStall:
471        icacheStallCycles += curTick - lastIcacheStall;
472        setStatus(IcacheMissComplete);
473        break;
474      case DcacheMissStall:
475        dcacheStallCycles += curTick - lastDcacheStall;
476        setStatus(Running);
477        break;
478      case SwitchedOut:
479        // If this CPU has been switched out due to sampling/warm-up,
480        // ignore any further status changes (e.g., due to cache
481        // misses outstanding at the time of the switch).
482        return;
483      default:
484        panic("SimpleCPU::processCacheCompletion: bad state");
485        break;
486    }
487}
488
489#ifdef FULL_SYSTEM
490void
491SimpleCPU::post_interrupt(int int_num, int index)
492{
493    BaseCPU::post_interrupt(int_num, index);
494
495    if (xc->status() == ExecContext::Suspended) {
496                DPRINTF(IPI,"Suspended Processor awoke\n");
497        xc->setStatus(ExecContext::Active);
498        Annotate::Resume(xc);
499    }
500}
501#endif // FULL_SYSTEM
502
503/* start simulation, program loaded, processor precise state initialized */
504void
505SimpleCPU::tick()
506{
507    traceData = NULL;
508
509    Fault fault = No_Fault;
510
511#ifdef FULL_SYSTEM
512    if (AlphaISA::check_interrupts &&
513        xc->cpu->check_interrupts() &&
514        !PC_PAL(xc->regs.pc) &&
515        status() != IcacheMissComplete) {
516        int ipl = 0;
517        int summary = 0;
518        AlphaISA::check_interrupts = 0;
519        IntReg *ipr = xc->regs.ipr;
520
521        if (xc->regs.ipr[TheISA::IPR_SIRR]) {
522            for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
523                 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
524                if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
525                    // See table 4-19 of 21164 hardware reference
526                    ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
527                    summary |= (ULL(1) << i);
528                }
529            }
530        }
531
532        uint64_t interrupts = xc->cpu->intr_status();
533        for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
534            i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
535            if (interrupts & (ULL(1) << i)) {
536                // See table 4-19 of 21164 hardware reference
537                ipl = i;
538                summary |= (ULL(1) << i);
539            }
540        }
541
542        if (ipr[TheISA::IPR_ASTRR])
543            panic("asynchronous traps not implemented\n");
544
545        if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
546            ipr[TheISA::IPR_ISR] = summary;
547            ipr[TheISA::IPR_INTID] = ipl;
548            xc->ev5_trap(Interrupt_Fault);
549
550            DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
551                    ipr[TheISA::IPR_IPLR], ipl, summary);
552        }
553    }
554#endif
555
556    // maintain $r0 semantics
557    xc->regs.intRegFile[ZeroReg] = 0;
558#ifdef TARGET_ALPHA
559    xc->regs.floatRegFile.d[ZeroReg] = 0.0;
560#endif // TARGET_ALPHA
561
562    if (status() == IcacheMissComplete) {
563        // We've already fetched an instruction and were stalled on an
564        // I-cache miss.  No need to fetch it again.
565
566        setStatus(Running);
567    }
568    else {
569        // Try to fetch an instruction
570
571        // set up memory request for instruction fetch
572#ifdef FULL_SYSTEM
573#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0
574#else
575#define IFETCH_FLAGS(pc)	0
576#endif
577
578        memReq->cmd = Read;
579        memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
580                     IFETCH_FLAGS(xc->regs.pc));
581
582        fault = xc->translateInstReq(memReq);
583
584        if (fault == No_Fault)
585            fault = xc->mem->read(memReq, inst);
586
587        if (icacheInterface && fault == No_Fault) {
588            memReq->completionEvent = NULL;
589
590            memReq->time = curTick;
591            memReq->flags &= ~UNCACHEABLE;
592            MemAccessResult result = icacheInterface->access(memReq);
593
594            // Ugly hack to get an event scheduled *only* if the access is
595            // a miss.  We really should add first-class support for this
596            // at some point.
597            if (result != MA_HIT && icacheInterface->doEvents) {
598                memReq->completionEvent = &cacheCompletionEvent;
599                setStatus(IcacheMissStall);
600                return;
601            }
602        }
603    }
604
605    // If we've got a valid instruction (i.e., no fault on instruction
606    // fetch), then execute it.
607    if (fault == No_Fault) {
608
609        // keep an instruction count
610        numInst++;
611
612        // check for instruction-count-based events
613        comInsnEventQueue[0]->serviceEvents(numInst);
614
615        // decode the instruction
616        StaticInstPtr<TheISA> si(inst);
617
618        traceData = Trace::getInstRecord(curTick, xc, this, si,
619                                         xc->regs.pc);
620
621#ifdef FULL_SYSTEM
622        xc->regs.opcode = (inst >> 26) & 0x3f;
623        xc->regs.ra = (inst >> 21) & 0x1f;
624#endif // FULL_SYSTEM
625
626        xc->func_exe_insn++;
627
628        fault = si->execute(this, xc, traceData);
629
630        if (si->isMemRef()) {
631            numMemRefs++;
632        }
633
634        if (si->isLoad()) {
635            ++numLoad;
636            comLoadEventQueue[0]->serviceEvents(numLoad);
637        }
638
639        if (traceData)
640            traceData->finalize();
641
642    }	// if (fault == No_Fault)
643
644    if (fault != No_Fault) {
645#ifdef FULL_SYSTEM
646        xc->ev5_trap(fault);
647#else // !FULL_SYSTEM
648        fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
649#endif // FULL_SYSTEM
650    }
651    else {
652        // go to the next instruction
653        xc->regs.pc = xc->regs.npc;
654        xc->regs.npc += sizeof(MachInst);
655    }
656
657#ifdef FULL_SYSTEM
658    Addr oldpc;
659    do {
660        oldpc = xc->regs.pc;
661        system->pcEventQueue.service(xc);
662    } while (oldpc != xc->regs.pc);
663#endif
664
665    assert(status() == Running ||
666           status() == Idle ||
667           status() == DcacheMissStall);
668
669    if (status() == Running && !tickEvent.scheduled())
670        tickEvent.schedule(curTick + 1);
671}
672
673
674////////////////////////////////////////////////////////////////////////
675//
676//  SimpleCPU Simulation Object
677//
678BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
679
680    Param<Counter> max_insts_any_thread;
681    Param<Counter> max_insts_all_threads;
682    Param<Counter> max_loads_any_thread;
683    Param<Counter> max_loads_all_threads;
684
685#ifdef FULL_SYSTEM
686    SimObjectParam<AlphaItb *> itb;
687    SimObjectParam<AlphaDtb *> dtb;
688    SimObjectParam<FunctionalMemory *> mem;
689    SimObjectParam<System *> system;
690    Param<int> mult;
691#else
692    SimObjectParam<Process *> workload;
693#endif // FULL_SYSTEM
694
695    SimObjectParam<BaseMem *> icache;
696    SimObjectParam<BaseMem *> dcache;
697
698    Param<bool> defer_registration;
699
700END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
701
702BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
703
704    INIT_PARAM_DFLT(max_insts_any_thread,
705                    "terminate when any thread reaches this insn count",
706                    0),
707    INIT_PARAM_DFLT(max_insts_all_threads,
708                    "terminate when all threads have reached this insn count",
709                    0),
710    INIT_PARAM_DFLT(max_loads_any_thread,
711                    "terminate when any thread reaches this load count",
712                    0),
713    INIT_PARAM_DFLT(max_loads_all_threads,
714                    "terminate when all threads have reached this load count",
715                    0),
716
717#ifdef FULL_SYSTEM
718    INIT_PARAM(itb, "Instruction TLB"),
719    INIT_PARAM(dtb, "Data TLB"),
720    INIT_PARAM(mem, "memory"),
721    INIT_PARAM(system, "system object"),
722    INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
723#else
724    INIT_PARAM(workload, "processes to run"),
725#endif // FULL_SYSTEM
726
727    INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
728    INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
729    INIT_PARAM_DFLT(defer_registration, "defer registration with system "
730                    "(for sampling)", false)
731
732END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
733
734
735CREATE_SIM_OBJECT(SimpleCPU)
736{
737    SimpleCPU *cpu;
738#ifdef FULL_SYSTEM
739    if (mult != 1)
740        panic("processor clock multiplier must be 1\n");
741
742    cpu = new SimpleCPU(getInstanceName(), system,
743                        max_insts_any_thread, max_insts_all_threads,
744                        max_loads_any_thread, max_loads_all_threads,
745                        itb, dtb, mem,
746                        (icache) ? icache->getInterface() : NULL,
747                        (dcache) ? dcache->getInterface() : NULL,
748                        ticksPerSecond * mult);
749#else
750
751    cpu = new SimpleCPU(getInstanceName(), workload,
752                        max_insts_any_thread, max_insts_all_threads,
753                        max_loads_any_thread, max_loads_all_threads,
754                        (icache) ? icache->getInterface() : NULL,
755                        (dcache) ? dcache->getInterface() : NULL);
756
757#endif // FULL_SYSTEM
758
759    if (!defer_registration) {
760        cpu->registerExecContexts();
761    }
762
763    return cpu;
764}
765
766REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
767