base.cc revision 56
1/*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <iostream>
30#include <iomanip>
31#include <list>
32#include <sstream>
33#include <string>
34
35#include <stdio.h>
36#include <stdlib.h>
37#include <math.h>
38
39#include "sim/host.hh"
40#include "base/cprintf.hh"
41#include "base/misc.hh"
42#include "cpu/full_cpu/smt.hh"
43
44#include "sim/annotation.hh"
45#include "cpu/exec_context.hh"
46#include "cpu/base_cpu.hh"
47#include "sim/debug.hh"
48#include "cpu/simple_cpu/simple_cpu.hh"
49#include "base/inifile.hh"
50#include "mem/mem_interface.hh"
51#include "mem/base_mem.hh"
52#include "cpu/static_inst.hh"
53
54#ifdef FULL_SYSTEM
55#include "mem/functional_mem/memory_control.hh"
56#include "mem/functional_mem/physical_memory.hh"
57#include "targetarch/alpha_memory.hh"
58#include "sim/system.hh"
59#else // !FULL_SYSTEM
60#include "mem/functional_mem/functional_memory.hh"
61#include "sim/prog.hh"
62#include "eio/eio.hh"
63#endif // FULL_SYSTEM
64
65#include "cpu/exetrace.hh"
66#include "base/trace.hh"
67#include "sim/sim_events.hh"
68#include "base/pollevent.hh"
69#include "sim/sim_object.hh"
70#include "sim/sim_stats.hh"
71
72#include "base/range.hh"
73#include "base/loader/symtab.hh"
74
75#ifdef FULL_SYSTEM
76#include "targetarch/vtophys.hh"
77#include "dev/pciareg.h"
78#include "base/remote_gdb.hh"
79#include "dev/alpha_access.h"
80#endif
81
82
83using namespace std;
84
85SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
86    : Event(&mainEventQueue),
87      cpu(_cpu)
88{
89}
90
91void SimpleCPU::CacheCompletionEvent::process()
92{
93    cpu->processCacheCompletion();
94}
95
96const char *
97SimpleCPU::CacheCompletionEvent::description()
98{
99    return "cache completion event";
100}
101
102#ifdef FULL_SYSTEM
103SimpleCPU::SimpleCPU(const string &_name,
104                     System *_system,
105                     Counter max_insts_any_thread,
106                     Counter max_insts_all_threads,
107                     AlphaItb *itb, AlphaDtb *dtb,
108                     FunctionalMemory *mem,
109                     MemInterface *icache_interface,
110                     MemInterface *dcache_interface,
111                     int cpu_id, Tick freq)
112    : BaseCPU(_name, /* number_of_threads */ 1,
113              max_insts_any_thread, max_insts_all_threads,
114              _system, cpu_id, freq),
115#else
116SimpleCPU::SimpleCPU(const string &_name, Process *_process,
117                     Counter max_insts_any_thread,
118                     Counter max_insts_all_threads,
119                     MemInterface *icache_interface,
120                     MemInterface *dcache_interface)
121    : BaseCPU(_name, /* number_of_threads */ 1,
122              max_insts_any_thread, max_insts_all_threads),
123#endif
124      tickEvent(this), xc(NULL), cacheCompletionEvent(this)
125{
126#ifdef FULL_SYSTEM
127    xc = new ExecContext(this, 0, system, itb, dtb, mem, cpu_id);
128
129    _status = Running;
130    if (cpu_id != 0) {
131
132       xc->setStatus(ExecContext::Unallocated);
133
134       //Open a GDB debug session on port (7000 + the cpu_id)
135       (new GDBListener(new RemoteGDB(system, xc), 7000 + cpu_id))->listen();
136
137       AlphaISA::init(system->physmem, &xc->regs);
138
139       fault = Reset_Fault;
140
141       IntReg *ipr = xc->regs.ipr;
142       ipr[TheISA::IPR_MCSR] = 0x6;
143
144       AlphaISA::swap_palshadow(&xc->regs, true);
145
146       xc->regs.pc =
147           ipr[TheISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
148       xc->regs.npc = xc->regs.pc + sizeof(MachInst);
149
150       _status = Idle;
151    }
152    else {
153      system->initBootContext(xc);
154
155      // Reset the system
156      //
157      AlphaISA::init(system->physmem, &xc->regs);
158
159      fault = Reset_Fault;
160
161      IntReg *ipr = xc->regs.ipr;
162      ipr[TheISA::IPR_MCSR] = 0x6;
163
164      AlphaISA::swap_palshadow(&xc->regs, true);
165
166      xc->regs.pc = ipr[TheISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
167      xc->regs.npc = xc->regs.pc + sizeof(MachInst);
168
169       _status = Running;
170       tickEvent.schedule(0);
171    }
172
173#else
174    xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
175    fault = No_Fault;
176    if (xc->status() == ExecContext::Active) {
177        _status = Running;
178       tickEvent.schedule(0);
179    } else
180        _status = Idle;
181#endif // !FULL_SYSTEM
182
183    icacheInterface = icache_interface;
184    dcacheInterface = dcache_interface;
185
186    memReq = new MemReq();
187    memReq->xc = xc;
188    memReq->asid = 0;
189
190    numInst = 0;
191    last_idle = 0;
192    lastIcacheStall = 0;
193    lastDcacheStall = 0;
194
195    contexts.push_back(xc);
196}
197
198SimpleCPU::~SimpleCPU()
199{
200}
201
202void
203SimpleCPU::regStats()
204{
205    BaseCPU::regStats();
206
207    numInsts
208        .name(name() + ".num_insts")
209        .desc("Number of instructions executed")
210        ;
211
212    numMemRefs
213        .name(name() + ".num_refs")
214        .desc("Number of memory references")
215        ;
216
217    idleCycles
218        .name(name() + ".idle_cycles")
219        .desc("Number of idle cycles")
220        ;
221
222    idleFraction
223        .name(name() + ".idle_fraction")
224        .desc("Percentage of idle cycles")
225        ;
226
227    icacheStallCycles
228        .name(name() + ".icache_stall_cycles")
229        .desc("ICache total stall cycles")
230        .prereq(icacheStallCycles)
231        ;
232
233    dcacheStallCycles
234        .name(name() + ".dcache_stall_cycles")
235        .desc("DCache total stall cycles")
236        .prereq(dcacheStallCycles)
237        ;
238
239    idleFraction = idleCycles / simTicks;
240
241    numInsts = Statistics::scalar(numInst);
242    simInsts += numInsts;
243}
244
245void
246SimpleCPU::serialize()
247{
248    nameOut();
249
250#ifdef FULL_SYSTEM
251#if 0
252    // do we need this anymore?? egh
253    childOut("itb", xc->itb);
254    childOut("dtb", xc->dtb);
255    childOut("physmem", physmem);
256#endif
257#endif
258
259    for (int i = 0; i < NumIntRegs; i++) {
260        stringstream buf;
261        ccprintf(buf, "R%02d", i);
262        paramOut(buf.str(), xc->regs.intRegFile[i]);
263    }
264    for (int i = 0; i < NumFloatRegs; i++) {
265        stringstream buf;
266        ccprintf(buf, "F%02d", i);
267        paramOut(buf.str(), xc->regs.floatRegFile.d[i]);
268    }
269    // CPUTraitsType::serializeSpecialRegs(getProxy(), xc->regs);
270}
271
272void
273SimpleCPU::unserialize(IniFile &db, const string &category, ConfigNode *node)
274{
275    string data;
276
277    for (int i = 0; i < NumIntRegs; i++) {
278        stringstream buf;
279        ccprintf(buf, "R%02d", i);
280        db.findDefault(category, buf.str(), data);
281        to_number(data,xc->regs.intRegFile[i]);
282    }
283    for (int i = 0; i < NumFloatRegs; i++) {
284        stringstream buf;
285        ccprintf(buf, "F%02d", i);
286        db.findDefault(category, buf.str(), data);
287        xc->regs.floatRegFile.d[i] = strtod(data.c_str(),NULL);
288    }
289
290    // Read in Special registers
291
292    // CPUTraitsType::unserializeSpecialRegs(db,category,node,xc->regs);
293}
294
295void
296change_thread_state(int thread_number, int activate, int priority)
297{
298}
299
300// precise architected memory state accessor macros
301template <class T>
302Fault
303SimpleCPU::read(Addr addr, T& data, unsigned flags)
304{
305    memReq->reset(addr, sizeof(T), flags);
306
307    // translate to physical address
308    Fault fault = xc->translateDataReadReq(memReq);
309
310    // do functional access
311    if (fault == No_Fault)
312        fault = xc->read(memReq, data);
313
314    if (traceData) {
315        traceData->setAddr(addr);
316        if (fault == No_Fault)
317            traceData->setData(data);
318    }
319
320    // if we have a cache, do cache access too
321    if (fault == No_Fault && dcacheInterface) {
322        memReq->cmd = Read;
323        memReq->completionEvent = NULL;
324        memReq->time = curTick;
325        memReq->flags &= ~UNCACHEABLE;
326        MemAccessResult result = dcacheInterface->access(memReq);
327
328        // Ugly hack to get an event scheduled *only* if the access is
329        // a miss.  We really should add first-class support for this
330        // at some point.
331        if (result != MA_HIT && dcacheInterface->doEvents) {
332            memReq->completionEvent = &cacheCompletionEvent;
333            setStatus(DcacheMissStall);
334        }
335    }
336
337    return fault;
338}
339
340#ifndef DOXYGEN_SHOULD_SKIP_THIS
341
342template
343Fault
344SimpleCPU::read(Addr addr, uint64_t& data, unsigned flags);
345
346template
347Fault
348SimpleCPU::read(Addr addr, uint32_t& data, unsigned flags);
349
350template
351Fault
352SimpleCPU::read(Addr addr, uint16_t& data, unsigned flags);
353
354template
355Fault
356SimpleCPU::read(Addr addr, uint8_t& data, unsigned flags);
357
358#endif //DOXYGEN_SHOULD_SKIP_THIS
359
360template<>
361Fault
362SimpleCPU::read(Addr addr, double& data, unsigned flags)
363{
364    return read(addr, *(uint64_t*)&data, flags);
365}
366
367template<>
368Fault
369SimpleCPU::read(Addr addr, float& data, unsigned flags)
370{
371    return read(addr, *(uint32_t*)&data, flags);
372}
373
374
375template<>
376Fault
377SimpleCPU::read(Addr addr, int32_t& data, unsigned flags)
378{
379    return read(addr, (uint32_t&)data, flags);
380}
381
382
383template <class T>
384Fault
385SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
386{
387    if (traceData) {
388        traceData->setAddr(addr);
389        traceData->setData(data);
390    }
391
392    memReq->reset(addr, sizeof(T), flags);
393
394    // translate to physical address
395    Fault fault = xc->translateDataWriteReq(memReq);
396
397    // do functional access
398    if (fault == No_Fault)
399        fault = xc->write(memReq, data);
400
401    if (fault == No_Fault && dcacheInterface) {
402        memReq->cmd = Write;
403        memReq->data = (uint8_t *)&data;
404        memReq->completionEvent = NULL;
405        memReq->time = curTick;
406        memReq->flags &= ~UNCACHEABLE;
407        MemAccessResult result = dcacheInterface->access(memReq);
408
409        // Ugly hack to get an event scheduled *only* if the access is
410        // a miss.  We really should add first-class support for this
411        // at some point.
412        if (result != MA_HIT && dcacheInterface->doEvents) {
413            memReq->completionEvent = &cacheCompletionEvent;
414            setStatus(DcacheMissStall);
415        }
416    }
417
418    if (res && (fault == No_Fault))
419        *res = memReq->result;
420
421    return fault;
422}
423
424
425#ifndef DOXYGEN_SHOULD_SKIP_THIS
426template
427Fault
428SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
429
430template
431Fault
432SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
433
434template
435Fault
436SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
437
438template
439Fault
440SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
441
442#endif //DOXYGEN_SHOULD_SKIP_THIS
443
444template<>
445Fault
446SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
447{
448    return write(*(uint64_t*)&data, addr, flags, res);
449}
450
451template<>
452Fault
453SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
454{
455    return write(*(uint32_t*)&data, addr, flags, res);
456}
457
458
459template<>
460Fault
461SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
462{
463    return write((uint32_t)data, addr, flags, res);
464}
465
466
467#ifdef FULL_SYSTEM
468Addr
469SimpleCPU::dbg_vtophys(Addr addr)
470{
471    return vtophys(xc, addr);
472}
473#endif // FULL_SYSTEM
474
475Tick save_cycle = 0;
476
477
478void
479SimpleCPU::processCacheCompletion()
480{
481    switch (status()) {
482      case IcacheMissStall:
483        icacheStallCycles += curTick - lastIcacheStall;
484        setStatus(IcacheMissComplete);
485        break;
486      case DcacheMissStall:
487        dcacheStallCycles += curTick - lastDcacheStall;
488        setStatus(Running);
489        break;
490      default:
491        panic("SimpleCPU::processCacheCompletion: bad state");
492        break;
493    }
494}
495
496#ifdef FULL_SYSTEM
497void
498SimpleCPU::post_interrupt(int int_num, int index)
499{
500    BaseCPU::post_interrupt(int_num, index);
501
502    if (xc->status() == ExecContext::Suspended) {
503                DPRINTF(IPI,"Suspended Processor awoke\n");
504        xc->setStatus(ExecContext::Active);
505        Annotate::Resume(xc);
506    }
507}
508#endif // FULL_SYSTEM
509
510/* start simulation, program loaded, processor precise state initialized */
511void
512SimpleCPU::tick()
513{
514    traceData = NULL;
515
516#ifdef FULL_SYSTEM
517    if (fault == No_Fault && AlphaISA::check_interrupts &&
518        xc->cpu->check_interrupts() &&
519        !PC_PAL(xc->regs.pc) &&
520        status() != IcacheMissComplete) {
521        int ipl = 0;
522        int summary = 0;
523        AlphaISA::check_interrupts = 0;
524        IntReg *ipr = xc->regs.ipr;
525
526        if (xc->regs.ipr[TheISA::IPR_SIRR]) {
527            for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
528                 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
529                if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
530                    // See table 4-19 of 21164 hardware reference
531                    ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
532                    summary |= (ULL(1) << i);
533                }
534            }
535        }
536
537        uint64_t interrupts = xc->cpu->intr_status();
538        for(int i = TheISA::INTLEVEL_EXTERNAL_MIN;
539            i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
540            if (interrupts & (ULL(1) << i)) {
541                // See table 4-19 of 21164 hardware reference
542                ipl = i;
543                summary |= (ULL(1) << i);
544            }
545        }
546
547        if (ipr[TheISA::IPR_ASTRR])
548            panic("asynchronous traps not implemented\n");
549
550        if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
551            ipr[TheISA::IPR_ISR] = summary;
552            ipr[TheISA::IPR_INTID] = ipl;
553            xc->ev5_trap(Interrupt_Fault);
554
555            DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
556                    ipr[TheISA::IPR_IPLR], ipl, summary);
557        }
558    }
559#endif
560
561    // maintain $r0 semantics
562    xc->regs.intRegFile[ZeroReg] = 0;
563#ifdef TARGET_ALPHA
564    xc->regs.floatRegFile.d[ZeroReg] = 0.0;
565#endif // TARGET_ALPHA
566
567    if (status() == IcacheMissComplete) {
568        // We've already fetched an instruction and were stalled on an
569        // I-cache miss.  No need to fetch it again.
570
571        setStatus(Running);
572    }
573    else {
574        // Try to fetch an instruction
575
576        // set up memory request for instruction fetch
577#ifdef FULL_SYSTEM
578#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0
579#else
580#define IFETCH_FLAGS(pc)	0
581#endif
582
583        memReq->cmd = Read;
584        memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
585                     IFETCH_FLAGS(xc->regs.pc));
586
587        fault = xc->translateInstReq(memReq);
588
589        if (fault == No_Fault)
590            fault = xc->mem->read(memReq, inst);
591
592        if (icacheInterface && fault == No_Fault) {
593            memReq->completionEvent = NULL;
594
595            memReq->time = curTick;
596            memReq->flags &= ~UNCACHEABLE;
597            MemAccessResult result = icacheInterface->access(memReq);
598
599            // Ugly hack to get an event scheduled *only* if the access is
600            // a miss.  We really should add first-class support for this
601            // at some point.
602            if (result != MA_HIT && icacheInterface->doEvents) {
603                memReq->completionEvent = &cacheCompletionEvent;
604                setStatus(IcacheMissStall);
605                return;
606            }
607        }
608    }
609
610    // If we've got a valid instruction (i.e., no fault on instruction
611    // fetch), then execute it.
612    if (fault == No_Fault) {
613
614        // keep an instruction count
615        numInst++;
616
617        // check for instruction-count-based events
618        comInsnEventQueue[0]->serviceEvents(numInst);
619
620        // decode the instruction
621        StaticInstPtr<TheISA> si(inst);
622
623        traceData = Trace::getInstRecord(curTick, xc, this, si,
624                                         xc->regs.pc);
625
626#ifdef FULL_SYSTEM
627        xc->regs.opcode = (inst >> 26) & 0x3f;
628        xc->regs.ra = (inst >> 21) & 0x1f;
629#endif // FULL_SYSTEM
630
631        xc->func_exe_insn++;
632
633        fault = si->execute(this, xc, traceData);
634
635        if (si->isMemRef()) {
636            numMemRefs++;
637        }
638
639        if (traceData)
640            traceData->finalize();
641
642    }	// if (fault == No_Fault)
643
644    if (fault != No_Fault) {
645#ifdef FULL_SYSTEM
646        xc->ev5_trap(fault);
647#else // !FULL_SYSTEM
648        fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
649#endif // FULL_SYSTEM
650    }
651    else {
652        // go to the next instruction
653        xc->regs.pc = xc->regs.npc;
654        xc->regs.npc += sizeof(MachInst);
655    }
656
657#ifdef FULL_SYSTEM
658    Addr oldpc;
659    do {
660        oldpc = xc->regs.pc;
661        system->pcEventQueue.service(xc);
662    } while (oldpc != xc->regs.pc);
663#endif
664
665    assert(status() == Running ||
666           status() == Idle ||
667           status() == DcacheMissStall);
668
669    if (status() == Running && !tickEvent.scheduled())
670        tickEvent.schedule(curTick + 1);
671}
672
673
674////////////////////////////////////////////////////////////////////////
675//
676//  SimpleCPU Simulation Object
677//
678BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
679
680    Param<Counter> max_insts_any_thread;
681    Param<Counter> max_insts_all_threads;
682
683#ifdef FULL_SYSTEM
684    SimObjectParam<AlphaItb *> itb;
685    SimObjectParam<AlphaDtb *> dtb;
686    SimObjectParam<FunctionalMemory *> mem;
687    SimObjectParam<System *> system;
688    Param<int> cpu_id;
689    Param<int> mult;
690#else
691    SimObjectParam<Process *> workload;
692#endif // FULL_SYSTEM
693
694    SimObjectParam<BaseMem *> icache;
695    SimObjectParam<BaseMem *> dcache;
696
697END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
698
699BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
700
701    INIT_PARAM_DFLT(max_insts_any_thread,
702                    "terminate when any thread reaches this insn count",
703                    0),
704    INIT_PARAM_DFLT(max_insts_all_threads,
705                    "terminate when all threads have reached this insn count",
706                    0),
707
708#ifdef FULL_SYSTEM
709    INIT_PARAM(itb, "Instruction TLB"),
710    INIT_PARAM(dtb, "Data TLB"),
711    INIT_PARAM(mem, "memory"),
712    INIT_PARAM(system, "system object"),
713    INIT_PARAM_DFLT(cpu_id, "CPU identification number", 0),
714    INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
715#else
716    INIT_PARAM(workload, "processes to run"),
717#endif // FULL_SYSTEM
718
719    INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
720    INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL)
721
722END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
723
724
725CREATE_SIM_OBJECT(SimpleCPU)
726{
727#ifdef FULL_SYSTEM
728    if (mult != 1)
729        panic("processor clock multiplier must be 1\n");
730
731    return new SimpleCPU(getInstanceName(), system,
732                         max_insts_any_thread, max_insts_all_threads,
733                         itb, dtb, mem,
734                         (icache) ? icache->getInterface() : NULL,
735                         (dcache) ? dcache->getInterface() : NULL,
736                         cpu_id, ticksPerSecond * mult);
737#else
738
739    return new SimpleCPU(getInstanceName(), workload,
740                         max_insts_any_thread, max_insts_all_threads,
741                         icache->getInterface(), dcache->getInterface());
742
743#endif // FULL_SYSTEM
744}
745
746REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
747