base.cc revision 393
1/*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cmath>
30#include <cstdio>
31#include <cstdlib>
32#include <iostream>
33#include <iomanip>
34#include <list>
35#include <sstream>
36#include <string>
37
38#include "base/cprintf.hh"
39#include "base/inifile.hh"
40#include "base/loader/symtab.hh"
41#include "base/misc.hh"
42#include "base/pollevent.hh"
43#include "base/range.hh"
44#include "base/trace.hh"
45#include "cpu/base_cpu.hh"
46#include "cpu/exec_context.hh"
47#include "cpu/exetrace.hh"
48#include "cpu/full_cpu/smt.hh"
49#include "cpu/simple_cpu/simple_cpu.hh"
50#include "cpu/static_inst.hh"
51#include "mem/base_mem.hh"
52#include "mem/mem_interface.hh"
53#include "sim/annotation.hh"
54#include "sim/builder.hh"
55#include "sim/debug.hh"
56#include "sim/host.hh"
57#include "sim/sim_events.hh"
58#include "sim/sim_object.hh"
59#include "sim/sim_stats.hh"
60
61#ifdef FULL_SYSTEM
62#include "base/remote_gdb.hh"
63#include "dev/alpha_access.h"
64#include "dev/pciareg.h"
65#include "mem/functional_mem/memory_control.hh"
66#include "mem/functional_mem/physical_memory.hh"
67#include "sim/system.hh"
68#include "targetarch/alpha_memory.hh"
69#include "targetarch/vtophys.hh"
70#else // !FULL_SYSTEM
71#include "eio/eio.hh"
72#include "mem/functional_mem/functional_memory.hh"
73#endif // FULL_SYSTEM
74
75using namespace std;
76
77SimpleCPU::TickEvent::TickEvent(SimpleCPU *c)
78    : Event(&mainEventQueue, 100), cpu(c)
79{
80}
81
82void
83SimpleCPU::TickEvent::process()
84{
85    cpu->tick();
86}
87
88const char *
89SimpleCPU::TickEvent::description()
90{
91    return "SimpleCPU tick event";
92}
93
94
95SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
96    : Event(&mainEventQueue),
97      cpu(_cpu)
98{
99}
100
101void SimpleCPU::CacheCompletionEvent::process()
102{
103    cpu->processCacheCompletion();
104}
105
106const char *
107SimpleCPU::CacheCompletionEvent::description()
108{
109    return "SimpleCPU cache completion event";
110}
111
112#ifdef FULL_SYSTEM
113SimpleCPU::SimpleCPU(const string &_name,
114                     System *_system,
115                     Counter max_insts_any_thread,
116                     Counter max_insts_all_threads,
117                     Counter max_loads_any_thread,
118                     Counter max_loads_all_threads,
119                     AlphaItb *itb, AlphaDtb *dtb,
120                     FunctionalMemory *mem,
121                     MemInterface *icache_interface,
122                     MemInterface *dcache_interface,
123                     Tick freq)
124    : BaseCPU(_name, /* number_of_threads */ 1,
125              max_insts_any_thread, max_insts_all_threads,
126              max_loads_any_thread, max_loads_all_threads,
127              _system, freq),
128#else
129SimpleCPU::SimpleCPU(const string &_name, Process *_process,
130                     Counter max_insts_any_thread,
131                     Counter max_insts_all_threads,
132                     Counter max_loads_any_thread,
133                     Counter max_loads_all_threads,
134                     MemInterface *icache_interface,
135                     MemInterface *dcache_interface)
136    : BaseCPU(_name, /* number_of_threads */ 1,
137              max_insts_any_thread, max_insts_all_threads,
138              max_loads_any_thread, max_loads_all_threads),
139#endif
140      tickEvent(this), xc(NULL), cacheCompletionEvent(this)
141{
142    _status = Idle;
143#ifdef FULL_SYSTEM
144    xc = new ExecContext(this, 0, system, itb, dtb, mem);
145
146    // initialize CPU, including PC
147    TheISA::initCPU(&xc->regs);
148#else
149    xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
150#endif // !FULL_SYSTEM
151
152    icacheInterface = icache_interface;
153    dcacheInterface = dcache_interface;
154
155    memReq = new MemReq();
156    memReq->xc = xc;
157    memReq->asid = 0;
158    memReq->data = new uint8_t[64];
159
160    numInst = 0;
161    startNumInst = 0;
162    numLoad = 0;
163    startNumLoad = 0;
164    lastIcacheStall = 0;
165    lastDcacheStall = 0;
166
167    execContexts.push_back(xc);
168}
169
170SimpleCPU::~SimpleCPU()
171{
172}
173
174void
175SimpleCPU::switchOut()
176{
177    _status = SwitchedOut;
178    if (tickEvent.scheduled())
179        tickEvent.squash();
180}
181
182
183void
184SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
185{
186    BaseCPU::takeOverFrom(oldCPU);
187
188    assert(!tickEvent.scheduled());
189
190    // if any of this CPU's ExecContexts are active, mark the CPU as
191    // running and schedule its tick event.
192    for (int i = 0; i < execContexts.size(); ++i) {
193        ExecContext *xc = execContexts[i];
194        if (xc->status() == ExecContext::Active && _status != Running) {
195            _status = Running;
196            tickEvent.schedule(curTick);
197        }
198    }
199
200    oldCPU->switchOut();
201}
202
203
204void
205SimpleCPU::activateContext(int thread_num, int delay)
206{
207    assert(thread_num == 0);
208    assert(xc);
209
210    assert(_status == Idle);
211    notIdleFraction++;
212    scheduleTickEvent(delay);
213    _status = Running;
214}
215
216
217void
218SimpleCPU::suspendContext(int thread_num)
219{
220    assert(thread_num == 0);
221    assert(xc);
222
223    assert(_status == Running);
224    notIdleFraction--;
225    unscheduleTickEvent();
226    _status = Idle;
227}
228
229
230void
231SimpleCPU::deallocateContext(int thread_num)
232{
233    // for now, these are equivalent
234    suspendContext(thread_num);
235}
236
237
238void
239SimpleCPU::haltContext(int thread_num)
240{
241    // for now, these are equivalent
242    suspendContext(thread_num);
243}
244
245
246void
247SimpleCPU::regStats()
248{
249    using namespace Statistics;
250
251    BaseCPU::regStats();
252
253    numInsts
254        .name(name() + ".num_insts")
255        .desc("Number of instructions executed")
256        ;
257
258    numMemRefs
259        .name(name() + ".num_refs")
260        .desc("Number of memory references")
261        ;
262
263    idleFraction
264        .name(name() + ".idle_fraction")
265        .desc("Percentage of idle cycles")
266        ;
267
268    icacheStallCycles
269        .name(name() + ".icache_stall_cycles")
270        .desc("ICache total stall cycles")
271        .prereq(icacheStallCycles)
272        ;
273
274    dcacheStallCycles
275        .name(name() + ".dcache_stall_cycles")
276        .desc("DCache total stall cycles")
277        .prereq(dcacheStallCycles)
278        ;
279
280    idleFraction = constant(1.0) - notIdleFraction;
281    numInsts = Statistics::scalar(numInst) - Statistics::scalar(startNumInst);
282    simInsts += numInsts;
283}
284
285void
286SimpleCPU::resetStats()
287{
288    startNumInst = numInst;
289    notIdleFraction = (_status != Idle);
290}
291
292void
293SimpleCPU::serialize(ostream &os)
294{
295    SERIALIZE_ENUM(_status);
296    SERIALIZE_SCALAR(inst);
297    nameOut(os, csprintf("%s.xc", name()));
298    xc->serialize(os);
299    nameOut(os, csprintf("%s.tickEvent", name()));
300    tickEvent.serialize(os);
301    nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
302    cacheCompletionEvent.serialize(os);
303}
304
305void
306SimpleCPU::unserialize(Checkpoint *cp, const string &section)
307{
308    UNSERIALIZE_ENUM(_status);
309    UNSERIALIZE_SCALAR(inst);
310    xc->unserialize(cp, csprintf("%s.xc", section));
311    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
312    cacheCompletionEvent
313        .unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
314}
315
316void
317change_thread_state(int thread_number, int activate, int priority)
318{
319}
320
321// precise architected memory state accessor macros
322template <class T>
323Fault
324SimpleCPU::read(Addr addr, T& data, unsigned flags)
325{
326    memReq->reset(addr, sizeof(T), flags);
327
328    // translate to physical address
329    Fault fault = xc->translateDataReadReq(memReq);
330
331    // do functional access
332    if (fault == No_Fault)
333        fault = xc->read(memReq, data);
334
335    if (traceData) {
336        traceData->setAddr(addr);
337        if (fault == No_Fault)
338            traceData->setData(data);
339    }
340
341    // if we have a cache, do cache access too
342    if (fault == No_Fault && dcacheInterface) {
343        memReq->cmd = Read;
344        memReq->completionEvent = NULL;
345        memReq->time = curTick;
346        memReq->flags &= ~UNCACHEABLE;
347        MemAccessResult result = dcacheInterface->access(memReq);
348
349        // Ugly hack to get an event scheduled *only* if the access is
350        // a miss.  We really should add first-class support for this
351        // at some point.
352        if (result != MA_HIT && dcacheInterface->doEvents) {
353            memReq->completionEvent = &cacheCompletionEvent;
354            lastDcacheStall = curTick;
355            unscheduleTickEvent();
356            _status = DcacheMissStall;
357        }
358    }
359
360    return fault;
361}
362
363#ifndef DOXYGEN_SHOULD_SKIP_THIS
364
365template
366Fault
367SimpleCPU::read(Addr addr, uint64_t& data, unsigned flags);
368
369template
370Fault
371SimpleCPU::read(Addr addr, uint32_t& data, unsigned flags);
372
373template
374Fault
375SimpleCPU::read(Addr addr, uint16_t& data, unsigned flags);
376
377template
378Fault
379SimpleCPU::read(Addr addr, uint8_t& data, unsigned flags);
380
381#endif //DOXYGEN_SHOULD_SKIP_THIS
382
383template<>
384Fault
385SimpleCPU::read(Addr addr, double& data, unsigned flags)
386{
387    return read(addr, *(uint64_t*)&data, flags);
388}
389
390template<>
391Fault
392SimpleCPU::read(Addr addr, float& data, unsigned flags)
393{
394    return read(addr, *(uint32_t*)&data, flags);
395}
396
397
398template<>
399Fault
400SimpleCPU::read(Addr addr, int32_t& data, unsigned flags)
401{
402    return read(addr, (uint32_t&)data, flags);
403}
404
405
406template <class T>
407Fault
408SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
409{
410    if (traceData) {
411        traceData->setAddr(addr);
412        traceData->setData(data);
413    }
414
415    memReq->reset(addr, sizeof(T), flags);
416
417    // translate to physical address
418    Fault fault = xc->translateDataWriteReq(memReq);
419
420    // do functional access
421    if (fault == No_Fault)
422        fault = xc->write(memReq, data);
423
424    if (fault == No_Fault && dcacheInterface) {
425        memReq->cmd = Write;
426        memcpy(memReq->data,(uint8_t *)&data,memReq->size);
427        memReq->completionEvent = NULL;
428        memReq->time = curTick;
429        memReq->flags &= ~UNCACHEABLE;
430        MemAccessResult result = dcacheInterface->access(memReq);
431
432        // Ugly hack to get an event scheduled *only* if the access is
433        // a miss.  We really should add first-class support for this
434        // at some point.
435        if (result != MA_HIT && dcacheInterface->doEvents) {
436            memReq->completionEvent = &cacheCompletionEvent;
437            lastDcacheStall = curTick;
438            unscheduleTickEvent();
439            _status = DcacheMissStall;
440        }
441    }
442
443    if (res && (fault == No_Fault))
444        *res = memReq->result;
445
446    return fault;
447}
448
449
450#ifndef DOXYGEN_SHOULD_SKIP_THIS
451template
452Fault
453SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
454
455template
456Fault
457SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
458
459template
460Fault
461SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
462
463template
464Fault
465SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
466
467#endif //DOXYGEN_SHOULD_SKIP_THIS
468
469template<>
470Fault
471SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
472{
473    return write(*(uint64_t*)&data, addr, flags, res);
474}
475
476template<>
477Fault
478SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
479{
480    return write(*(uint32_t*)&data, addr, flags, res);
481}
482
483
484template<>
485Fault
486SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
487{
488    return write((uint32_t)data, addr, flags, res);
489}
490
491
492#ifdef FULL_SYSTEM
493Addr
494SimpleCPU::dbg_vtophys(Addr addr)
495{
496    return vtophys(xc, addr);
497}
498#endif // FULL_SYSTEM
499
500Tick save_cycle = 0;
501
502
503void
504SimpleCPU::processCacheCompletion()
505{
506    switch (status()) {
507      case IcacheMissStall:
508        icacheStallCycles += curTick - lastIcacheStall;
509        _status = IcacheMissComplete;
510        scheduleTickEvent(1);
511        break;
512      case DcacheMissStall:
513        dcacheStallCycles += curTick - lastDcacheStall;
514        _status = Running;
515        scheduleTickEvent(1);
516        break;
517      case SwitchedOut:
518        // If this CPU has been switched out due to sampling/warm-up,
519        // ignore any further status changes (e.g., due to cache
520        // misses outstanding at the time of the switch).
521        return;
522      default:
523        panic("SimpleCPU::processCacheCompletion: bad state");
524        break;
525    }
526}
527
528#ifdef FULL_SYSTEM
529void
530SimpleCPU::post_interrupt(int int_num, int index)
531{
532    BaseCPU::post_interrupt(int_num, index);
533
534    if (xc->status() == ExecContext::Suspended) {
535                DPRINTF(IPI,"Suspended Processor awoke\n");
536        xc->activate();
537        Annotate::Resume(xc);
538    }
539}
540#endif // FULL_SYSTEM
541
542/* start simulation, program loaded, processor precise state initialized */
543void
544SimpleCPU::tick()
545{
546    traceData = NULL;
547
548    Fault fault = No_Fault;
549
550#ifdef FULL_SYSTEM
551    if (AlphaISA::check_interrupts &&
552        xc->cpu->check_interrupts() &&
553        !PC_PAL(xc->regs.pc) &&
554        status() != IcacheMissComplete) {
555        int ipl = 0;
556        int summary = 0;
557        AlphaISA::check_interrupts = 0;
558        IntReg *ipr = xc->regs.ipr;
559
560        if (xc->regs.ipr[TheISA::IPR_SIRR]) {
561            for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
562                 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
563                if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
564                    // See table 4-19 of 21164 hardware reference
565                    ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
566                    summary |= (ULL(1) << i);
567                }
568            }
569        }
570
571        uint64_t interrupts = xc->cpu->intr_status();
572        for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
573            i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
574            if (interrupts & (ULL(1) << i)) {
575                // See table 4-19 of 21164 hardware reference
576                ipl = i;
577                summary |= (ULL(1) << i);
578            }
579        }
580
581        if (ipr[TheISA::IPR_ASTRR])
582            panic("asynchronous traps not implemented\n");
583
584        if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
585            ipr[TheISA::IPR_ISR] = summary;
586            ipr[TheISA::IPR_INTID] = ipl;
587            xc->ev5_trap(Interrupt_Fault);
588
589            DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
590                    ipr[TheISA::IPR_IPLR], ipl, summary);
591        }
592    }
593#endif
594
595    // maintain $r0 semantics
596    xc->regs.intRegFile[ZeroReg] = 0;
597#ifdef TARGET_ALPHA
598    xc->regs.floatRegFile.d[ZeroReg] = 0.0;
599#endif // TARGET_ALPHA
600
601    if (status() == IcacheMissComplete) {
602        // We've already fetched an instruction and were stalled on an
603        // I-cache miss.  No need to fetch it again.
604
605        // Set status to running; tick event will get rescheduled if
606        // necessary at end of tick() function.
607        _status = Running;
608    }
609    else {
610        // Try to fetch an instruction
611
612        // set up memory request for instruction fetch
613#ifdef FULL_SYSTEM
614#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0
615#else
616#define IFETCH_FLAGS(pc)	0
617#endif
618
619        memReq->cmd = Read;
620        memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
621                     IFETCH_FLAGS(xc->regs.pc));
622
623        fault = xc->translateInstReq(memReq);
624
625        if (fault == No_Fault)
626            fault = xc->mem->read(memReq, inst);
627
628        if (icacheInterface && fault == No_Fault) {
629            memReq->completionEvent = NULL;
630
631            memReq->time = curTick;
632            memReq->flags &= ~UNCACHEABLE;
633            MemAccessResult result = icacheInterface->access(memReq);
634
635            // Ugly hack to get an event scheduled *only* if the access is
636            // a miss.  We really should add first-class support for this
637            // at some point.
638            if (result != MA_HIT && icacheInterface->doEvents) {
639                memReq->completionEvent = &cacheCompletionEvent;
640                lastIcacheStall = curTick;
641                unscheduleTickEvent();
642                _status = IcacheMissStall;
643                return;
644            }
645        }
646    }
647
648    // If we've got a valid instruction (i.e., no fault on instruction
649    // fetch), then execute it.
650    if (fault == No_Fault) {
651
652        // keep an instruction count
653        numInst++;
654
655        // check for instruction-count-based events
656        comInsnEventQueue[0]->serviceEvents(numInst);
657
658        // decode the instruction
659        StaticInstPtr<TheISA> si(inst);
660
661        traceData = Trace::getInstRecord(curTick, xc, this, si,
662                                         xc->regs.pc);
663
664#ifdef FULL_SYSTEM
665        xc->regs.opcode = (inst >> 26) & 0x3f;
666        xc->regs.ra = (inst >> 21) & 0x1f;
667#endif // FULL_SYSTEM
668
669        xc->func_exe_insn++;
670
671        fault = si->execute(this, xc, traceData);
672#ifdef FS_MEASURE
673        if (!(xc->misspeculating()) && (xc->system->bin)) {
674            SWContext *ctx = xc->swCtx;
675            if (ctx && !ctx->callStack.empty()) {
676                if (si->isCall()) {
677                    ctx->calls++;
678                }
679                if (si->isReturn()) {
680                     if (ctx->calls == 0) {
681                        fnCall *top = ctx->callStack.top();
682                        DPRINTF(TCPIP, "Removing %s from callstack.\n", top->name);
683                        delete top;
684                        ctx->callStack.pop();
685                        if (ctx->callStack.empty())
686                            xc->system->nonPath->activate();
687                        else
688                            ctx->callStack.top()->myBin->activate();
689
690                        xc->system->dumpState(xc);
691                    } else {
692                        ctx->calls--;
693                    }
694                }
695            }
696        }
697#endif
698        if (si->isMemRef()) {
699            numMemRefs++;
700        }
701
702        if (si->isLoad()) {
703            ++numLoad;
704            comLoadEventQueue[0]->serviceEvents(numLoad);
705        }
706
707        if (traceData)
708            traceData->finalize();
709
710    }	// if (fault == No_Fault)
711
712    if (fault != No_Fault) {
713#ifdef FULL_SYSTEM
714        xc->ev5_trap(fault);
715#else // !FULL_SYSTEM
716        fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
717#endif // FULL_SYSTEM
718    }
719    else {
720        // go to the next instruction
721        xc->regs.pc = xc->regs.npc;
722        xc->regs.npc += sizeof(MachInst);
723    }
724
725#ifdef FULL_SYSTEM
726    Addr oldpc;
727    do {
728        oldpc = xc->regs.pc;
729        system->pcEventQueue.service(xc);
730    } while (oldpc != xc->regs.pc);
731#endif
732
733    assert(status() == Running ||
734           status() == Idle ||
735           status() == DcacheMissStall);
736
737    if (status() == Running && !tickEvent.scheduled())
738        tickEvent.schedule(curTick + 1);
739}
740
741
742////////////////////////////////////////////////////////////////////////
743//
744//  SimpleCPU Simulation Object
745//
746BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
747
748    Param<Counter> max_insts_any_thread;
749    Param<Counter> max_insts_all_threads;
750    Param<Counter> max_loads_any_thread;
751    Param<Counter> max_loads_all_threads;
752
753#ifdef FULL_SYSTEM
754    SimObjectParam<AlphaItb *> itb;
755    SimObjectParam<AlphaDtb *> dtb;
756    SimObjectParam<FunctionalMemory *> mem;
757    SimObjectParam<System *> system;
758    Param<int> mult;
759#else
760    SimObjectParam<Process *> workload;
761#endif // FULL_SYSTEM
762
763    SimObjectParam<BaseMem *> icache;
764    SimObjectParam<BaseMem *> dcache;
765
766    Param<bool> defer_registration;
767
768END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
769
770BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
771
772    INIT_PARAM_DFLT(max_insts_any_thread,
773                    "terminate when any thread reaches this insn count",
774                    0),
775    INIT_PARAM_DFLT(max_insts_all_threads,
776                    "terminate when all threads have reached this insn count",
777                    0),
778    INIT_PARAM_DFLT(max_loads_any_thread,
779                    "terminate when any thread reaches this load count",
780                    0),
781    INIT_PARAM_DFLT(max_loads_all_threads,
782                    "terminate when all threads have reached this load count",
783                    0),
784
785#ifdef FULL_SYSTEM
786    INIT_PARAM(itb, "Instruction TLB"),
787    INIT_PARAM(dtb, "Data TLB"),
788    INIT_PARAM(mem, "memory"),
789    INIT_PARAM(system, "system object"),
790    INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
791#else
792    INIT_PARAM(workload, "processes to run"),
793#endif // FULL_SYSTEM
794
795    INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
796    INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
797    INIT_PARAM_DFLT(defer_registration, "defer registration with system "
798                    "(for sampling)", false)
799
800END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
801
802
803CREATE_SIM_OBJECT(SimpleCPU)
804{
805    SimpleCPU *cpu;
806#ifdef FULL_SYSTEM
807    if (mult != 1)
808        panic("processor clock multiplier must be 1\n");
809
810    cpu = new SimpleCPU(getInstanceName(), system,
811                        max_insts_any_thread, max_insts_all_threads,
812                        max_loads_any_thread, max_loads_all_threads,
813                        itb, dtb, mem,
814                        (icache) ? icache->getInterface() : NULL,
815                        (dcache) ? dcache->getInterface() : NULL,
816                        ticksPerSecond * mult);
817#else
818
819    cpu = new SimpleCPU(getInstanceName(), workload,
820                        max_insts_any_thread, max_insts_all_threads,
821                        max_loads_any_thread, max_loads_all_threads,
822                        (icache) ? icache->getInterface() : NULL,
823                        (dcache) ? dcache->getInterface() : NULL);
824
825#endif // FULL_SYSTEM
826
827    if (!defer_registration) {
828        cpu->registerExecContexts();
829    }
830
831    return cpu;
832}
833
834REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
835
836