atomic.cc revision 9647
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "base/output.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/atomic.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "mem/physical.hh"
57#include "params/AtomicSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/system.hh"
60#include "sim/full_system.hh"
61
62using namespace std;
63using namespace TheISA;
64
65AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
66    : Event(CPU_Tick_Pri), cpu(c)
67{
68}
69
70
71void
72AtomicSimpleCPU::TickEvent::process()
73{
74    cpu->tick();
75}
76
77const char *
78AtomicSimpleCPU::TickEvent::description() const
79{
80    return "AtomicSimpleCPU tick";
81}
82
83void
84AtomicSimpleCPU::init()
85{
86    BaseCPU::init();
87
88    // Initialise the ThreadContext's memory proxies
89    tcBase()->initMemProxies(tcBase());
90
91    if (FullSystem && !params()->switched_out) {
92        ThreadID size = threadContexts.size();
93        for (ThreadID i = 0; i < size; ++i) {
94            ThreadContext *tc = threadContexts[i];
95            // initialize CPU, including PC
96            TheISA::initCPU(tc, tc->contextId());
97        }
98    }
99
100    // Atomic doesn't do MT right now, so contextId == threadId
101    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
102    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104}
105
106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
107    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
108      simulate_data_stalls(p->simulate_data_stalls),
109      simulate_inst_stalls(p->simulate_inst_stalls),
110      drain_manager(NULL),
111      icachePort(name() + ".icache_port", this),
112      dcachePort(name() + ".dcache_port", this),
113      fastmem(p->fastmem),
114      simpoint(p->simpoint_profile),
115      intervalSize(p->simpoint_interval),
116      intervalCount(0),
117      intervalDrift(0),
118      simpointStream(NULL),
119      currentBBV(0, 0),
120      currentBBVInstCount(0)
121{
122    _status = Idle;
123
124    if (simpoint) {
125        simpointStream = simout.create(p->simpoint_profile_file, false);
126    }
127}
128
129
130AtomicSimpleCPU::~AtomicSimpleCPU()
131{
132    if (tickEvent.scheduled()) {
133        deschedule(tickEvent);
134    }
135    if (simpointStream) {
136        simout.close(simpointStream);
137    }
138}
139
140unsigned int
141AtomicSimpleCPU::drain(DrainManager *dm)
142{
143    assert(!drain_manager);
144    if (switchedOut())
145        return 0;
146
147    if (!isDrained()) {
148        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
149        drain_manager = dm;
150        return 1;
151    } else {
152        if (tickEvent.scheduled())
153            deschedule(tickEvent);
154
155        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
156        return 0;
157    }
158}
159
160void
161AtomicSimpleCPU::drainResume()
162{
163    assert(!tickEvent.scheduled());
164    assert(!drain_manager);
165    if (switchedOut())
166        return;
167
168    DPRINTF(SimpleCPU, "Resume\n");
169    verifyMemoryMode();
170
171    assert(!threadContexts.empty());
172    if (threadContexts.size() > 1)
173        fatal("The atomic CPU only supports one thread.\n");
174
175    if (thread->status() == ThreadContext::Active) {
176        schedule(tickEvent, nextCycle());
177        _status = BaseSimpleCPU::Running;
178    } else {
179        _status = BaseSimpleCPU::Idle;
180    }
181
182    system->totalNumInsts = 0;
183}
184
185bool
186AtomicSimpleCPU::tryCompleteDrain()
187{
188    if (!drain_manager)
189        return false;
190
191    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
192    if (!isDrained())
193        return false;
194
195    DPRINTF(Drain, "CPU done draining, processing drain event\n");
196    drain_manager->signalDrainDone();
197    drain_manager = NULL;
198
199    return true;
200}
201
202
203void
204AtomicSimpleCPU::switchOut()
205{
206    BaseSimpleCPU::switchOut();
207
208    assert(!tickEvent.scheduled());
209    assert(_status == BaseSimpleCPU::Running || _status == Idle);
210    assert(isDrained());
211}
212
213
214void
215AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
216{
217    BaseSimpleCPU::takeOverFrom(oldCPU);
218
219    // The tick event should have been descheduled by drain()
220    assert(!tickEvent.scheduled());
221
222    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
223    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
224    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
225}
226
227void
228AtomicSimpleCPU::verifyMemoryMode() const
229{
230    if (!system->isAtomicMode()) {
231        fatal("The atomic CPU requires the memory system to be in "
232              "'atomic' mode.\n");
233    }
234}
235
236void
237AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
238{
239    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
240
241    assert(thread_num == 0);
242    assert(thread);
243
244    assert(_status == Idle);
245    assert(!tickEvent.scheduled());
246
247    notIdleFraction++;
248    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
249
250    //Make sure ticks are still on multiples of cycles
251    schedule(tickEvent, clockEdge(delay));
252    _status = BaseSimpleCPU::Running;
253}
254
255
256void
257AtomicSimpleCPU::suspendContext(ThreadID thread_num)
258{
259    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
260
261    assert(thread_num == 0);
262    assert(thread);
263
264    if (_status == Idle)
265        return;
266
267    assert(_status == BaseSimpleCPU::Running);
268
269    // tick event may not be scheduled if this gets called from inside
270    // an instruction's execution, e.g. "quiesce"
271    if (tickEvent.scheduled())
272        deschedule(tickEvent);
273
274    notIdleFraction--;
275    _status = Idle;
276}
277
278
279Fault
280AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
281                         unsigned size, unsigned flags)
282{
283    // use the CPU's statically allocated read request and packet objects
284    Request *req = &data_read_req;
285
286    if (traceData) {
287        traceData->setAddr(addr);
288    }
289
290    //The block size of our peer.
291    unsigned blockSize = dcachePort.peerBlockSize();
292    //The size of the data we're trying to read.
293    int fullSize = size;
294
295    //The address of the second part of this access if it needs to be split
296    //across a cache line boundary.
297    Addr secondAddr = roundDown(addr + size - 1, blockSize);
298
299    if (secondAddr > addr)
300        size = secondAddr - addr;
301
302    dcache_latency = 0;
303
304    while (1) {
305        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
306
307        // translate to physical address
308        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
309
310        // Now do the access.
311        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
312            Packet pkt = Packet(req,
313                                req->isLLSC() ? MemCmd::LoadLockedReq :
314                                MemCmd::ReadReq);
315            pkt.dataStatic(data);
316
317            if (req->isMmappedIpr())
318                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
319            else {
320                if (fastmem && system->isMemAddr(pkt.getAddr()))
321                    system->getPhysMem().access(&pkt);
322                else
323                    dcache_latency += dcachePort.sendAtomic(&pkt);
324            }
325            dcache_access = true;
326
327            assert(!pkt.isError());
328
329            if (req->isLLSC()) {
330                TheISA::handleLockedRead(thread, req);
331            }
332        }
333
334        //If there's a fault, return it
335        if (fault != NoFault) {
336            if (req->isPrefetch()) {
337                return NoFault;
338            } else {
339                return fault;
340            }
341        }
342
343        //If we don't need to access a second cache line, stop now.
344        if (secondAddr <= addr)
345        {
346            if (req->isLocked() && fault == NoFault) {
347                assert(!locked);
348                locked = true;
349            }
350            return fault;
351        }
352
353        /*
354         * Set up for accessing the second cache line.
355         */
356
357        //Move the pointer we're reading into to the correct location.
358        data += size;
359        //Adjust the size to get the remaining bytes.
360        size = addr + fullSize - secondAddr;
361        //And access the right address.
362        addr = secondAddr;
363    }
364}
365
366
367Fault
368AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
369                          Addr addr, unsigned flags, uint64_t *res)
370{
371    // use the CPU's statically allocated write request and packet objects
372    Request *req = &data_write_req;
373
374    if (traceData) {
375        traceData->setAddr(addr);
376    }
377
378    //The block size of our peer.
379    unsigned blockSize = dcachePort.peerBlockSize();
380    //The size of the data we're trying to read.
381    int fullSize = size;
382
383    //The address of the second part of this access if it needs to be split
384    //across a cache line boundary.
385    Addr secondAddr = roundDown(addr + size - 1, blockSize);
386
387    if(secondAddr > addr)
388        size = secondAddr - addr;
389
390    dcache_latency = 0;
391
392    while(1) {
393        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
394
395        // translate to physical address
396        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
397
398        // Now do the access.
399        if (fault == NoFault) {
400            MemCmd cmd = MemCmd::WriteReq; // default
401            bool do_access = true;  // flag to suppress cache access
402
403            if (req->isLLSC()) {
404                cmd = MemCmd::StoreCondReq;
405                do_access = TheISA::handleLockedWrite(thread, req);
406            } else if (req->isSwap()) {
407                cmd = MemCmd::SwapReq;
408                if (req->isCondSwap()) {
409                    assert(res);
410                    req->setExtraData(*res);
411                }
412            }
413
414            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
415                Packet pkt = Packet(req, cmd);
416                pkt.dataStatic(data);
417
418                if (req->isMmappedIpr()) {
419                    dcache_latency +=
420                        TheISA::handleIprWrite(thread->getTC(), &pkt);
421                } else {
422                    if (fastmem && system->isMemAddr(pkt.getAddr()))
423                        system->getPhysMem().access(&pkt);
424                    else
425                        dcache_latency += dcachePort.sendAtomic(&pkt);
426                }
427                dcache_access = true;
428                assert(!pkt.isError());
429
430                if (req->isSwap()) {
431                    assert(res);
432                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
433                }
434            }
435
436            if (res && !req->isSwap()) {
437                *res = req->getExtraData();
438            }
439        }
440
441        //If there's a fault or we don't need to access a second cache line,
442        //stop now.
443        if (fault != NoFault || secondAddr <= addr)
444        {
445            if (req->isLocked() && fault == NoFault) {
446                assert(locked);
447                locked = false;
448            }
449            if (fault != NoFault && req->isPrefetch()) {
450                return NoFault;
451            } else {
452                return fault;
453            }
454        }
455
456        /*
457         * Set up for accessing the second cache line.
458         */
459
460        //Move the pointer we're reading into to the correct location.
461        data += size;
462        //Adjust the size to get the remaining bytes.
463        size = addr + fullSize - secondAddr;
464        //And access the right address.
465        addr = secondAddr;
466    }
467}
468
469
470void
471AtomicSimpleCPU::tick()
472{
473    DPRINTF(SimpleCPU, "Tick\n");
474
475    Tick latency = 0;
476
477    for (int i = 0; i < width || locked; ++i) {
478        numCycles++;
479
480        if (!curStaticInst || !curStaticInst->isDelayedCommit())
481            checkForInterrupts();
482
483        checkPcEventQueue();
484        // We must have just got suspended by a PC event
485        if (_status == Idle) {
486            tryCompleteDrain();
487            return;
488        }
489
490        Fault fault = NoFault;
491
492        TheISA::PCState pcState = thread->pcState();
493
494        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
495                           !curMacroStaticInst;
496        if (needToFetch) {
497            setupFetchRequest(&ifetch_req);
498            fault = thread->itb->translateAtomic(&ifetch_req, tc,
499                                                 BaseTLB::Execute);
500        }
501
502        if (fault == NoFault) {
503            Tick icache_latency = 0;
504            bool icache_access = false;
505            dcache_access = false; // assume no dcache access
506
507            if (needToFetch) {
508                // This is commented out because the decoder would act like
509                // a tiny cache otherwise. It wouldn't be flushed when needed
510                // like the I cache. It should be flushed, and when that works
511                // this code should be uncommented.
512                //Fetch more instruction memory if necessary
513                //if(decoder.needMoreBytes())
514                //{
515                    icache_access = true;
516                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
517                    ifetch_pkt.dataStatic(&inst);
518
519                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
520                        system->getPhysMem().access(&ifetch_pkt);
521                    else
522                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
523
524                    assert(!ifetch_pkt.isError());
525
526                    // ifetch_req is initialized to read the instruction directly
527                    // into the CPU object's inst field.
528                //}
529            }
530
531            preExecute();
532
533            if (curStaticInst) {
534                fault = curStaticInst->execute(this, traceData);
535
536                // keep an instruction count
537                if (fault == NoFault)
538                    countInst();
539                else if (traceData && !DTRACE(ExecFaulting)) {
540                    delete traceData;
541                    traceData = NULL;
542                }
543
544                postExecute();
545            }
546
547            // @todo remove me after debugging with legion done
548            if (curStaticInst && (!curStaticInst->isMicroop() ||
549                        curStaticInst->isFirstMicroop()))
550                instCnt++;
551
552            // profile for SimPoints if enabled and macro inst is finished
553            if (simpoint && curStaticInst && (fault == NoFault) &&
554                    (!curStaticInst->isMicroop() ||
555                     curStaticInst->isLastMicroop())) {
556                profileSimPoint();
557            }
558
559            Tick stall_ticks = 0;
560            if (simulate_inst_stalls && icache_access)
561                stall_ticks += icache_latency;
562
563            if (simulate_data_stalls && dcache_access)
564                stall_ticks += dcache_latency;
565
566            if (stall_ticks) {
567                // the atomic cpu does its accounting in ticks, so
568                // keep counting in ticks but round to the clock
569                // period
570                latency += divCeil(stall_ticks, clockPeriod()) *
571                    clockPeriod();
572            }
573
574        }
575        if(fault != NoFault || !stayAtPC)
576            advancePC(fault);
577    }
578
579    if (tryCompleteDrain())
580        return;
581
582    // instruction takes at least one cycle
583    if (latency < clockPeriod())
584        latency = clockPeriod();
585
586    if (_status != Idle)
587        schedule(tickEvent, curTick() + latency);
588}
589
590
591void
592AtomicSimpleCPU::printAddr(Addr a)
593{
594    dcachePort.printAddr(a);
595}
596
597void
598AtomicSimpleCPU::profileSimPoint()
599{
600    if (!currentBBVInstCount)
601        currentBBV.first = thread->pcState().instAddr();
602
603    ++intervalCount;
604    ++currentBBVInstCount;
605
606    // If inst is control inst, assume end of basic block.
607    if (curStaticInst->isControl()) {
608        currentBBV.second = thread->pcState().instAddr();
609
610        auto map_itr = bbMap.find(currentBBV);
611        if (map_itr == bbMap.end()){
612            // If a new (previously unseen) basic block is found,
613            // add a new unique id, record num of insts and insert into bbMap.
614            BBInfo info;
615            info.id = bbMap.size() + 1;
616            info.insts = currentBBVInstCount;
617            info.count = currentBBVInstCount;
618            bbMap.insert(std::make_pair(currentBBV, info));
619        } else {
620            // If basic block is seen before, just increment the count by the
621            // number of insts in basic block.
622            BBInfo& info = map_itr->second;
623            assert(info.insts == currentBBVInstCount);
624            info.count += currentBBVInstCount;
625        }
626        currentBBVInstCount = 0;
627
628        // Reached end of interval if the sum of the current inst count
629        // (intervalCount) and the excessive inst count from the previous
630        // interval (intervalDrift) is greater than/equal to the interval size.
631        if (intervalCount + intervalDrift >= intervalSize) {
632            // summarize interval and display BBV info
633            std::vector<pair<uint64_t, uint64_t> > counts;
634            for (auto map_itr = bbMap.begin(); map_itr != bbMap.end();
635                    ++map_itr) {
636                BBInfo& info = map_itr->second;
637                if (info.count != 0) {
638                    counts.push_back(std::make_pair(info.id, info.count));
639                    info.count = 0;
640                }
641            }
642            std::sort(counts.begin(), counts.end());
643
644            // Print output BBV info
645            *simpointStream << "T";
646            for (auto cnt_itr = counts.begin(); cnt_itr != counts.end();
647                    ++cnt_itr) {
648                *simpointStream << ":" << cnt_itr->first
649                                << ":" << cnt_itr->second << " ";
650            }
651            *simpointStream << "\n";
652
653            intervalDrift = (intervalCount + intervalDrift) - intervalSize;
654            intervalCount = 0;
655        }
656    }
657}
658
659////////////////////////////////////////////////////////////////////////
660//
661//  AtomicSimpleCPU Simulation Object
662//
663AtomicSimpleCPU *
664AtomicSimpleCPUParams::create()
665{
666    numThreads = 1;
667    if (!FullSystem && workload.size() != 1)
668        panic("only one workload allowed");
669    return new AtomicSimpleCPU(this);
670}
671