atomic.cc revision 9448:569d1e8f74e4
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/atomic.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Drain.hh"
51#include "debug/ExecFaulting.hh"
52#include "debug/SimpleCPU.hh"
53#include "mem/packet.hh"
54#include "mem/packet_access.hh"
55#include "mem/physical.hh"
56#include "params/AtomicSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/system.hh"
59#include "sim/full_system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
65    : Event(CPU_Tick_Pri), cpu(c)
66{
67}
68
69
70void
71AtomicSimpleCPU::TickEvent::process()
72{
73    cpu->tick();
74}
75
76const char *
77AtomicSimpleCPU::TickEvent::description() const
78{
79    return "AtomicSimpleCPU tick";
80}
81
82void
83AtomicSimpleCPU::init()
84{
85    BaseCPU::init();
86
87    if (!params()->switched_out &&
88        system->getMemoryMode() != Enums::atomic) {
89        fatal("The atomic CPU requires the memory system to be in "
90              "'atomic' mode.\n");
91    }
92
93    // Initialise the ThreadContext's memory proxies
94    tcBase()->initMemProxies(tcBase());
95
96    if (FullSystem && !params()->switched_out) {
97        ThreadID size = threadContexts.size();
98        for (ThreadID i = 0; i < size; ++i) {
99            ThreadContext *tc = threadContexts[i];
100            // initialize CPU, including PC
101            TheISA::initCPU(tc, tc->contextId());
102        }
103    }
104
105    // Atomic doesn't do MT right now, so contextId == threadId
106    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
107    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
108    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
109}
110
111AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
112    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
113      simulate_data_stalls(p->simulate_data_stalls),
114      simulate_inst_stalls(p->simulate_inst_stalls),
115      drain_manager(NULL),
116      icachePort(name() + ".icache_port", this),
117      dcachePort(name() + ".dcache_port", this),
118      fastmem(p->fastmem)
119{
120    _status = Idle;
121}
122
123
124AtomicSimpleCPU::~AtomicSimpleCPU()
125{
126    if (tickEvent.scheduled()) {
127        deschedule(tickEvent);
128    }
129}
130
131unsigned int
132AtomicSimpleCPU::drain(DrainManager *dm)
133{
134    assert(!drain_manager);
135    if (switchedOut())
136        return 0;
137
138    if (!isDrained()) {
139        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
140        drain_manager = dm;
141        return 1;
142    } else {
143        if (tickEvent.scheduled())
144            deschedule(tickEvent);
145
146        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
147        return 0;
148    }
149}
150
151void
152AtomicSimpleCPU::drainResume()
153{
154    assert(!tickEvent.scheduled());
155    assert(!drain_manager);
156    if (switchedOut())
157        return;
158
159    DPRINTF(SimpleCPU, "Resume\n");
160    if (system->getMemoryMode() != Enums::atomic) {
161        fatal("The atomic CPU requires the memory system to be in "
162              "'atomic' mode.\n");
163    }
164
165    assert(!threadContexts.empty());
166    if (threadContexts.size() > 1)
167        fatal("The atomic CPU only supports one thread.\n");
168
169    if (thread->status() == ThreadContext::Active) {
170        schedule(tickEvent, nextCycle());
171        _status = BaseSimpleCPU::Running;
172    } else {
173        _status = BaseSimpleCPU::Idle;
174    }
175
176    system->totalNumInsts = 0;
177}
178
179bool
180AtomicSimpleCPU::tryCompleteDrain()
181{
182    if (!drain_manager)
183        return false;
184
185    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
186    if (!isDrained())
187        return false;
188
189    DPRINTF(Drain, "CPU done draining, processing drain event\n");
190    drain_manager->signalDrainDone();
191    drain_manager = NULL;
192
193    return true;
194}
195
196
197void
198AtomicSimpleCPU::switchOut()
199{
200    BaseSimpleCPU::switchOut();
201
202    assert(!tickEvent.scheduled());
203    assert(_status == BaseSimpleCPU::Running || _status == Idle);
204    assert(isDrained());
205}
206
207
208void
209AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
210{
211    BaseSimpleCPU::takeOverFrom(oldCPU);
212
213    // The tick event should have been descheduled by drain()
214    assert(!tickEvent.scheduled());
215
216    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
217    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
218    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
219}
220
221
222void
223AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
224{
225    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
226
227    assert(thread_num == 0);
228    assert(thread);
229
230    assert(_status == Idle);
231    assert(!tickEvent.scheduled());
232
233    notIdleFraction++;
234    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
235
236    //Make sure ticks are still on multiples of cycles
237    schedule(tickEvent, clockEdge(delay));
238    _status = BaseSimpleCPU::Running;
239}
240
241
242void
243AtomicSimpleCPU::suspendContext(ThreadID thread_num)
244{
245    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
246
247    assert(thread_num == 0);
248    assert(thread);
249
250    if (_status == Idle)
251        return;
252
253    assert(_status == BaseSimpleCPU::Running);
254
255    // tick event may not be scheduled if this gets called from inside
256    // an instruction's execution, e.g. "quiesce"
257    if (tickEvent.scheduled())
258        deschedule(tickEvent);
259
260    notIdleFraction--;
261    _status = Idle;
262}
263
264
265Fault
266AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
267                         unsigned size, unsigned flags)
268{
269    // use the CPU's statically allocated read request and packet objects
270    Request *req = &data_read_req;
271
272    if (traceData) {
273        traceData->setAddr(addr);
274    }
275
276    //The block size of our peer.
277    unsigned blockSize = dcachePort.peerBlockSize();
278    //The size of the data we're trying to read.
279    int fullSize = size;
280
281    //The address of the second part of this access if it needs to be split
282    //across a cache line boundary.
283    Addr secondAddr = roundDown(addr + size - 1, blockSize);
284
285    if (secondAddr > addr)
286        size = secondAddr - addr;
287
288    dcache_latency = 0;
289
290    while (1) {
291        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
292
293        // translate to physical address
294        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
295
296        // Now do the access.
297        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
298            Packet pkt = Packet(req,
299                                req->isLLSC() ? MemCmd::LoadLockedReq :
300                                MemCmd::ReadReq);
301            pkt.dataStatic(data);
302
303            if (req->isMmappedIpr())
304                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
305            else {
306                if (fastmem && system->isMemAddr(pkt.getAddr()))
307                    system->getPhysMem().access(&pkt);
308                else
309                    dcache_latency += dcachePort.sendAtomic(&pkt);
310            }
311            dcache_access = true;
312
313            assert(!pkt.isError());
314
315            if (req->isLLSC()) {
316                TheISA::handleLockedRead(thread, req);
317            }
318        }
319
320        //If there's a fault, return it
321        if (fault != NoFault) {
322            if (req->isPrefetch()) {
323                return NoFault;
324            } else {
325                return fault;
326            }
327        }
328
329        //If we don't need to access a second cache line, stop now.
330        if (secondAddr <= addr)
331        {
332            if (req->isLocked() && fault == NoFault) {
333                assert(!locked);
334                locked = true;
335            }
336            return fault;
337        }
338
339        /*
340         * Set up for accessing the second cache line.
341         */
342
343        //Move the pointer we're reading into to the correct location.
344        data += size;
345        //Adjust the size to get the remaining bytes.
346        size = addr + fullSize - secondAddr;
347        //And access the right address.
348        addr = secondAddr;
349    }
350}
351
352
353Fault
354AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
355                          Addr addr, unsigned flags, uint64_t *res)
356{
357    // use the CPU's statically allocated write request and packet objects
358    Request *req = &data_write_req;
359
360    if (traceData) {
361        traceData->setAddr(addr);
362    }
363
364    //The block size of our peer.
365    unsigned blockSize = dcachePort.peerBlockSize();
366    //The size of the data we're trying to read.
367    int fullSize = size;
368
369    //The address of the second part of this access if it needs to be split
370    //across a cache line boundary.
371    Addr secondAddr = roundDown(addr + size - 1, blockSize);
372
373    if(secondAddr > addr)
374        size = secondAddr - addr;
375
376    dcache_latency = 0;
377
378    while(1) {
379        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
380
381        // translate to physical address
382        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
383
384        // Now do the access.
385        if (fault == NoFault) {
386            MemCmd cmd = MemCmd::WriteReq; // default
387            bool do_access = true;  // flag to suppress cache access
388
389            if (req->isLLSC()) {
390                cmd = MemCmd::StoreCondReq;
391                do_access = TheISA::handleLockedWrite(thread, req);
392            } else if (req->isSwap()) {
393                cmd = MemCmd::SwapReq;
394                if (req->isCondSwap()) {
395                    assert(res);
396                    req->setExtraData(*res);
397                }
398            }
399
400            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
401                Packet pkt = Packet(req, cmd);
402                pkt.dataStatic(data);
403
404                if (req->isMmappedIpr()) {
405                    dcache_latency +=
406                        TheISA::handleIprWrite(thread->getTC(), &pkt);
407                } else {
408                    if (fastmem && system->isMemAddr(pkt.getAddr()))
409                        system->getPhysMem().access(&pkt);
410                    else
411                        dcache_latency += dcachePort.sendAtomic(&pkt);
412                }
413                dcache_access = true;
414                assert(!pkt.isError());
415
416                if (req->isSwap()) {
417                    assert(res);
418                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
419                }
420            }
421
422            if (res && !req->isSwap()) {
423                *res = req->getExtraData();
424            }
425        }
426
427        //If there's a fault or we don't need to access a second cache line,
428        //stop now.
429        if (fault != NoFault || secondAddr <= addr)
430        {
431            if (req->isLocked() && fault == NoFault) {
432                assert(locked);
433                locked = false;
434            }
435            if (fault != NoFault && req->isPrefetch()) {
436                return NoFault;
437            } else {
438                return fault;
439            }
440        }
441
442        /*
443         * Set up for accessing the second cache line.
444         */
445
446        //Move the pointer we're reading into to the correct location.
447        data += size;
448        //Adjust the size to get the remaining bytes.
449        size = addr + fullSize - secondAddr;
450        //And access the right address.
451        addr = secondAddr;
452    }
453}
454
455
456void
457AtomicSimpleCPU::tick()
458{
459    DPRINTF(SimpleCPU, "Tick\n");
460
461    Tick latency = 0;
462
463    for (int i = 0; i < width || locked; ++i) {
464        numCycles++;
465
466        if (!curStaticInst || !curStaticInst->isDelayedCommit())
467            checkForInterrupts();
468
469        checkPcEventQueue();
470        // We must have just got suspended by a PC event
471        if (_status == Idle) {
472            tryCompleteDrain();
473            return;
474        }
475
476        Fault fault = NoFault;
477
478        TheISA::PCState pcState = thread->pcState();
479
480        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
481                           !curMacroStaticInst;
482        if (needToFetch) {
483            setupFetchRequest(&ifetch_req);
484            fault = thread->itb->translateAtomic(&ifetch_req, tc,
485                                                 BaseTLB::Execute);
486        }
487
488        if (fault == NoFault) {
489            Tick icache_latency = 0;
490            bool icache_access = false;
491            dcache_access = false; // assume no dcache access
492
493            if (needToFetch) {
494                // This is commented out because the decoder would act like
495                // a tiny cache otherwise. It wouldn't be flushed when needed
496                // like the I cache. It should be flushed, and when that works
497                // this code should be uncommented.
498                //Fetch more instruction memory if necessary
499                //if(decoder.needMoreBytes())
500                //{
501                    icache_access = true;
502                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
503                    ifetch_pkt.dataStatic(&inst);
504
505                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
506                        system->getPhysMem().access(&ifetch_pkt);
507                    else
508                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
509
510                    assert(!ifetch_pkt.isError());
511
512                    // ifetch_req is initialized to read the instruction directly
513                    // into the CPU object's inst field.
514                //}
515            }
516
517            preExecute();
518
519            if (curStaticInst) {
520                fault = curStaticInst->execute(this, traceData);
521
522                // keep an instruction count
523                if (fault == NoFault)
524                    countInst();
525                else if (traceData && !DTRACE(ExecFaulting)) {
526                    delete traceData;
527                    traceData = NULL;
528                }
529
530                postExecute();
531            }
532
533            // @todo remove me after debugging with legion done
534            if (curStaticInst && (!curStaticInst->isMicroop() ||
535                        curStaticInst->isFirstMicroop()))
536                instCnt++;
537
538            Tick stall_ticks = 0;
539            if (simulate_inst_stalls && icache_access)
540                stall_ticks += icache_latency;
541
542            if (simulate_data_stalls && dcache_access)
543                stall_ticks += dcache_latency;
544
545            if (stall_ticks) {
546                // the atomic cpu does its accounting in ticks, so
547                // keep counting in ticks but round to the clock
548                // period
549                latency += divCeil(stall_ticks, clockPeriod()) *
550                    clockPeriod();
551            }
552
553        }
554        if(fault != NoFault || !stayAtPC)
555            advancePC(fault);
556    }
557
558    if (tryCompleteDrain())
559        return;
560
561    // instruction takes at least one cycle
562    if (latency < clockPeriod())
563        latency = clockPeriod();
564
565    if (_status != Idle)
566        schedule(tickEvent, curTick() + latency);
567}
568
569
570void
571AtomicSimpleCPU::printAddr(Addr a)
572{
573    dcachePort.printAddr(a);
574}
575
576
577////////////////////////////////////////////////////////////////////////
578//
579//  AtomicSimpleCPU Simulation Object
580//
581AtomicSimpleCPU *
582AtomicSimpleCPUParams::create()
583{
584    numThreads = 1;
585    if (!FullSystem && workload.size() != 1)
586        panic("only one workload allowed");
587    return new AtomicSimpleCPU(this);
588}
589