atomic.cc revision 8921:e53972f72165
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmapped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/simple/atomic.hh"
37#include "cpu/exetrace.hh"
38#include "debug/ExecFaulting.hh"
39#include "debug/SimpleCPU.hh"
40#include "mem/packet.hh"
41#include "mem/packet_access.hh"
42#include "params/AtomicSimpleCPU.hh"
43#include "sim/faults.hh"
44#include "sim/system.hh"
45#include "sim/full_system.hh"
46
47using namespace std;
48using namespace TheISA;
49
50AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
51    : Event(CPU_Tick_Pri), cpu(c)
52{
53}
54
55
56void
57AtomicSimpleCPU::TickEvent::process()
58{
59    cpu->tick();
60}
61
62const char *
63AtomicSimpleCPU::TickEvent::description() const
64{
65    return "AtomicSimpleCPU tick";
66}
67
68Port *
69AtomicSimpleCPU::getPort(const string &if_name, int idx)
70{
71    if (if_name == "physmem_port") {
72        hasPhysMemPort = true;
73        return &physmemPort;
74    } else {
75        return BaseCPU::getPort(if_name, idx);
76    }
77}
78
79void
80AtomicSimpleCPU::init()
81{
82    BaseCPU::init();
83
84    // Initialise the ThreadContext's memory proxies
85    tcBase()->initMemProxies(tcBase());
86
87    if (FullSystem) {
88        ThreadID size = threadContexts.size();
89        for (ThreadID i = 0; i < size; ++i) {
90            ThreadContext *tc = threadContexts[i];
91            // initialize CPU, including PC
92            TheISA::initCPU(tc, tc->contextId());
93        }
94    }
95
96    if (hasPhysMemPort) {
97        AddrRangeList pmAddrList = physmemPort.getPeer()->getAddrRanges();
98        physMemAddr = *pmAddrList.begin();
99    }
100    // Atomic doesn't do MT right now, so contextId == threadId
101    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
102    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104}
105
106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
107    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
108      simulate_data_stalls(p->simulate_data_stalls),
109      simulate_inst_stalls(p->simulate_inst_stalls),
110      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
111      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
112{
113    _status = Idle;
114}
115
116
117AtomicSimpleCPU::~AtomicSimpleCPU()
118{
119    if (tickEvent.scheduled()) {
120        deschedule(tickEvent);
121    }
122}
123
124void
125AtomicSimpleCPU::serialize(ostream &os)
126{
127    SimObject::State so_state = SimObject::getState();
128    SERIALIZE_ENUM(so_state);
129    SERIALIZE_SCALAR(locked);
130    BaseSimpleCPU::serialize(os);
131    nameOut(os, csprintf("%s.tickEvent", name()));
132    tickEvent.serialize(os);
133}
134
135void
136AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138    SimObject::State so_state;
139    UNSERIALIZE_ENUM(so_state);
140    UNSERIALIZE_SCALAR(locked);
141    BaseSimpleCPU::unserialize(cp, section);
142    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
143}
144
145void
146AtomicSimpleCPU::resume()
147{
148    if (_status == Idle || _status == SwitchedOut)
149        return;
150
151    DPRINTF(SimpleCPU, "Resume\n");
152    assert(system->getMemoryMode() == Enums::atomic);
153
154    changeState(SimObject::Running);
155    if (thread->status() == ThreadContext::Active) {
156        if (!tickEvent.scheduled())
157            schedule(tickEvent, nextCycle());
158    }
159    system->totalNumInsts = 0;
160}
161
162void
163AtomicSimpleCPU::switchOut()
164{
165    assert(_status == Running || _status == Idle);
166    _status = SwitchedOut;
167
168    tickEvent.squash();
169}
170
171
172void
173AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
174{
175    BaseCPU::takeOverFrom(oldCPU);
176
177    assert(!tickEvent.scheduled());
178
179    // if any of this CPU's ThreadContexts are active, mark the CPU as
180    // running and schedule its tick event.
181    ThreadID size = threadContexts.size();
182    for (ThreadID i = 0; i < size; ++i) {
183        ThreadContext *tc = threadContexts[i];
184        if (tc->status() == ThreadContext::Active && _status != Running) {
185            _status = Running;
186            schedule(tickEvent, nextCycle());
187            break;
188        }
189    }
190    if (_status != Running) {
191        _status = Idle;
192    }
193    assert(threadContexts.size() == 1);
194    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
195    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
196    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
197}
198
199
200void
201AtomicSimpleCPU::activateContext(ThreadID thread_num, int delay)
202{
203    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
204
205    assert(thread_num == 0);
206    assert(thread);
207
208    assert(_status == Idle);
209    assert(!tickEvent.scheduled());
210
211    notIdleFraction++;
212    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
213
214    //Make sure ticks are still on multiples of cycles
215    schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
216    _status = Running;
217}
218
219
220void
221AtomicSimpleCPU::suspendContext(ThreadID thread_num)
222{
223    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
224
225    assert(thread_num == 0);
226    assert(thread);
227
228    if (_status == Idle)
229        return;
230
231    assert(_status == Running);
232
233    // tick event may not be scheduled if this gets called from inside
234    // an instruction's execution, e.g. "quiesce"
235    if (tickEvent.scheduled())
236        deschedule(tickEvent);
237
238    notIdleFraction--;
239    _status = Idle;
240}
241
242
243Fault
244AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
245                         unsigned size, unsigned flags)
246{
247    // use the CPU's statically allocated read request and packet objects
248    Request *req = &data_read_req;
249
250    if (traceData) {
251        traceData->setAddr(addr);
252    }
253
254    //The block size of our peer.
255    unsigned blockSize = dcachePort.peerBlockSize();
256    //The size of the data we're trying to read.
257    int fullSize = size;
258
259    //The address of the second part of this access if it needs to be split
260    //across a cache line boundary.
261    Addr secondAddr = roundDown(addr + size - 1, blockSize);
262
263    if (secondAddr > addr)
264        size = secondAddr - addr;
265
266    dcache_latency = 0;
267
268    while (1) {
269        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
270
271        // translate to physical address
272        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
273
274        // Now do the access.
275        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
276            Packet pkt = Packet(req,
277                    req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
278                    Packet::Broadcast);
279            pkt.dataStatic(data);
280
281            if (req->isMmappedIpr())
282                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
283            else {
284                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
285                    dcache_latency += physmemPort.sendAtomic(&pkt);
286                else
287                    dcache_latency += dcachePort.sendAtomic(&pkt);
288            }
289            dcache_access = true;
290
291            assert(!pkt.isError());
292
293            if (req->isLLSC()) {
294                TheISA::handleLockedRead(thread, req);
295            }
296        }
297
298        //If there's a fault, return it
299        if (fault != NoFault) {
300            if (req->isPrefetch()) {
301                return NoFault;
302            } else {
303                return fault;
304            }
305        }
306
307        //If we don't need to access a second cache line, stop now.
308        if (secondAddr <= addr)
309        {
310            if (req->isLocked() && fault == NoFault) {
311                assert(!locked);
312                locked = true;
313            }
314            return fault;
315        }
316
317        /*
318         * Set up for accessing the second cache line.
319         */
320
321        //Move the pointer we're reading into to the correct location.
322        data += size;
323        //Adjust the size to get the remaining bytes.
324        size = addr + fullSize - secondAddr;
325        //And access the right address.
326        addr = secondAddr;
327    }
328}
329
330
331Fault
332AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
333                          Addr addr, unsigned flags, uint64_t *res)
334{
335    // use the CPU's statically allocated write request and packet objects
336    Request *req = &data_write_req;
337
338    if (traceData) {
339        traceData->setAddr(addr);
340    }
341
342    //The block size of our peer.
343    unsigned blockSize = dcachePort.peerBlockSize();
344    //The size of the data we're trying to read.
345    int fullSize = size;
346
347    //The address of the second part of this access if it needs to be split
348    //across a cache line boundary.
349    Addr secondAddr = roundDown(addr + size - 1, blockSize);
350
351    if(secondAddr > addr)
352        size = secondAddr - addr;
353
354    dcache_latency = 0;
355
356    while(1) {
357        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
358
359        // translate to physical address
360        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
361
362        // Now do the access.
363        if (fault == NoFault) {
364            MemCmd cmd = MemCmd::WriteReq; // default
365            bool do_access = true;  // flag to suppress cache access
366
367            if (req->isLLSC()) {
368                cmd = MemCmd::StoreCondReq;
369                do_access = TheISA::handleLockedWrite(thread, req);
370            } else if (req->isSwap()) {
371                cmd = MemCmd::SwapReq;
372                if (req->isCondSwap()) {
373                    assert(res);
374                    req->setExtraData(*res);
375                }
376            }
377
378            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
379                Packet pkt = Packet(req, cmd, Packet::Broadcast);
380                pkt.dataStatic(data);
381
382                if (req->isMmappedIpr()) {
383                    dcache_latency +=
384                        TheISA::handleIprWrite(thread->getTC(), &pkt);
385                } else {
386                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
387                        dcache_latency += physmemPort.sendAtomic(&pkt);
388                    else
389                        dcache_latency += dcachePort.sendAtomic(&pkt);
390                }
391                dcache_access = true;
392                assert(!pkt.isError());
393
394                if (req->isSwap()) {
395                    assert(res);
396                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
397                }
398            }
399
400            if (res && !req->isSwap()) {
401                *res = req->getExtraData();
402            }
403        }
404
405        //If there's a fault or we don't need to access a second cache line,
406        //stop now.
407        if (fault != NoFault || secondAddr <= addr)
408        {
409            if (req->isLocked() && fault == NoFault) {
410                assert(locked);
411                locked = false;
412            }
413            if (fault != NoFault && req->isPrefetch()) {
414                return NoFault;
415            } else {
416                return fault;
417            }
418        }
419
420        /*
421         * Set up for accessing the second cache line.
422         */
423
424        //Move the pointer we're reading into to the correct location.
425        data += size;
426        //Adjust the size to get the remaining bytes.
427        size = addr + fullSize - secondAddr;
428        //And access the right address.
429        addr = secondAddr;
430    }
431}
432
433
434void
435AtomicSimpleCPU::tick()
436{
437    DPRINTF(SimpleCPU, "Tick\n");
438
439    Tick latency = 0;
440
441    for (int i = 0; i < width || locked; ++i) {
442        numCycles++;
443
444        if (!curStaticInst || !curStaticInst->isDelayedCommit())
445            checkForInterrupts();
446
447        checkPcEventQueue();
448        // We must have just got suspended by a PC event
449        if (_status == Idle)
450            return;
451
452        Fault fault = NoFault;
453
454        TheISA::PCState pcState = thread->pcState();
455
456        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
457                           !curMacroStaticInst;
458        if (needToFetch) {
459            setupFetchRequest(&ifetch_req);
460            fault = thread->itb->translateAtomic(&ifetch_req, tc,
461                                                 BaseTLB::Execute);
462        }
463
464        if (fault == NoFault) {
465            Tick icache_latency = 0;
466            bool icache_access = false;
467            dcache_access = false; // assume no dcache access
468
469            if (needToFetch) {
470                // This is commented out because the predecoder would act like
471                // a tiny cache otherwise. It wouldn't be flushed when needed
472                // like the I cache. It should be flushed, and when that works
473                // this code should be uncommented.
474                //Fetch more instruction memory if necessary
475                //if(predecoder.needMoreBytes())
476                //{
477                    icache_access = true;
478                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
479                                               Packet::Broadcast);
480                    ifetch_pkt.dataStatic(&inst);
481
482                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
483                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
484                    else
485                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
486
487                    assert(!ifetch_pkt.isError());
488
489                    // ifetch_req is initialized to read the instruction directly
490                    // into the CPU object's inst field.
491                //}
492            }
493
494            preExecute();
495
496            if (curStaticInst) {
497                fault = curStaticInst->execute(this, traceData);
498
499                // keep an instruction count
500                if (fault == NoFault)
501                    countInst();
502                else if (traceData && !DTRACE(ExecFaulting)) {
503                    delete traceData;
504                    traceData = NULL;
505                }
506
507                postExecute();
508            }
509
510            // @todo remove me after debugging with legion done
511            if (curStaticInst && (!curStaticInst->isMicroop() ||
512                        curStaticInst->isFirstMicroop()))
513                instCnt++;
514
515            Tick stall_ticks = 0;
516            if (simulate_inst_stalls && icache_access)
517                stall_ticks += icache_latency;
518
519            if (simulate_data_stalls && dcache_access)
520                stall_ticks += dcache_latency;
521
522            if (stall_ticks) {
523                Tick stall_cycles = stall_ticks / ticks(1);
524                Tick aligned_stall_ticks = ticks(stall_cycles);
525
526                if (aligned_stall_ticks < stall_ticks)
527                    aligned_stall_ticks += 1;
528
529                latency += aligned_stall_ticks;
530            }
531
532        }
533        if(fault != NoFault || !stayAtPC)
534            advancePC(fault);
535    }
536
537    // instruction takes at least one cycle
538    if (latency < ticks(1))
539        latency = ticks(1);
540
541    if (_status != Idle)
542        schedule(tickEvent, curTick() + latency);
543}
544
545
546void
547AtomicSimpleCPU::printAddr(Addr a)
548{
549    dcachePort.printAddr(a);
550}
551
552
553////////////////////////////////////////////////////////////////////////
554//
555//  AtomicSimpleCPU Simulation Object
556//
557AtomicSimpleCPU *
558AtomicSimpleCPUParams::create()
559{
560    numThreads = 1;
561    if (!FullSystem && workload.size() != 1)
562        panic("only one workload allowed");
563    return new AtomicSimpleCPU(this);
564}
565