atomic.cc revision 8850:ed91b534ed04
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmapped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/simple/atomic.hh"
37#include "cpu/exetrace.hh"
38#include "debug/ExecFaulting.hh"
39#include "debug/SimpleCPU.hh"
40#include "mem/packet.hh"
41#include "mem/packet_access.hh"
42#include "params/AtomicSimpleCPU.hh"
43#include "sim/faults.hh"
44#include "sim/system.hh"
45#include "sim/full_system.hh"
46
47using namespace std;
48using namespace TheISA;
49
50AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
51    : Event(CPU_Tick_Pri), cpu(c)
52{
53}
54
55
56void
57AtomicSimpleCPU::TickEvent::process()
58{
59    cpu->tick();
60}
61
62const char *
63AtomicSimpleCPU::TickEvent::description() const
64{
65    return "AtomicSimpleCPU tick";
66}
67
68Port *
69AtomicSimpleCPU::getPort(const string &if_name, int idx)
70{
71    if (if_name == "physmem_port") {
72        hasPhysMemPort = true;
73        return &physmemPort;
74    } else {
75        return BaseCPU::getPort(if_name, idx);
76    }
77}
78
79void
80AtomicSimpleCPU::init()
81{
82    BaseCPU::init();
83    if (FullSystem) {
84        ThreadID size = threadContexts.size();
85        for (ThreadID i = 0; i < size; ++i) {
86            ThreadContext *tc = threadContexts[i];
87            // initialize CPU, including PC
88            TheISA::initCPU(tc, tc->contextId());
89        }
90    }
91
92    // Initialise the ThreadContext's memory proxies
93    tcBase()->initMemProxies(tcBase());
94
95    if (hasPhysMemPort) {
96        AddrRangeList pmAddrList = physmemPort.getPeer()->getAddrRanges();
97        physMemAddr = *pmAddrList.begin();
98    }
99    // Atomic doesn't do MT right now, so contextId == threadId
100    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
101    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103}
104
105AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
106    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
107      simulate_data_stalls(p->simulate_data_stalls),
108      simulate_inst_stalls(p->simulate_inst_stalls),
109      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
110      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
111{
112    _status = Idle;
113}
114
115
116AtomicSimpleCPU::~AtomicSimpleCPU()
117{
118    if (tickEvent.scheduled()) {
119        deschedule(tickEvent);
120    }
121}
122
123void
124AtomicSimpleCPU::serialize(ostream &os)
125{
126    SimObject::State so_state = SimObject::getState();
127    SERIALIZE_ENUM(so_state);
128    SERIALIZE_SCALAR(locked);
129    BaseSimpleCPU::serialize(os);
130    nameOut(os, csprintf("%s.tickEvent", name()));
131    tickEvent.serialize(os);
132}
133
134void
135AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137    SimObject::State so_state;
138    UNSERIALIZE_ENUM(so_state);
139    UNSERIALIZE_SCALAR(locked);
140    BaseSimpleCPU::unserialize(cp, section);
141    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
142}
143
144void
145AtomicSimpleCPU::resume()
146{
147    if (_status == Idle || _status == SwitchedOut)
148        return;
149
150    DPRINTF(SimpleCPU, "Resume\n");
151    assert(system->getMemoryMode() == Enums::atomic);
152
153    changeState(SimObject::Running);
154    if (thread->status() == ThreadContext::Active) {
155        if (!tickEvent.scheduled())
156            schedule(tickEvent, nextCycle());
157    }
158    system->totalNumInsts = 0;
159}
160
161void
162AtomicSimpleCPU::switchOut()
163{
164    assert(_status == Running || _status == Idle);
165    _status = SwitchedOut;
166
167    tickEvent.squash();
168}
169
170
171void
172AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
173{
174    BaseCPU::takeOverFrom(oldCPU);
175
176    assert(!tickEvent.scheduled());
177
178    // if any of this CPU's ThreadContexts are active, mark the CPU as
179    // running and schedule its tick event.
180    ThreadID size = threadContexts.size();
181    for (ThreadID i = 0; i < size; ++i) {
182        ThreadContext *tc = threadContexts[i];
183        if (tc->status() == ThreadContext::Active && _status != Running) {
184            _status = Running;
185            schedule(tickEvent, nextCycle());
186            break;
187        }
188    }
189    if (_status != Running) {
190        _status = Idle;
191    }
192    assert(threadContexts.size() == 1);
193    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
194    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
195    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
196}
197
198
199void
200AtomicSimpleCPU::activateContext(ThreadID thread_num, int delay)
201{
202    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
203
204    assert(thread_num == 0);
205    assert(thread);
206
207    assert(_status == Idle);
208    assert(!tickEvent.scheduled());
209
210    notIdleFraction++;
211    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
212
213    //Make sure ticks are still on multiples of cycles
214    schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
215    _status = Running;
216}
217
218
219void
220AtomicSimpleCPU::suspendContext(ThreadID thread_num)
221{
222    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
223
224    assert(thread_num == 0);
225    assert(thread);
226
227    if (_status == Idle)
228        return;
229
230    assert(_status == Running);
231
232    // tick event may not be scheduled if this gets called from inside
233    // an instruction's execution, e.g. "quiesce"
234    if (tickEvent.scheduled())
235        deschedule(tickEvent);
236
237    notIdleFraction--;
238    _status = Idle;
239}
240
241
242Fault
243AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
244                         unsigned size, unsigned flags)
245{
246    // use the CPU's statically allocated read request and packet objects
247    Request *req = &data_read_req;
248
249    if (traceData) {
250        traceData->setAddr(addr);
251    }
252
253    //The block size of our peer.
254    unsigned blockSize = dcachePort.peerBlockSize();
255    //The size of the data we're trying to read.
256    int fullSize = size;
257
258    //The address of the second part of this access if it needs to be split
259    //across a cache line boundary.
260    Addr secondAddr = roundDown(addr + size - 1, blockSize);
261
262    if (secondAddr > addr)
263        size = secondAddr - addr;
264
265    dcache_latency = 0;
266
267    while (1) {
268        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
269
270        // translate to physical address
271        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
272
273        // Now do the access.
274        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
275            Packet pkt = Packet(req,
276                    req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
277                    Packet::Broadcast);
278            pkt.dataStatic(data);
279
280            if (req->isMmappedIpr())
281                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
282            else {
283                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
284                    dcache_latency += physmemPort.sendAtomic(&pkt);
285                else
286                    dcache_latency += dcachePort.sendAtomic(&pkt);
287            }
288            dcache_access = true;
289
290            assert(!pkt.isError());
291
292            if (req->isLLSC()) {
293                TheISA::handleLockedRead(thread, req);
294            }
295        }
296
297        //If there's a fault, return it
298        if (fault != NoFault) {
299            if (req->isPrefetch()) {
300                return NoFault;
301            } else {
302                return fault;
303            }
304        }
305
306        //If we don't need to access a second cache line, stop now.
307        if (secondAddr <= addr)
308        {
309            if (req->isLocked() && fault == NoFault) {
310                assert(!locked);
311                locked = true;
312            }
313            return fault;
314        }
315
316        /*
317         * Set up for accessing the second cache line.
318         */
319
320        //Move the pointer we're reading into to the correct location.
321        data += size;
322        //Adjust the size to get the remaining bytes.
323        size = addr + fullSize - secondAddr;
324        //And access the right address.
325        addr = secondAddr;
326    }
327}
328
329
330Fault
331AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
332                          Addr addr, unsigned flags, uint64_t *res)
333{
334    // use the CPU's statically allocated write request and packet objects
335    Request *req = &data_write_req;
336
337    if (traceData) {
338        traceData->setAddr(addr);
339    }
340
341    //The block size of our peer.
342    unsigned blockSize = dcachePort.peerBlockSize();
343    //The size of the data we're trying to read.
344    int fullSize = size;
345
346    //The address of the second part of this access if it needs to be split
347    //across a cache line boundary.
348    Addr secondAddr = roundDown(addr + size - 1, blockSize);
349
350    if(secondAddr > addr)
351        size = secondAddr - addr;
352
353    dcache_latency = 0;
354
355    while(1) {
356        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
357
358        // translate to physical address
359        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
360
361        // Now do the access.
362        if (fault == NoFault) {
363            MemCmd cmd = MemCmd::WriteReq; // default
364            bool do_access = true;  // flag to suppress cache access
365
366            if (req->isLLSC()) {
367                cmd = MemCmd::StoreCondReq;
368                do_access = TheISA::handleLockedWrite(thread, req);
369            } else if (req->isSwap()) {
370                cmd = MemCmd::SwapReq;
371                if (req->isCondSwap()) {
372                    assert(res);
373                    req->setExtraData(*res);
374                }
375            }
376
377            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
378                Packet pkt = Packet(req, cmd, Packet::Broadcast);
379                pkt.dataStatic(data);
380
381                if (req->isMmappedIpr()) {
382                    dcache_latency +=
383                        TheISA::handleIprWrite(thread->getTC(), &pkt);
384                } else {
385                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
386                        dcache_latency += physmemPort.sendAtomic(&pkt);
387                    else
388                        dcache_latency += dcachePort.sendAtomic(&pkt);
389                }
390                dcache_access = true;
391                assert(!pkt.isError());
392
393                if (req->isSwap()) {
394                    assert(res);
395                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
396                }
397            }
398
399            if (res && !req->isSwap()) {
400                *res = req->getExtraData();
401            }
402        }
403
404        //If there's a fault or we don't need to access a second cache line,
405        //stop now.
406        if (fault != NoFault || secondAddr <= addr)
407        {
408            if (req->isLocked() && fault == NoFault) {
409                assert(locked);
410                locked = false;
411            }
412            if (fault != NoFault && req->isPrefetch()) {
413                return NoFault;
414            } else {
415                return fault;
416            }
417        }
418
419        /*
420         * Set up for accessing the second cache line.
421         */
422
423        //Move the pointer we're reading into to the correct location.
424        data += size;
425        //Adjust the size to get the remaining bytes.
426        size = addr + fullSize - secondAddr;
427        //And access the right address.
428        addr = secondAddr;
429    }
430}
431
432
433void
434AtomicSimpleCPU::tick()
435{
436    DPRINTF(SimpleCPU, "Tick\n");
437
438    Tick latency = 0;
439
440    for (int i = 0; i < width || locked; ++i) {
441        numCycles++;
442
443        if (!curStaticInst || !curStaticInst->isDelayedCommit())
444            checkForInterrupts();
445
446        checkPcEventQueue();
447        // We must have just got suspended by a PC event
448        if (_status == Idle)
449            return;
450
451        Fault fault = NoFault;
452
453        TheISA::PCState pcState = thread->pcState();
454
455        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
456                           !curMacroStaticInst;
457        if (needToFetch) {
458            setupFetchRequest(&ifetch_req);
459            fault = thread->itb->translateAtomic(&ifetch_req, tc,
460                                                 BaseTLB::Execute);
461        }
462
463        if (fault == NoFault) {
464            Tick icache_latency = 0;
465            bool icache_access = false;
466            dcache_access = false; // assume no dcache access
467
468            if (needToFetch) {
469                // This is commented out because the predecoder would act like
470                // a tiny cache otherwise. It wouldn't be flushed when needed
471                // like the I cache. It should be flushed, and when that works
472                // this code should be uncommented.
473                //Fetch more instruction memory if necessary
474                //if(predecoder.needMoreBytes())
475                //{
476                    icache_access = true;
477                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
478                                               Packet::Broadcast);
479                    ifetch_pkt.dataStatic(&inst);
480
481                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
482                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
483                    else
484                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
485
486                    assert(!ifetch_pkt.isError());
487
488                    // ifetch_req is initialized to read the instruction directly
489                    // into the CPU object's inst field.
490                //}
491            }
492
493            preExecute();
494
495            if (curStaticInst) {
496                fault = curStaticInst->execute(this, traceData);
497
498                // keep an instruction count
499                if (fault == NoFault)
500                    countInst();
501                else if (traceData && !DTRACE(ExecFaulting)) {
502                    delete traceData;
503                    traceData = NULL;
504                }
505
506                postExecute();
507            }
508
509            // @todo remove me after debugging with legion done
510            if (curStaticInst && (!curStaticInst->isMicroop() ||
511                        curStaticInst->isFirstMicroop()))
512                instCnt++;
513
514            Tick stall_ticks = 0;
515            if (simulate_inst_stalls && icache_access)
516                stall_ticks += icache_latency;
517
518            if (simulate_data_stalls && dcache_access)
519                stall_ticks += dcache_latency;
520
521            if (stall_ticks) {
522                Tick stall_cycles = stall_ticks / ticks(1);
523                Tick aligned_stall_ticks = ticks(stall_cycles);
524
525                if (aligned_stall_ticks < stall_ticks)
526                    aligned_stall_ticks += 1;
527
528                latency += aligned_stall_ticks;
529            }
530
531        }
532        if(fault != NoFault || !stayAtPC)
533            advancePC(fault);
534    }
535
536    // instruction takes at least one cycle
537    if (latency < ticks(1))
538        latency = ticks(1);
539
540    if (_status != Idle)
541        schedule(tickEvent, curTick() + latency);
542}
543
544
545void
546AtomicSimpleCPU::printAddr(Addr a)
547{
548    dcachePort.printAddr(a);
549}
550
551
552////////////////////////////////////////////////////////////////////////
553//
554//  AtomicSimpleCPU Simulation Object
555//
556AtomicSimpleCPU *
557AtomicSimpleCPUParams::create()
558{
559    numThreads = 1;
560    if (!FullSystem && workload.size() != 1)
561        panic("only one workload allowed");
562    return new AtomicSimpleCPU(this);
563}
564