atomic.cc revision 8779:2a590c51adb1
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmapped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/simple/atomic.hh"
37#include "cpu/exetrace.hh"
38#include "debug/ExecFaulting.hh"
39#include "debug/SimpleCPU.hh"
40#include "mem/packet.hh"
41#include "mem/packet_access.hh"
42#include "params/AtomicSimpleCPU.hh"
43#include "sim/faults.hh"
44#include "sim/system.hh"
45#include "sim/full_system.hh"
46
47using namespace std;
48using namespace TheISA;
49
50AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
51    : Event(CPU_Tick_Pri), cpu(c)
52{
53}
54
55
56void
57AtomicSimpleCPU::TickEvent::process()
58{
59    cpu->tick();
60}
61
62const char *
63AtomicSimpleCPU::TickEvent::description() const
64{
65    return "AtomicSimpleCPU tick";
66}
67
68Port *
69AtomicSimpleCPU::getPort(const string &if_name, int idx)
70{
71    if (if_name == "dcache_port")
72        return &dcachePort;
73    else if (if_name == "icache_port")
74        return &icachePort;
75    else if (if_name == "physmem_port") {
76        hasPhysMemPort = true;
77        return &physmemPort;
78    }
79    else
80        panic("No Such Port\n");
81}
82
83void
84AtomicSimpleCPU::init()
85{
86    BaseCPU::init();
87    if (FullSystem) {
88        ThreadID size = threadContexts.size();
89        for (ThreadID i = 0; i < size; ++i) {
90#if FULL_SYSTEM
91            ThreadContext *tc = threadContexts[i];
92            // initialize CPU, including PC
93            TheISA::initCPU(tc, tc->contextId());
94#endif
95        }
96    }
97    if (hasPhysMemPort) {
98        bool snoop = false;
99        AddrRangeList pmAddrList;
100        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
101        physMemAddr = *pmAddrList.begin();
102    }
103    // Atomic doesn't do MT right now, so contextId == threadId
104    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
105    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
106    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
107}
108
109bool
110AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
111{
112    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
113    return true;
114}
115
116Tick
117AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
118{
119    //Snooping a coherence request, just return
120    return 0;
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
125{
126    //No internal storage to update, just return
127    return;
128}
129
130void
131AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
132{
133    if (status == RangeChange) {
134        if (!snoopRangeSent) {
135            snoopRangeSent = true;
136            sendStatusChange(Port::RangeChange);
137        }
138        return;
139    }
140
141    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
142}
143
144void
145AtomicSimpleCPU::CpuPort::recvRetry()
146{
147    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
148}
149
150void
151AtomicSimpleCPU::DcachePort::setPeer(Port *port)
152{
153    Port::setPeer(port);
154
155    if (FullSystem) {
156        // Update the ThreadContext's memory ports (Functional/Virtual
157        // Ports)
158        cpu->tcBase()->connectMemPorts(cpu->tcBase());
159    }
160}
161
162AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
163    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
164      simulate_data_stalls(p->simulate_data_stalls),
165      simulate_inst_stalls(p->simulate_inst_stalls),
166      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
167      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
168{
169    _status = Idle;
170
171    icachePort.snoopRangeSent = false;
172    dcachePort.snoopRangeSent = false;
173
174}
175
176
177AtomicSimpleCPU::~AtomicSimpleCPU()
178{
179    if (tickEvent.scheduled()) {
180        deschedule(tickEvent);
181    }
182}
183
184void
185AtomicSimpleCPU::serialize(ostream &os)
186{
187    SimObject::State so_state = SimObject::getState();
188    SERIALIZE_ENUM(so_state);
189    SERIALIZE_SCALAR(locked);
190    BaseSimpleCPU::serialize(os);
191    nameOut(os, csprintf("%s.tickEvent", name()));
192    tickEvent.serialize(os);
193}
194
195void
196AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
197{
198    SimObject::State so_state;
199    UNSERIALIZE_ENUM(so_state);
200    UNSERIALIZE_SCALAR(locked);
201    BaseSimpleCPU::unserialize(cp, section);
202    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
203}
204
205void
206AtomicSimpleCPU::resume()
207{
208    if (_status == Idle || _status == SwitchedOut)
209        return;
210
211    DPRINTF(SimpleCPU, "Resume\n");
212    assert(system->getMemoryMode() == Enums::atomic);
213
214    changeState(SimObject::Running);
215    if (thread->status() == ThreadContext::Active) {
216        if (!tickEvent.scheduled())
217            schedule(tickEvent, nextCycle());
218    }
219    system->totalNumInsts = 0;
220}
221
222void
223AtomicSimpleCPU::switchOut()
224{
225    assert(_status == Running || _status == Idle);
226    _status = SwitchedOut;
227
228    tickEvent.squash();
229}
230
231
232void
233AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
234{
235    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
236
237    assert(!tickEvent.scheduled());
238
239    // if any of this CPU's ThreadContexts are active, mark the CPU as
240    // running and schedule its tick event.
241    ThreadID size = threadContexts.size();
242    for (ThreadID i = 0; i < size; ++i) {
243        ThreadContext *tc = threadContexts[i];
244        if (tc->status() == ThreadContext::Active && _status != Running) {
245            _status = Running;
246            schedule(tickEvent, nextCycle());
247            break;
248        }
249    }
250    if (_status != Running) {
251        _status = Idle;
252    }
253    assert(threadContexts.size() == 1);
254    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
255    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
256    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
257}
258
259
260void
261AtomicSimpleCPU::activateContext(int thread_num, int delay)
262{
263    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
264
265    assert(thread_num == 0);
266    assert(thread);
267
268    assert(_status == Idle);
269    assert(!tickEvent.scheduled());
270
271    notIdleFraction++;
272    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
273
274    //Make sure ticks are still on multiples of cycles
275    schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
276    _status = Running;
277}
278
279
280void
281AtomicSimpleCPU::suspendContext(int thread_num)
282{
283    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
284
285    assert(thread_num == 0);
286    assert(thread);
287
288    if (_status == Idle)
289        return;
290
291    assert(_status == Running);
292
293    // tick event may not be scheduled if this gets called from inside
294    // an instruction's execution, e.g. "quiesce"
295    if (tickEvent.scheduled())
296        deschedule(tickEvent);
297
298    notIdleFraction--;
299    _status = Idle;
300}
301
302
303Fault
304AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
305                         unsigned size, unsigned flags)
306{
307    // use the CPU's statically allocated read request and packet objects
308    Request *req = &data_read_req;
309
310    if (traceData) {
311        traceData->setAddr(addr);
312    }
313
314    //The block size of our peer.
315    unsigned blockSize = dcachePort.peerBlockSize();
316    //The size of the data we're trying to read.
317    int fullSize = size;
318
319    //The address of the second part of this access if it needs to be split
320    //across a cache line boundary.
321    Addr secondAddr = roundDown(addr + size - 1, blockSize);
322
323    if (secondAddr > addr)
324        size = secondAddr - addr;
325
326    dcache_latency = 0;
327
328    while (1) {
329        req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
330
331        // translate to physical address
332        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
333
334        // Now do the access.
335        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
336            Packet pkt = Packet(req,
337                    req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
338                    Packet::Broadcast);
339            pkt.dataStatic(data);
340
341            if (req->isMmappedIpr())
342                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
343            else {
344                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
345                    dcache_latency += physmemPort.sendAtomic(&pkt);
346                else
347                    dcache_latency += dcachePort.sendAtomic(&pkt);
348            }
349            dcache_access = true;
350
351            assert(!pkt.isError());
352
353            if (req->isLLSC()) {
354                TheISA::handleLockedRead(thread, req);
355            }
356        }
357
358        //If there's a fault, return it
359        if (fault != NoFault) {
360            if (req->isPrefetch()) {
361                return NoFault;
362            } else {
363                return fault;
364            }
365        }
366
367        //If we don't need to access a second cache line, stop now.
368        if (secondAddr <= addr)
369        {
370            if (req->isLocked() && fault == NoFault) {
371                assert(!locked);
372                locked = true;
373            }
374            return fault;
375        }
376
377        /*
378         * Set up for accessing the second cache line.
379         */
380
381        //Move the pointer we're reading into to the correct location.
382        data += size;
383        //Adjust the size to get the remaining bytes.
384        size = addr + fullSize - secondAddr;
385        //And access the right address.
386        addr = secondAddr;
387    }
388}
389
390
391Fault
392AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
393                          Addr addr, unsigned flags, uint64_t *res)
394{
395    // use the CPU's statically allocated write request and packet objects
396    Request *req = &data_write_req;
397
398    if (traceData) {
399        traceData->setAddr(addr);
400    }
401
402    //The block size of our peer.
403    unsigned blockSize = dcachePort.peerBlockSize();
404    //The size of the data we're trying to read.
405    int fullSize = size;
406
407    //The address of the second part of this access if it needs to be split
408    //across a cache line boundary.
409    Addr secondAddr = roundDown(addr + size - 1, blockSize);
410
411    if(secondAddr > addr)
412        size = secondAddr - addr;
413
414    dcache_latency = 0;
415
416    while(1) {
417        req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
418
419        // translate to physical address
420        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
421
422        // Now do the access.
423        if (fault == NoFault) {
424            MemCmd cmd = MemCmd::WriteReq; // default
425            bool do_access = true;  // flag to suppress cache access
426
427            if (req->isLLSC()) {
428                cmd = MemCmd::StoreCondReq;
429                do_access = TheISA::handleLockedWrite(thread, req);
430            } else if (req->isSwap()) {
431                cmd = MemCmd::SwapReq;
432                if (req->isCondSwap()) {
433                    assert(res);
434                    req->setExtraData(*res);
435                }
436            }
437
438            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
439                Packet pkt = Packet(req, cmd, Packet::Broadcast);
440                pkt.dataStatic(data);
441
442                if (req->isMmappedIpr()) {
443                    dcache_latency +=
444                        TheISA::handleIprWrite(thread->getTC(), &pkt);
445                } else {
446                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
447                        dcache_latency += physmemPort.sendAtomic(&pkt);
448                    else
449                        dcache_latency += dcachePort.sendAtomic(&pkt);
450                }
451                dcache_access = true;
452                assert(!pkt.isError());
453
454                if (req->isSwap()) {
455                    assert(res);
456                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
457                }
458            }
459
460            if (res && !req->isSwap()) {
461                *res = req->getExtraData();
462            }
463        }
464
465        //If there's a fault or we don't need to access a second cache line,
466        //stop now.
467        if (fault != NoFault || secondAddr <= addr)
468        {
469            if (req->isLocked() && fault == NoFault) {
470                assert(locked);
471                locked = false;
472            }
473            if (fault != NoFault && req->isPrefetch()) {
474                return NoFault;
475            } else {
476                return fault;
477            }
478        }
479
480        /*
481         * Set up for accessing the second cache line.
482         */
483
484        //Move the pointer we're reading into to the correct location.
485        data += size;
486        //Adjust the size to get the remaining bytes.
487        size = addr + fullSize - secondAddr;
488        //And access the right address.
489        addr = secondAddr;
490    }
491}
492
493
494void
495AtomicSimpleCPU::tick()
496{
497    DPRINTF(SimpleCPU, "Tick\n");
498
499    Tick latency = 0;
500
501    for (int i = 0; i < width || locked; ++i) {
502        numCycles++;
503
504        if (!curStaticInst || !curStaticInst->isDelayedCommit())
505            checkForInterrupts();
506
507        checkPcEventQueue();
508        // We must have just got suspended by a PC event
509        if (_status == Idle)
510            return;
511
512        Fault fault = NoFault;
513
514        TheISA::PCState pcState = thread->pcState();
515
516        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
517                           !curMacroStaticInst;
518        if (needToFetch) {
519            setupFetchRequest(&ifetch_req);
520            fault = thread->itb->translateAtomic(&ifetch_req, tc,
521                                                 BaseTLB::Execute);
522        }
523
524        if (fault == NoFault) {
525            Tick icache_latency = 0;
526            bool icache_access = false;
527            dcache_access = false; // assume no dcache access
528
529            if (needToFetch) {
530                // This is commented out because the predecoder would act like
531                // a tiny cache otherwise. It wouldn't be flushed when needed
532                // like the I cache. It should be flushed, and when that works
533                // this code should be uncommented.
534                //Fetch more instruction memory if necessary
535                //if(predecoder.needMoreBytes())
536                //{
537                    icache_access = true;
538                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
539                                               Packet::Broadcast);
540                    ifetch_pkt.dataStatic(&inst);
541
542                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
543                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
544                    else
545                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
546
547                    assert(!ifetch_pkt.isError());
548
549                    // ifetch_req is initialized to read the instruction directly
550                    // into the CPU object's inst field.
551                //}
552            }
553
554            preExecute();
555
556            if (curStaticInst) {
557                fault = curStaticInst->execute(this, traceData);
558
559                // keep an instruction count
560                if (fault == NoFault)
561                    countInst();
562                else if (traceData && !DTRACE(ExecFaulting)) {
563                    delete traceData;
564                    traceData = NULL;
565                }
566
567                postExecute();
568            }
569
570            // @todo remove me after debugging with legion done
571            if (curStaticInst && (!curStaticInst->isMicroop() ||
572                        curStaticInst->isFirstMicroop()))
573                instCnt++;
574
575            Tick stall_ticks = 0;
576            if (simulate_inst_stalls && icache_access)
577                stall_ticks += icache_latency;
578
579            if (simulate_data_stalls && dcache_access)
580                stall_ticks += dcache_latency;
581
582            if (stall_ticks) {
583                Tick stall_cycles = stall_ticks / ticks(1);
584                Tick aligned_stall_ticks = ticks(stall_cycles);
585
586                if (aligned_stall_ticks < stall_ticks)
587                    aligned_stall_ticks += 1;
588
589                latency += aligned_stall_ticks;
590            }
591
592        }
593        if(fault != NoFault || !stayAtPC)
594            advancePC(fault);
595    }
596
597    // instruction takes at least one cycle
598    if (latency < ticks(1))
599        latency = ticks(1);
600
601    if (_status != Idle)
602        schedule(tickEvent, curTick() + latency);
603}
604
605
606void
607AtomicSimpleCPU::printAddr(Addr a)
608{
609    dcachePort.printAddr(a);
610}
611
612
613////////////////////////////////////////////////////////////////////////
614//
615//  AtomicSimpleCPU Simulation Object
616//
617AtomicSimpleCPU *
618AtomicSimpleCPUParams::create()
619{
620    numThreads = 1;
621#if !FULL_SYSTEM
622    if (!FullSystem && workload.size() != 1)
623        panic("only one workload allowed");
624#endif
625    return new AtomicSimpleCPU(this);
626}
627