atomic.cc revision 7720
1/* 2 * Copyright (c) 2002-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Steve Reinhardt 29 */ 30 31#include "arch/locked_mem.hh" 32#include "arch/mmaped_ipr.hh" 33#include "arch/utility.hh" 34#include "base/bigint.hh" 35#include "config/the_isa.hh" 36#include "cpu/exetrace.hh" 37#include "cpu/simple/atomic.hh" 38#include "mem/packet.hh" 39#include "mem/packet_access.hh" 40#include "params/AtomicSimpleCPU.hh" 41#include "sim/faults.hh" 42#include "sim/system.hh" 43 44using namespace std; 45using namespace TheISA; 46 47AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) 48 : Event(CPU_Tick_Pri), cpu(c) 49{ 50} 51 52 53void 54AtomicSimpleCPU::TickEvent::process() 55{ 56 cpu->tick(); 57} 58 59const char * 60AtomicSimpleCPU::TickEvent::description() const 61{ 62 return "AtomicSimpleCPU tick"; 63} 64 65Port * 66AtomicSimpleCPU::getPort(const string &if_name, int idx) 67{ 68 if (if_name == "dcache_port") 69 return &dcachePort; 70 else if (if_name == "icache_port") 71 return &icachePort; 72 else if (if_name == "physmem_port") { 73 hasPhysMemPort = true; 74 return &physmemPort; 75 } 76 else 77 panic("No Such Port\n"); 78} 79 80void 81AtomicSimpleCPU::init() 82{ 83 BaseCPU::init(); 84#if FULL_SYSTEM 85 ThreadID size = threadContexts.size(); 86 for (ThreadID i = 0; i < size; ++i) { 87 ThreadContext *tc = threadContexts[i]; 88 89 // initialize CPU, including PC 90 TheISA::initCPU(tc, tc->contextId()); 91 } 92#endif 93 if (hasPhysMemPort) { 94 bool snoop = false; 95 AddrRangeList pmAddrList; 96 physmemPort.getPeerAddressRanges(pmAddrList, snoop); 97 physMemAddr = *pmAddrList.begin(); 98 } 99 // Atomic doesn't do MT right now, so contextId == threadId 100 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT 101 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too 102 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too 103} 104 105bool 106AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt) 107{ 108 panic("AtomicSimpleCPU doesn't expect recvTiming callback!"); 109 return true; 110} 111 112Tick 113AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt) 114{ 115 //Snooping a coherence request, just return 116 return 0; 117} 118 119void 120AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt) 121{ 122 //No internal storage to update, just return 123 return; 124} 125 126void 127AtomicSimpleCPU::CpuPort::recvStatusChange(Status status) 128{ 129 if (status == RangeChange) { 130 if (!snoopRangeSent) { 131 snoopRangeSent = true; 132 sendStatusChange(Port::RangeChange); 133 } 134 return; 135 } 136 137 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!"); 138} 139 140void 141AtomicSimpleCPU::CpuPort::recvRetry() 142{ 143 panic("AtomicSimpleCPU doesn't expect recvRetry callback!"); 144} 145 146void 147AtomicSimpleCPU::DcachePort::setPeer(Port *port) 148{ 149 Port::setPeer(port); 150 151#if FULL_SYSTEM 152 // Update the ThreadContext's memory ports (Functional/Virtual 153 // Ports) 154 cpu->tcBase()->connectMemPorts(cpu->tcBase()); 155#endif 156} 157 158AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p) 159 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false), 160 simulate_data_stalls(p->simulate_data_stalls), 161 simulate_inst_stalls(p->simulate_inst_stalls), 162 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this), 163 physmemPort(name() + "-iport", this), hasPhysMemPort(false) 164{ 165 _status = Idle; 166 167 icachePort.snoopRangeSent = false; 168 dcachePort.snoopRangeSent = false; 169 170} 171 172 173AtomicSimpleCPU::~AtomicSimpleCPU() 174{ 175 if (tickEvent.scheduled()) { 176 deschedule(tickEvent); 177 } 178} 179 180void 181AtomicSimpleCPU::serialize(ostream &os) 182{ 183 SimObject::State so_state = SimObject::getState(); 184 SERIALIZE_ENUM(so_state); 185 SERIALIZE_SCALAR(locked); 186 BaseSimpleCPU::serialize(os); 187 nameOut(os, csprintf("%s.tickEvent", name())); 188 tickEvent.serialize(os); 189} 190 191void 192AtomicSimpleCPU::unserialize(Checkpoint *cp, const string §ion) 193{ 194 SimObject::State so_state; 195 UNSERIALIZE_ENUM(so_state); 196 UNSERIALIZE_SCALAR(locked); 197 BaseSimpleCPU::unserialize(cp, section); 198 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section)); 199} 200 201void 202AtomicSimpleCPU::resume() 203{ 204 if (_status == Idle || _status == SwitchedOut) 205 return; 206 207 DPRINTF(SimpleCPU, "Resume\n"); 208 assert(system->getMemoryMode() == Enums::atomic); 209 210 changeState(SimObject::Running); 211 if (thread->status() == ThreadContext::Active) { 212 if (!tickEvent.scheduled()) 213 schedule(tickEvent, nextCycle()); 214 } 215} 216 217void 218AtomicSimpleCPU::switchOut() 219{ 220 assert(_status == Running || _status == Idle); 221 _status = SwitchedOut; 222 223 tickEvent.squash(); 224} 225 226 227void 228AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) 229{ 230 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort); 231 232 assert(!tickEvent.scheduled()); 233 234 // if any of this CPU's ThreadContexts are active, mark the CPU as 235 // running and schedule its tick event. 236 ThreadID size = threadContexts.size(); 237 for (ThreadID i = 0; i < size; ++i) { 238 ThreadContext *tc = threadContexts[i]; 239 if (tc->status() == ThreadContext::Active && _status != Running) { 240 _status = Running; 241 schedule(tickEvent, nextCycle()); 242 break; 243 } 244 } 245 if (_status != Running) { 246 _status = Idle; 247 } 248 assert(threadContexts.size() == 1); 249 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT 250 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too 251 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too 252} 253 254 255void 256AtomicSimpleCPU::activateContext(int thread_num, int delay) 257{ 258 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay); 259 260 assert(thread_num == 0); 261 assert(thread); 262 263 assert(_status == Idle); 264 assert(!tickEvent.scheduled()); 265 266 notIdleFraction++; 267 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend); 268 269 //Make sure ticks are still on multiples of cycles 270 schedule(tickEvent, nextCycle(curTick + ticks(delay))); 271 _status = Running; 272} 273 274 275void 276AtomicSimpleCPU::suspendContext(int thread_num) 277{ 278 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num); 279 280 assert(thread_num == 0); 281 assert(thread); 282 283 if (_status == Idle) 284 return; 285 286 assert(_status == Running); 287 288 // tick event may not be scheduled if this gets called from inside 289 // an instruction's execution, e.g. "quiesce" 290 if (tickEvent.scheduled()) 291 deschedule(tickEvent); 292 293 notIdleFraction--; 294 _status = Idle; 295} 296 297 298Fault 299AtomicSimpleCPU::readBytes(Addr addr, uint8_t * data, 300 unsigned size, unsigned flags) 301{ 302 // use the CPU's statically allocated read request and packet objects 303 Request *req = &data_read_req; 304 305 if (traceData) { 306 traceData->setAddr(addr); 307 } 308 309 //The block size of our peer. 310 unsigned blockSize = dcachePort.peerBlockSize(); 311 //The size of the data we're trying to read. 312 int fullSize = size; 313 314 //The address of the second part of this access if it needs to be split 315 //across a cache line boundary. 316 Addr secondAddr = roundDown(addr + size - 1, blockSize); 317 318 if (secondAddr > addr) 319 size = secondAddr - addr; 320 321 dcache_latency = 0; 322 323 while (1) { 324 req->setVirt(0, addr, size, flags, thread->pcState().instAddr()); 325 326 // translate to physical address 327 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read); 328 329 // Now do the access. 330 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) { 331 Packet pkt = Packet(req, 332 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq, 333 Packet::Broadcast); 334 pkt.dataStatic(data); 335 336 if (req->isMmapedIpr()) 337 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt); 338 else { 339 if (hasPhysMemPort && pkt.getAddr() == physMemAddr) 340 dcache_latency += physmemPort.sendAtomic(&pkt); 341 else 342 dcache_latency += dcachePort.sendAtomic(&pkt); 343 } 344 dcache_access = true; 345 346 assert(!pkt.isError()); 347 348 if (req->isLLSC()) { 349 TheISA::handleLockedRead(thread, req); 350 } 351 } 352 353 //If there's a fault, return it 354 if (fault != NoFault) { 355 if (req->isPrefetch()) { 356 return NoFault; 357 } else { 358 return fault; 359 } 360 } 361 362 //If we don't need to access a second cache line, stop now. 363 if (secondAddr <= addr) 364 { 365 if (req->isLocked() && fault == NoFault) { 366 assert(!locked); 367 locked = true; 368 } 369 return fault; 370 } 371 372 /* 373 * Set up for accessing the second cache line. 374 */ 375 376 //Move the pointer we're reading into to the correct location. 377 data += size; 378 //Adjust the size to get the remaining bytes. 379 size = addr + fullSize - secondAddr; 380 //And access the right address. 381 addr = secondAddr; 382 } 383} 384 385 386template <class T> 387Fault 388AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags) 389{ 390 uint8_t *dataPtr = (uint8_t *)&data; 391 memset(dataPtr, 0, sizeof(data)); 392 Fault fault = readBytes(addr, dataPtr, sizeof(data), flags); 393 if (fault == NoFault) { 394 data = gtoh(data); 395 if (traceData) 396 traceData->setData(data); 397 } 398 return fault; 399} 400 401#ifndef DOXYGEN_SHOULD_SKIP_THIS 402 403template 404Fault 405AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags); 406 407template 408Fault 409AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags); 410 411template 412Fault 413AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags); 414 415template 416Fault 417AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags); 418 419template 420Fault 421AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags); 422 423template 424Fault 425AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags); 426 427#endif //DOXYGEN_SHOULD_SKIP_THIS 428 429template<> 430Fault 431AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags) 432{ 433 return read(addr, *(uint64_t*)&data, flags); 434} 435 436template<> 437Fault 438AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags) 439{ 440 return read(addr, *(uint32_t*)&data, flags); 441} 442 443 444template<> 445Fault 446AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags) 447{ 448 return read(addr, (uint32_t&)data, flags); 449} 450 451 452Fault 453AtomicSimpleCPU::writeBytes(uint8_t *data, unsigned size, 454 Addr addr, unsigned flags, uint64_t *res) 455{ 456 // use the CPU's statically allocated write request and packet objects 457 Request *req = &data_write_req; 458 459 if (traceData) { 460 traceData->setAddr(addr); 461 } 462 463 //The block size of our peer. 464 unsigned blockSize = dcachePort.peerBlockSize(); 465 //The size of the data we're trying to read. 466 int fullSize = size; 467 468 //The address of the second part of this access if it needs to be split 469 //across a cache line boundary. 470 Addr secondAddr = roundDown(addr + size - 1, blockSize); 471 472 if(secondAddr > addr) 473 size = secondAddr - addr; 474 475 dcache_latency = 0; 476 477 while(1) { 478 req->setVirt(0, addr, size, flags, thread->pcState().instAddr()); 479 480 // translate to physical address 481 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write); 482 483 // Now do the access. 484 if (fault == NoFault) { 485 MemCmd cmd = MemCmd::WriteReq; // default 486 bool do_access = true; // flag to suppress cache access 487 488 if (req->isLLSC()) { 489 cmd = MemCmd::StoreCondReq; 490 do_access = TheISA::handleLockedWrite(thread, req); 491 } else if (req->isSwap()) { 492 cmd = MemCmd::SwapReq; 493 if (req->isCondSwap()) { 494 assert(res); 495 req->setExtraData(*res); 496 } 497 } 498 499 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) { 500 Packet pkt = Packet(req, cmd, Packet::Broadcast); 501 pkt.dataStatic(data); 502 503 if (req->isMmapedIpr()) { 504 dcache_latency += 505 TheISA::handleIprWrite(thread->getTC(), &pkt); 506 } else { 507 if (hasPhysMemPort && pkt.getAddr() == physMemAddr) 508 dcache_latency += physmemPort.sendAtomic(&pkt); 509 else 510 dcache_latency += dcachePort.sendAtomic(&pkt); 511 } 512 dcache_access = true; 513 assert(!pkt.isError()); 514 515 if (req->isSwap()) { 516 assert(res); 517 memcpy(res, pkt.getPtr<uint8_t>(), fullSize); 518 } 519 } 520 521 if (res && !req->isSwap()) { 522 *res = req->getExtraData(); 523 } 524 } 525 526 //If there's a fault or we don't need to access a second cache line, 527 //stop now. 528 if (fault != NoFault || secondAddr <= addr) 529 { 530 if (req->isLocked() && fault == NoFault) { 531 assert(locked); 532 locked = false; 533 } 534 if (fault != NoFault && req->isPrefetch()) { 535 return NoFault; 536 } else { 537 return fault; 538 } 539 } 540 541 /* 542 * Set up for accessing the second cache line. 543 */ 544 545 //Move the pointer we're reading into to the correct location. 546 data += size; 547 //Adjust the size to get the remaining bytes. 548 size = addr + fullSize - secondAddr; 549 //And access the right address. 550 addr = secondAddr; 551 } 552} 553 554 555template <class T> 556Fault 557AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) 558{ 559 uint8_t *dataPtr = (uint8_t *)&data; 560 if (traceData) 561 traceData->setData(data); 562 data = htog(data); 563 564 Fault fault = writeBytes(dataPtr, sizeof(data), addr, flags, res); 565 if (fault == NoFault && data_write_req.isSwap()) { 566 *res = gtoh((T)*res); 567 } 568 return fault; 569} 570 571 572#ifndef DOXYGEN_SHOULD_SKIP_THIS 573 574template 575Fault 576AtomicSimpleCPU::write(Twin32_t data, Addr addr, 577 unsigned flags, uint64_t *res); 578 579template 580Fault 581AtomicSimpleCPU::write(Twin64_t data, Addr addr, 582 unsigned flags, uint64_t *res); 583 584template 585Fault 586AtomicSimpleCPU::write(uint64_t data, Addr addr, 587 unsigned flags, uint64_t *res); 588 589template 590Fault 591AtomicSimpleCPU::write(uint32_t data, Addr addr, 592 unsigned flags, uint64_t *res); 593 594template 595Fault 596AtomicSimpleCPU::write(uint16_t data, Addr addr, 597 unsigned flags, uint64_t *res); 598 599template 600Fault 601AtomicSimpleCPU::write(uint8_t data, Addr addr, 602 unsigned flags, uint64_t *res); 603 604#endif //DOXYGEN_SHOULD_SKIP_THIS 605 606template<> 607Fault 608AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) 609{ 610 return write(*(uint64_t*)&data, addr, flags, res); 611} 612 613template<> 614Fault 615AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) 616{ 617 return write(*(uint32_t*)&data, addr, flags, res); 618} 619 620 621template<> 622Fault 623AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) 624{ 625 return write((uint32_t)data, addr, flags, res); 626} 627 628 629void 630AtomicSimpleCPU::tick() 631{ 632 DPRINTF(SimpleCPU, "Tick\n"); 633 634 Tick latency = 0; 635 636 for (int i = 0; i < width || locked; ++i) { 637 numCycles++; 638 639 if (!curStaticInst || !curStaticInst->isDelayedCommit()) 640 checkForInterrupts(); 641 642 checkPcEventQueue(); 643 644 Fault fault = NoFault; 645 646 TheISA::PCState pcState = thread->pcState(); 647 648 bool needToFetch = !isRomMicroPC(pcState.microPC()) && 649 !curMacroStaticInst; 650 if (needToFetch) { 651 setupFetchRequest(&ifetch_req); 652 fault = thread->itb->translateAtomic(&ifetch_req, tc, 653 BaseTLB::Execute); 654 } 655 656 if (fault == NoFault) { 657 Tick icache_latency = 0; 658 bool icache_access = false; 659 dcache_access = false; // assume no dcache access 660 661 if (needToFetch) { 662 // This is commented out because the predecoder would act like 663 // a tiny cache otherwise. It wouldn't be flushed when needed 664 // like the I cache. It should be flushed, and when that works 665 // this code should be uncommented. 666 //Fetch more instruction memory if necessary 667 //if(predecoder.needMoreBytes()) 668 //{ 669 icache_access = true; 670 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq, 671 Packet::Broadcast); 672 ifetch_pkt.dataStatic(&inst); 673 674 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr) 675 icache_latency = physmemPort.sendAtomic(&ifetch_pkt); 676 else 677 icache_latency = icachePort.sendAtomic(&ifetch_pkt); 678 679 assert(!ifetch_pkt.isError()); 680 681 // ifetch_req is initialized to read the instruction directly 682 // into the CPU object's inst field. 683 //} 684 } 685 686 preExecute(); 687 688 if (curStaticInst) { 689 fault = curStaticInst->execute(this, traceData); 690 691 // keep an instruction count 692 if (fault == NoFault) 693 countInst(); 694 else if (traceData && !DTRACE(ExecFaulting)) { 695 delete traceData; 696 traceData = NULL; 697 } 698 699 postExecute(); 700 } 701 702 // @todo remove me after debugging with legion done 703 if (curStaticInst && (!curStaticInst->isMicroop() || 704 curStaticInst->isFirstMicroop())) 705 instCnt++; 706 707 Tick stall_ticks = 0; 708 if (simulate_inst_stalls && icache_access) 709 stall_ticks += icache_latency; 710 711 if (simulate_data_stalls && dcache_access) 712 stall_ticks += dcache_latency; 713 714 if (stall_ticks) { 715 Tick stall_cycles = stall_ticks / ticks(1); 716 Tick aligned_stall_ticks = ticks(stall_cycles); 717 718 if (aligned_stall_ticks < stall_ticks) 719 aligned_stall_ticks += 1; 720 721 latency += aligned_stall_ticks; 722 } 723 724 } 725 if(fault != NoFault || !stayAtPC) 726 advancePC(fault); 727 } 728 729 // instruction takes at least one cycle 730 if (latency < ticks(1)) 731 latency = ticks(1); 732 733 if (_status != Idle) 734 schedule(tickEvent, curTick + latency); 735} 736 737 738void 739AtomicSimpleCPU::printAddr(Addr a) 740{ 741 dcachePort.printAddr(a); 742} 743 744 745//////////////////////////////////////////////////////////////////////// 746// 747// AtomicSimpleCPU Simulation Object 748// 749AtomicSimpleCPU * 750AtomicSimpleCPUParams::create() 751{ 752 numThreads = 1; 753#if !FULL_SYSTEM 754 if (workload.size() != 1) 755 panic("only one workload allowed"); 756#endif 757 return new AtomicSimpleCPU(this); 758} 759