atomic.cc revision 7655
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/atomic.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/AtomicSimpleCPU.hh"
41#include "sim/system.hh"
42
43using namespace std;
44using namespace TheISA;
45
46AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
47    : Event(CPU_Tick_Pri), cpu(c)
48{
49}
50
51
52void
53AtomicSimpleCPU::TickEvent::process()
54{
55    cpu->tick();
56}
57
58const char *
59AtomicSimpleCPU::TickEvent::description() const
60{
61    return "AtomicSimpleCPU tick";
62}
63
64Port *
65AtomicSimpleCPU::getPort(const string &if_name, int idx)
66{
67    if (if_name == "dcache_port")
68        return &dcachePort;
69    else if (if_name == "icache_port")
70        return &icachePort;
71    else if (if_name == "physmem_port") {
72        hasPhysMemPort = true;
73        return &physmemPort;
74    }
75    else
76        panic("No Such Port\n");
77}
78
79void
80AtomicSimpleCPU::init()
81{
82    BaseCPU::init();
83#if FULL_SYSTEM
84    ThreadID size = threadContexts.size();
85    for (ThreadID i = 0; i < size; ++i) {
86        ThreadContext *tc = threadContexts[i];
87
88        // initialize CPU, including PC
89        TheISA::initCPU(tc, tc->contextId());
90    }
91#endif
92    if (hasPhysMemPort) {
93        bool snoop = false;
94        AddrRangeList pmAddrList;
95        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
96        physMemAddr = *pmAddrList.begin();
97    }
98    // Atomic doesn't do MT right now, so contextId == threadId
99    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
100    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
101    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102}
103
104bool
105AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
106{
107    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
108    return true;
109}
110
111Tick
112AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
113{
114    //Snooping a coherence request, just return
115    return 0;
116}
117
118void
119AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
120{
121    //No internal storage to update, just return
122    return;
123}
124
125void
126AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
127{
128    if (status == RangeChange) {
129        if (!snoopRangeSent) {
130            snoopRangeSent = true;
131            sendStatusChange(Port::RangeChange);
132        }
133        return;
134    }
135
136    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
137}
138
139void
140AtomicSimpleCPU::CpuPort::recvRetry()
141{
142    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
143}
144
145void
146AtomicSimpleCPU::DcachePort::setPeer(Port *port)
147{
148    Port::setPeer(port);
149
150#if FULL_SYSTEM
151    // Update the ThreadContext's memory ports (Functional/Virtual
152    // Ports)
153    cpu->tcBase()->connectMemPorts(cpu->tcBase());
154#endif
155}
156
157AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
158    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
159      simulate_data_stalls(p->simulate_data_stalls),
160      simulate_inst_stalls(p->simulate_inst_stalls),
161      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
162      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
163{
164    _status = Idle;
165
166    icachePort.snoopRangeSent = false;
167    dcachePort.snoopRangeSent = false;
168
169}
170
171
172AtomicSimpleCPU::~AtomicSimpleCPU()
173{
174    if (tickEvent.scheduled()) {
175        deschedule(tickEvent);
176    }
177}
178
179void
180AtomicSimpleCPU::serialize(ostream &os)
181{
182    SimObject::State so_state = SimObject::getState();
183    SERIALIZE_ENUM(so_state);
184    SERIALIZE_SCALAR(locked);
185    BaseSimpleCPU::serialize(os);
186    nameOut(os, csprintf("%s.tickEvent", name()));
187    tickEvent.serialize(os);
188}
189
190void
191AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
192{
193    SimObject::State so_state;
194    UNSERIALIZE_ENUM(so_state);
195    UNSERIALIZE_SCALAR(locked);
196    BaseSimpleCPU::unserialize(cp, section);
197    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
198}
199
200void
201AtomicSimpleCPU::resume()
202{
203    if (_status == Idle || _status == SwitchedOut)
204        return;
205
206    DPRINTF(SimpleCPU, "Resume\n");
207    assert(system->getMemoryMode() == Enums::atomic);
208
209    changeState(SimObject::Running);
210    if (thread->status() == ThreadContext::Active) {
211        if (!tickEvent.scheduled())
212            schedule(tickEvent, nextCycle());
213    }
214}
215
216void
217AtomicSimpleCPU::switchOut()
218{
219    assert(_status == Running || _status == Idle);
220    _status = SwitchedOut;
221
222    tickEvent.squash();
223}
224
225
226void
227AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
228{
229    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
230
231    assert(!tickEvent.scheduled());
232
233    // if any of this CPU's ThreadContexts are active, mark the CPU as
234    // running and schedule its tick event.
235    ThreadID size = threadContexts.size();
236    for (ThreadID i = 0; i < size; ++i) {
237        ThreadContext *tc = threadContexts[i];
238        if (tc->status() == ThreadContext::Active && _status != Running) {
239            _status = Running;
240            schedule(tickEvent, nextCycle());
241            break;
242        }
243    }
244    if (_status != Running) {
245        _status = Idle;
246    }
247    assert(threadContexts.size() == 1);
248    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
249    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
250    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
251}
252
253
254void
255AtomicSimpleCPU::activateContext(int thread_num, int delay)
256{
257    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
258
259    assert(thread_num == 0);
260    assert(thread);
261
262    assert(_status == Idle);
263    assert(!tickEvent.scheduled());
264
265    notIdleFraction++;
266    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
267
268    //Make sure ticks are still on multiples of cycles
269    schedule(tickEvent, nextCycle(curTick + ticks(delay)));
270    _status = Running;
271}
272
273
274void
275AtomicSimpleCPU::suspendContext(int thread_num)
276{
277    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
278
279    assert(thread_num == 0);
280    assert(thread);
281
282    if (_status == Idle)
283        return;
284
285    assert(_status == Running);
286
287    // tick event may not be scheduled if this gets called from inside
288    // an instruction's execution, e.g. "quiesce"
289    if (tickEvent.scheduled())
290        deschedule(tickEvent);
291
292    notIdleFraction--;
293    _status = Idle;
294}
295
296
297Fault
298AtomicSimpleCPU::readBytes(Addr addr, uint8_t * data,
299                           unsigned size, unsigned flags)
300{
301    // use the CPU's statically allocated read request and packet objects
302    Request *req = &data_read_req;
303
304    if (traceData) {
305        traceData->setAddr(addr);
306    }
307
308    //The block size of our peer.
309    unsigned blockSize = dcachePort.peerBlockSize();
310    //The size of the data we're trying to read.
311    int fullSize = size;
312
313    //The address of the second part of this access if it needs to be split
314    //across a cache line boundary.
315    Addr secondAddr = roundDown(addr + size - 1, blockSize);
316
317    if (secondAddr > addr)
318        size = secondAddr - addr;
319
320    dcache_latency = 0;
321
322    while (1) {
323        req->setVirt(0, addr, size, flags, thread->readPC());
324
325        // translate to physical address
326        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
327
328        // Now do the access.
329        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
330            Packet pkt = Packet(req,
331                    req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
332                    Packet::Broadcast);
333            pkt.dataStatic(data);
334
335            if (req->isMmapedIpr())
336                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
337            else {
338                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
339                    dcache_latency += physmemPort.sendAtomic(&pkt);
340                else
341                    dcache_latency += dcachePort.sendAtomic(&pkt);
342            }
343            dcache_access = true;
344
345            assert(!pkt.isError());
346
347            if (req->isLLSC()) {
348                TheISA::handleLockedRead(thread, req);
349            }
350        }
351
352        //If there's a fault, return it
353        if (fault != NoFault) {
354            if (req->isPrefetch()) {
355                return NoFault;
356            } else {
357                return fault;
358            }
359        }
360
361        //If we don't need to access a second cache line, stop now.
362        if (secondAddr <= addr)
363        {
364            if (req->isLocked() && fault == NoFault) {
365                assert(!locked);
366                locked = true;
367            }
368            return fault;
369        }
370
371        /*
372         * Set up for accessing the second cache line.
373         */
374
375        //Move the pointer we're reading into to the correct location.
376        data += size;
377        //Adjust the size to get the remaining bytes.
378        size = addr + fullSize - secondAddr;
379        //And access the right address.
380        addr = secondAddr;
381    }
382}
383
384
385template <class T>
386Fault
387AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
388{
389    uint8_t *dataPtr = (uint8_t *)&data;
390    memset(dataPtr, 0, sizeof(data));
391    Fault fault = readBytes(addr, dataPtr, sizeof(data), flags);
392    if (fault == NoFault) {
393        data = gtoh(data);
394        if (traceData)
395            traceData->setData(data);
396    }
397    return fault;
398}
399
400#ifndef DOXYGEN_SHOULD_SKIP_THIS
401
402template
403Fault
404AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
405
406template
407Fault
408AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
409
410template
411Fault
412AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
413
414template
415Fault
416AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
417
418template
419Fault
420AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
421
422template
423Fault
424AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
425
426#endif //DOXYGEN_SHOULD_SKIP_THIS
427
428template<>
429Fault
430AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
431{
432    return read(addr, *(uint64_t*)&data, flags);
433}
434
435template<>
436Fault
437AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
438{
439    return read(addr, *(uint32_t*)&data, flags);
440}
441
442
443template<>
444Fault
445AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
446{
447    return read(addr, (uint32_t&)data, flags);
448}
449
450
451Fault
452AtomicSimpleCPU::writeBytes(uint8_t *data, unsigned size,
453                            Addr addr, unsigned flags, uint64_t *res)
454{
455    // use the CPU's statically allocated write request and packet objects
456    Request *req = &data_write_req;
457
458    if (traceData) {
459        traceData->setAddr(addr);
460    }
461
462    //The block size of our peer.
463    unsigned blockSize = dcachePort.peerBlockSize();
464    //The size of the data we're trying to read.
465    int fullSize = size;
466
467    //The address of the second part of this access if it needs to be split
468    //across a cache line boundary.
469    Addr secondAddr = roundDown(addr + size - 1, blockSize);
470
471    if(secondAddr > addr)
472        size = secondAddr - addr;
473
474    dcache_latency = 0;
475
476    while(1) {
477        req->setVirt(0, addr, size, flags, thread->readPC());
478
479        // translate to physical address
480        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
481
482        // Now do the access.
483        if (fault == NoFault) {
484            MemCmd cmd = MemCmd::WriteReq; // default
485            bool do_access = true;  // flag to suppress cache access
486
487            if (req->isLLSC()) {
488                cmd = MemCmd::StoreCondReq;
489                do_access = TheISA::handleLockedWrite(thread, req);
490            } else if (req->isSwap()) {
491                cmd = MemCmd::SwapReq;
492                if (req->isCondSwap()) {
493                    assert(res);
494                    req->setExtraData(*res);
495                }
496            }
497
498            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
499                Packet pkt = Packet(req, cmd, Packet::Broadcast);
500                pkt.dataStatic(data);
501
502                if (req->isMmapedIpr()) {
503                    dcache_latency +=
504                        TheISA::handleIprWrite(thread->getTC(), &pkt);
505                } else {
506                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
507                        dcache_latency += physmemPort.sendAtomic(&pkt);
508                    else
509                        dcache_latency += dcachePort.sendAtomic(&pkt);
510                }
511                dcache_access = true;
512                assert(!pkt.isError());
513
514                if (req->isSwap()) {
515                    assert(res);
516                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
517                }
518            }
519
520            if (res && !req->isSwap()) {
521                *res = req->getExtraData();
522            }
523        }
524
525        //If there's a fault or we don't need to access a second cache line,
526        //stop now.
527        if (fault != NoFault || secondAddr <= addr)
528        {
529            if (req->isLocked() && fault == NoFault) {
530                assert(locked);
531                locked = false;
532            }
533            if (fault != NoFault && req->isPrefetch()) {
534                return NoFault;
535            } else {
536                return fault;
537            }
538        }
539
540        /*
541         * Set up for accessing the second cache line.
542         */
543
544        //Move the pointer we're reading into to the correct location.
545        data += size;
546        //Adjust the size to get the remaining bytes.
547        size = addr + fullSize - secondAddr;
548        //And access the right address.
549        addr = secondAddr;
550    }
551}
552
553
554template <class T>
555Fault
556AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
557{
558    uint8_t *dataPtr = (uint8_t *)&data;
559    if (traceData)
560        traceData->setData(data);
561    data = htog(data);
562
563    Fault fault = writeBytes(dataPtr, sizeof(data), addr, flags, res);
564    if (fault == NoFault && data_write_req.isSwap()) {
565        *res = gtoh((T)*res);
566    }
567    return fault;
568}
569
570
571#ifndef DOXYGEN_SHOULD_SKIP_THIS
572
573template
574Fault
575AtomicSimpleCPU::write(Twin32_t data, Addr addr,
576                       unsigned flags, uint64_t *res);
577
578template
579Fault
580AtomicSimpleCPU::write(Twin64_t data, Addr addr,
581                       unsigned flags, uint64_t *res);
582
583template
584Fault
585AtomicSimpleCPU::write(uint64_t data, Addr addr,
586                       unsigned flags, uint64_t *res);
587
588template
589Fault
590AtomicSimpleCPU::write(uint32_t data, Addr addr,
591                       unsigned flags, uint64_t *res);
592
593template
594Fault
595AtomicSimpleCPU::write(uint16_t data, Addr addr,
596                       unsigned flags, uint64_t *res);
597
598template
599Fault
600AtomicSimpleCPU::write(uint8_t data, Addr addr,
601                       unsigned flags, uint64_t *res);
602
603#endif //DOXYGEN_SHOULD_SKIP_THIS
604
605template<>
606Fault
607AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
608{
609    return write(*(uint64_t*)&data, addr, flags, res);
610}
611
612template<>
613Fault
614AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
615{
616    return write(*(uint32_t*)&data, addr, flags, res);
617}
618
619
620template<>
621Fault
622AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
623{
624    return write((uint32_t)data, addr, flags, res);
625}
626
627
628void
629AtomicSimpleCPU::tick()
630{
631    DPRINTF(SimpleCPU, "Tick\n");
632
633    Tick latency = 0;
634
635    for (int i = 0; i < width || locked; ++i) {
636        numCycles++;
637
638        if (!curStaticInst || !curStaticInst->isDelayedCommit())
639            checkForInterrupts();
640
641        checkPcEventQueue();
642
643        Fault fault = NoFault;
644
645        bool fromRom = isRomMicroPC(thread->readMicroPC());
646        if (!fromRom && !curMacroStaticInst) {
647            setupFetchRequest(&ifetch_req);
648            fault = thread->itb->translateAtomic(&ifetch_req, tc,
649                                                 BaseTLB::Execute);
650        }
651
652        if (fault == NoFault) {
653            Tick icache_latency = 0;
654            bool icache_access = false;
655            dcache_access = false; // assume no dcache access
656
657            if (!fromRom && !curMacroStaticInst) {
658                // This is commented out because the predecoder would act like
659                // a tiny cache otherwise. It wouldn't be flushed when needed
660                // like the I cache. It should be flushed, and when that works
661                // this code should be uncommented.
662                //Fetch more instruction memory if necessary
663                //if(predecoder.needMoreBytes())
664                //{
665                    icache_access = true;
666                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
667                                               Packet::Broadcast);
668                    ifetch_pkt.dataStatic(&inst);
669
670                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
671                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
672                    else
673                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
674
675                    assert(!ifetch_pkt.isError());
676
677                    // ifetch_req is initialized to read the instruction directly
678                    // into the CPU object's inst field.
679                //}
680            }
681
682            preExecute();
683
684            if (curStaticInst) {
685                fault = curStaticInst->execute(this, traceData);
686
687                // keep an instruction count
688                if (fault == NoFault)
689                    countInst();
690                else if (traceData && !DTRACE(ExecFaulting)) {
691                    delete traceData;
692                    traceData = NULL;
693                }
694
695                postExecute();
696            }
697
698            // @todo remove me after debugging with legion done
699            if (curStaticInst && (!curStaticInst->isMicroop() ||
700                        curStaticInst->isFirstMicroop()))
701                instCnt++;
702
703            Tick stall_ticks = 0;
704            if (simulate_inst_stalls && icache_access)
705                stall_ticks += icache_latency;
706
707            if (simulate_data_stalls && dcache_access)
708                stall_ticks += dcache_latency;
709
710            if (stall_ticks) {
711                Tick stall_cycles = stall_ticks / ticks(1);
712                Tick aligned_stall_ticks = ticks(stall_cycles);
713
714                if (aligned_stall_ticks < stall_ticks)
715                    aligned_stall_ticks += 1;
716
717                latency += aligned_stall_ticks;
718            }
719
720        }
721        if(fault != NoFault || !stayAtPC)
722            advancePC(fault);
723    }
724
725    // instruction takes at least one cycle
726    if (latency < ticks(1))
727        latency = ticks(1);
728
729    if (_status != Idle)
730        schedule(tickEvent, curTick + latency);
731}
732
733
734void
735AtomicSimpleCPU::printAddr(Addr a)
736{
737    dcachePort.printAddr(a);
738}
739
740
741////////////////////////////////////////////////////////////////////////
742//
743//  AtomicSimpleCPU Simulation Object
744//
745AtomicSimpleCPU *
746AtomicSimpleCPUParams::create()
747{
748    numThreads = 1;
749#if !FULL_SYSTEM
750    if (workload.size() != 1)
751        panic("only one workload allowed");
752#endif
753    return new AtomicSimpleCPU(this);
754}
755