atomic.cc revision 5408:703f1779cc89
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description() const
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82    cpuId = tc->readCpuId();
83#if FULL_SYSTEM
84    for (int i = 0; i < threadContexts.size(); ++i) {
85        ThreadContext *tc = threadContexts[i];
86
87        // initialize CPU, including PC
88        TheISA::initCPU(tc, cpuId);
89    }
90#endif
91    if (hasPhysMemPort) {
92        bool snoop = false;
93        AddrRangeList pmAddrList;
94        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
95        physMemAddr = *pmAddrList.begin();
96    }
97    ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
98    data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
99    data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
100}
101
102bool
103AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
104{
105    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
106    return true;
107}
108
109Tick
110AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
111{
112    //Snooping a coherence request, just return
113    return 0;
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
118{
119    //No internal storage to update, just return
120    return;
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
125{
126    if (status == RangeChange) {
127        if (!snoopRangeSent) {
128            snoopRangeSent = true;
129            sendStatusChange(Port::RangeChange);
130        }
131        return;
132    }
133
134    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
135}
136
137void
138AtomicSimpleCPU::CpuPort::recvRetry()
139{
140    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
141}
142
143void
144AtomicSimpleCPU::DcachePort::setPeer(Port *port)
145{
146    Port::setPeer(port);
147
148#if FULL_SYSTEM
149    // Update the ThreadContext's memory ports (Functional/Virtual
150    // Ports)
151    cpu->tcBase()->connectMemPorts();
152#endif
153}
154
155AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
156    : BaseSimpleCPU(p), tickEvent(this),
157      width(p->width), simulate_stalls(p->simulate_stalls),
158      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
159      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
160{
161    _status = Idle;
162
163    icachePort.snoopRangeSent = false;
164    dcachePort.snoopRangeSent = false;
165
166}
167
168
169AtomicSimpleCPU::~AtomicSimpleCPU()
170{
171}
172
173void
174AtomicSimpleCPU::serialize(ostream &os)
175{
176    SimObject::State so_state = SimObject::getState();
177    SERIALIZE_ENUM(so_state);
178    Status _status = status();
179    SERIALIZE_ENUM(_status);
180    BaseSimpleCPU::serialize(os);
181    nameOut(os, csprintf("%s.tickEvent", name()));
182    tickEvent.serialize(os);
183}
184
185void
186AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
187{
188    SimObject::State so_state;
189    UNSERIALIZE_ENUM(so_state);
190    UNSERIALIZE_ENUM(_status);
191    BaseSimpleCPU::unserialize(cp, section);
192    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
193}
194
195void
196AtomicSimpleCPU::resume()
197{
198    if (_status == Idle || _status == SwitchedOut)
199        return;
200
201    DPRINTF(SimpleCPU, "Resume\n");
202    assert(system->getMemoryMode() == Enums::atomic);
203
204    changeState(SimObject::Running);
205    if (thread->status() == ThreadContext::Active) {
206        if (!tickEvent.scheduled()) {
207            tickEvent.schedule(nextCycle());
208        }
209    }
210}
211
212void
213AtomicSimpleCPU::switchOut()
214{
215    assert(status() == Running || status() == Idle);
216    _status = SwitchedOut;
217
218    tickEvent.squash();
219}
220
221
222void
223AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
224{
225    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
226
227    assert(!tickEvent.scheduled());
228
229    // if any of this CPU's ThreadContexts are active, mark the CPU as
230    // running and schedule its tick event.
231    for (int i = 0; i < threadContexts.size(); ++i) {
232        ThreadContext *tc = threadContexts[i];
233        if (tc->status() == ThreadContext::Active && _status != Running) {
234            _status = Running;
235            tickEvent.schedule(nextCycle());
236            break;
237        }
238    }
239    if (_status != Running) {
240        _status = Idle;
241    }
242    assert(threadContexts.size() == 1);
243    cpuId = tc->readCpuId();
244    ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
245    data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
246    data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
247}
248
249
250void
251AtomicSimpleCPU::activateContext(int thread_num, int delay)
252{
253    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
254
255    assert(thread_num == 0);
256    assert(thread);
257
258    assert(_status == Idle);
259    assert(!tickEvent.scheduled());
260
261    notIdleFraction++;
262    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
263
264    //Make sure ticks are still on multiples of cycles
265    tickEvent.schedule(nextCycle(curTick + ticks(delay)));
266    _status = Running;
267}
268
269
270void
271AtomicSimpleCPU::suspendContext(int thread_num)
272{
273    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
274
275    assert(thread_num == 0);
276    assert(thread);
277
278    assert(_status == Running);
279
280    // tick event may not be scheduled if this gets called from inside
281    // an instruction's execution, e.g. "quiesce"
282    if (tickEvent.scheduled())
283        tickEvent.deschedule();
284
285    notIdleFraction--;
286    _status = Idle;
287}
288
289
290template <class T>
291Fault
292AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
293{
294    // use the CPU's statically allocated read request and packet objects
295    Request *req = &data_read_req;
296
297    if (traceData) {
298        traceData->setAddr(addr);
299    }
300
301    //The block size of our peer.
302    int blockSize = dcachePort.peerBlockSize();
303    //The size of the data we're trying to read.
304    int dataSize = sizeof(T);
305
306    uint8_t * dataPtr = (uint8_t *)&data;
307
308    //The address of the second part of this access if it needs to be split
309    //across a cache line boundary.
310    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
311
312    if(secondAddr > addr)
313        dataSize = secondAddr - addr;
314
315    dcache_latency = 0;
316
317    while(1) {
318        req->setVirt(0, addr, dataSize, flags, thread->readPC());
319
320        // translate to physical address
321        Fault fault = thread->translateDataReadReq(req);
322
323        // Now do the access.
324        if (fault == NoFault) {
325            Packet pkt = Packet(req,
326                    req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
327                    Packet::Broadcast);
328            pkt.dataStatic(dataPtr);
329
330            if (req->isMmapedIpr())
331                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
332            else {
333                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
334                    dcache_latency += physmemPort.sendAtomic(&pkt);
335                else
336                    dcache_latency += dcachePort.sendAtomic(&pkt);
337            }
338            dcache_access = true;
339
340            assert(!pkt.isError());
341
342            if (req->isLocked()) {
343                TheISA::handleLockedRead(thread, req);
344            }
345        }
346
347        // This will need a new way to tell if it has a dcache attached.
348        if (req->isUncacheable())
349            recordEvent("Uncached Read");
350
351        //If there's a fault, return it
352        if (fault != NoFault)
353            return fault;
354        //If we don't need to access a second cache line, stop now.
355        if (secondAddr <= addr)
356        {
357            data = gtoh(data);
358            if (traceData) {
359                traceData->setData(data);
360            }
361            return fault;
362        }
363
364        /*
365         * Set up for accessing the second cache line.
366         */
367
368        //Move the pointer we're reading into to the correct location.
369        dataPtr += dataSize;
370        //Adjust the size to get the remaining bytes.
371        dataSize = addr + sizeof(T) - secondAddr;
372        //And access the right address.
373        addr = secondAddr;
374    }
375}
376
377Fault
378AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
379        int size, unsigned flags)
380{
381    // use the CPU's statically allocated read request and packet objects
382    Request *req = &data_read_req;
383
384    if (traceData) {
385        traceData->setAddr(vaddr);
386    }
387
388    //The block size of our peer.
389    int blockSize = dcachePort.peerBlockSize();
390    //The size of the data we're trying to read.
391    int dataSize = size;
392
393    bool firstTimeThrough = true;
394
395    //The address of the second part of this access if it needs to be split
396    //across a cache line boundary.
397    Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
398
399    if(secondAddr > vaddr)
400        dataSize = secondAddr - vaddr;
401
402    while(1) {
403        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
404
405        // translate to physical address
406        Fault fault = thread->translateDataReadReq(req);
407
408        //If there's a fault, return it
409        if (fault != NoFault)
410            return fault;
411
412        if (firstTimeThrough) {
413            paddr = req->getPaddr();
414            firstTimeThrough = false;
415        }
416
417        //If we don't need to access a second cache line, stop now.
418        if (secondAddr <= vaddr)
419            return fault;
420
421        /*
422         * Set up for accessing the second cache line.
423         */
424
425        //Adjust the size to get the remaining bytes.
426        dataSize = vaddr + size - secondAddr;
427        //And access the right address.
428        vaddr = secondAddr;
429    }
430}
431
432#ifndef DOXYGEN_SHOULD_SKIP_THIS
433
434template
435Fault
436AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
437
438template
439Fault
440AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
441
442template
443Fault
444AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
445
446template
447Fault
448AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
449
450template
451Fault
452AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
453
454template
455Fault
456AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
457
458#endif //DOXYGEN_SHOULD_SKIP_THIS
459
460template<>
461Fault
462AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
463{
464    return read(addr, *(uint64_t*)&data, flags);
465}
466
467template<>
468Fault
469AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
470{
471    return read(addr, *(uint32_t*)&data, flags);
472}
473
474
475template<>
476Fault
477AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
478{
479    return read(addr, (uint32_t&)data, flags);
480}
481
482
483template <class T>
484Fault
485AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
486{
487    // use the CPU's statically allocated write request and packet objects
488    Request *req = &data_write_req;
489
490    if (traceData) {
491        traceData->setAddr(addr);
492    }
493
494    //The block size of our peer.
495    int blockSize = dcachePort.peerBlockSize();
496    //The size of the data we're trying to read.
497    int dataSize = sizeof(T);
498
499    uint8_t * dataPtr = (uint8_t *)&data;
500
501    //The address of the second part of this access if it needs to be split
502    //across a cache line boundary.
503    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
504
505    if(secondAddr > addr)
506        dataSize = secondAddr - addr;
507
508    dcache_latency = 0;
509
510    while(1) {
511        req->setVirt(0, addr, dataSize, flags, thread->readPC());
512
513        // translate to physical address
514        Fault fault = thread->translateDataWriteReq(req);
515
516        // Now do the access.
517        if (fault == NoFault) {
518            MemCmd cmd = MemCmd::WriteReq; // default
519            bool do_access = true;  // flag to suppress cache access
520
521            if (req->isLocked()) {
522                cmd = MemCmd::StoreCondReq;
523                do_access = TheISA::handleLockedWrite(thread, req);
524            } else if (req->isSwap()) {
525                cmd = MemCmd::SwapReq;
526                if (req->isCondSwap()) {
527                    assert(res);
528                    req->setExtraData(*res);
529                }
530            }
531
532            if (do_access) {
533                Packet pkt = Packet(req, cmd, Packet::Broadcast);
534                pkt.dataStatic(dataPtr);
535
536                if (req->isMmapedIpr()) {
537                    dcache_latency +=
538                        TheISA::handleIprWrite(thread->getTC(), &pkt);
539                } else {
540                    //XXX This needs to be outside of the loop in order to
541                    //work properly for cache line boundary crossing
542                    //accesses in transendian simulations.
543                    data = htog(data);
544                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
545                        dcache_latency += physmemPort.sendAtomic(&pkt);
546                    else
547                        dcache_latency += dcachePort.sendAtomic(&pkt);
548                }
549                dcache_access = true;
550                assert(!pkt.isError());
551
552                if (req->isSwap()) {
553                    assert(res);
554                    *res = pkt.get<T>();
555                }
556            }
557
558            if (res && !req->isSwap()) {
559                *res = req->getExtraData();
560            }
561        }
562
563        // This will need a new way to tell if it's hooked up to a cache or not.
564        if (req->isUncacheable())
565            recordEvent("Uncached Write");
566
567        //If there's a fault or we don't need to access a second cache line,
568        //stop now.
569        if (fault != NoFault || secondAddr <= addr)
570        {
571            // If the write needs to have a fault on the access, consider
572            // calling changeStatus() and changing it to "bad addr write"
573            // or something.
574            if (traceData) {
575                traceData->setData(data);
576            }
577            return fault;
578        }
579
580        /*
581         * Set up for accessing the second cache line.
582         */
583
584        //Move the pointer we're reading into to the correct location.
585        dataPtr += dataSize;
586        //Adjust the size to get the remaining bytes.
587        dataSize = addr + sizeof(T) - secondAddr;
588        //And access the right address.
589        addr = secondAddr;
590    }
591}
592
593Fault
594AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
595        int size, unsigned flags)
596{
597    // use the CPU's statically allocated write request and packet objects
598    Request *req = &data_write_req;
599
600    if (traceData) {
601        traceData->setAddr(vaddr);
602    }
603
604    //The block size of our peer.
605    int blockSize = dcachePort.peerBlockSize();
606
607    //The address of the second part of this access if it needs to be split
608    //across a cache line boundary.
609    Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
610
611    //The size of the data we're trying to read.
612    int dataSize = size;
613
614    bool firstTimeThrough = true;
615
616    if(secondAddr > vaddr)
617        dataSize = secondAddr - vaddr;
618
619    dcache_latency = 0;
620
621    while(1) {
622        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
623
624        // translate to physical address
625        Fault fault = thread->translateDataWriteReq(req);
626
627        //If there's a fault or we don't need to access a second cache line,
628        //stop now.
629        if (fault != NoFault)
630            return fault;
631
632        if (firstTimeThrough) {
633            paddr = req->getPaddr();
634            firstTimeThrough = false;
635        }
636
637        if (secondAddr <= vaddr)
638            return fault;
639
640        /*
641         * Set up for accessing the second cache line.
642         */
643
644        //Adjust the size to get the remaining bytes.
645        dataSize = vaddr + size - secondAddr;
646        //And access the right address.
647        vaddr = secondAddr;
648    }
649}
650
651
652#ifndef DOXYGEN_SHOULD_SKIP_THIS
653
654template
655Fault
656AtomicSimpleCPU::write(Twin32_t data, Addr addr,
657                       unsigned flags, uint64_t *res);
658
659template
660Fault
661AtomicSimpleCPU::write(Twin64_t data, Addr addr,
662                       unsigned flags, uint64_t *res);
663
664template
665Fault
666AtomicSimpleCPU::write(uint64_t data, Addr addr,
667                       unsigned flags, uint64_t *res);
668
669template
670Fault
671AtomicSimpleCPU::write(uint32_t data, Addr addr,
672                       unsigned flags, uint64_t *res);
673
674template
675Fault
676AtomicSimpleCPU::write(uint16_t data, Addr addr,
677                       unsigned flags, uint64_t *res);
678
679template
680Fault
681AtomicSimpleCPU::write(uint8_t data, Addr addr,
682                       unsigned flags, uint64_t *res);
683
684#endif //DOXYGEN_SHOULD_SKIP_THIS
685
686template<>
687Fault
688AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
689{
690    return write(*(uint64_t*)&data, addr, flags, res);
691}
692
693template<>
694Fault
695AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
696{
697    return write(*(uint32_t*)&data, addr, flags, res);
698}
699
700
701template<>
702Fault
703AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
704{
705    return write((uint32_t)data, addr, flags, res);
706}
707
708
709void
710AtomicSimpleCPU::tick()
711{
712    DPRINTF(SimpleCPU, "Tick\n");
713
714    Tick latency = ticks(1); // instruction takes one cycle by default
715
716    for (int i = 0; i < width; ++i) {
717        numCycles++;
718
719        if (!curStaticInst || !curStaticInst->isDelayedCommit())
720            checkForInterrupts();
721
722        checkPcEventQueue();
723
724        Fault fault = setupFetchRequest(&ifetch_req);
725
726        if (fault == NoFault) {
727            Tick icache_latency = 0;
728            bool icache_access = false;
729            dcache_access = false; // assume no dcache access
730
731            //Fetch more instruction memory if necessary
732            //if(predecoder.needMoreBytes())
733            //{
734                icache_access = true;
735                Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
736                                           Packet::Broadcast);
737                ifetch_pkt.dataStatic(&inst);
738
739                if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
740                    icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
741                else
742                    icache_latency = icachePort.sendAtomic(&ifetch_pkt);
743
744                assert(!ifetch_pkt.isError());
745
746                // ifetch_req is initialized to read the instruction directly
747                // into the CPU object's inst field.
748            //}
749
750            preExecute();
751
752            if (curStaticInst) {
753                fault = curStaticInst->execute(this, traceData);
754
755                // keep an instruction count
756                if (fault == NoFault)
757                    countInst();
758                else if (traceData) {
759                    // If there was a fault, we should trace this instruction.
760                    delete traceData;
761                    traceData = NULL;
762                }
763
764                postExecute();
765            }
766
767            // @todo remove me after debugging with legion done
768            if (curStaticInst && (!curStaticInst->isMicroop() ||
769                        curStaticInst->isFirstMicroop()))
770                instCnt++;
771
772            if (simulate_stalls) {
773                Tick icache_stall =
774                    icache_access ? icache_latency - ticks(1) : 0;
775                Tick dcache_stall =
776                    dcache_access ? dcache_latency - ticks(1) : 0;
777                Tick stall_cycles = (icache_stall + dcache_stall) / ticks(1);
778                if (ticks(stall_cycles) < (icache_stall + dcache_stall))
779                    latency += ticks(stall_cycles+1);
780                else
781                    latency += ticks(stall_cycles);
782            }
783
784        }
785        if(fault != NoFault || !stayAtPC)
786            advancePC(fault);
787    }
788
789    if (_status != Idle)
790        tickEvent.schedule(curTick + latency);
791}
792
793
794void
795AtomicSimpleCPU::printAddr(Addr a)
796{
797    dcachePort.printAddr(a);
798}
799
800
801////////////////////////////////////////////////////////////////////////
802//
803//  AtomicSimpleCPU Simulation Object
804//
805AtomicSimpleCPU *
806AtomicSimpleCPUParams::create()
807{
808    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
809    params->name = name;
810    params->numberOfThreads = 1;
811    params->max_insts_any_thread = max_insts_any_thread;
812    params->max_insts_all_threads = max_insts_all_threads;
813    params->max_loads_any_thread = max_loads_any_thread;
814    params->max_loads_all_threads = max_loads_all_threads;
815    params->progress_interval = progress_interval;
816    params->deferRegistration = defer_registration;
817    params->phase = phase;
818    params->clock = clock;
819    params->functionTrace = function_trace;
820    params->functionTraceStart = function_trace_start;
821    params->width = width;
822    params->simulate_stalls = simulate_stalls;
823    params->system = system;
824    params->cpu_id = cpu_id;
825    params->tracer = tracer;
826
827    params->itb = itb;
828    params->dtb = dtb;
829#if FULL_SYSTEM
830    params->profile = profile;
831    params->do_quiesce = do_quiesce;
832    params->do_checkpoint_insts = do_checkpoint_insts;
833    params->do_statistics_insts = do_statistics_insts;
834#else
835    if (workload.size() != 1)
836        panic("only one workload allowed");
837    params->process = workload[0];
838#endif
839
840    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
841    return cpu;
842}
843