atomic.cc revision 5336:c7e21f4e5a2e
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description() const
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82    cpuId = tc->readCpuId();
83#if FULL_SYSTEM
84    for (int i = 0; i < threadContexts.size(); ++i) {
85        ThreadContext *tc = threadContexts[i];
86
87        // initialize CPU, including PC
88        TheISA::initCPU(tc, cpuId);
89    }
90#endif
91    if (hasPhysMemPort) {
92        bool snoop = false;
93        AddrRangeList pmAddrList;
94        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
95        physMemAddr = *pmAddrList.begin();
96    }
97    ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
98    data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
99    data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
100}
101
102bool
103AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
104{
105    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
106    return true;
107}
108
109Tick
110AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
111{
112    //Snooping a coherence request, just return
113    return 0;
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
118{
119    //No internal storage to update, just return
120    return;
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
125{
126    if (status == RangeChange) {
127        if (!snoopRangeSent) {
128            snoopRangeSent = true;
129            sendStatusChange(Port::RangeChange);
130        }
131        return;
132    }
133
134    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
135}
136
137void
138AtomicSimpleCPU::CpuPort::recvRetry()
139{
140    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
141}
142
143void
144AtomicSimpleCPU::DcachePort::setPeer(Port *port)
145{
146    Port::setPeer(port);
147
148#if FULL_SYSTEM
149    // Update the ThreadContext's memory ports (Functional/Virtual
150    // Ports)
151    cpu->tcBase()->connectMemPorts();
152#endif
153}
154
155AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
156    : BaseSimpleCPU(p), tickEvent(this),
157      width(p->width), simulate_stalls(p->simulate_stalls),
158      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
159      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
160{
161    _status = Idle;
162
163    icachePort.snoopRangeSent = false;
164    dcachePort.snoopRangeSent = false;
165
166}
167
168
169AtomicSimpleCPU::~AtomicSimpleCPU()
170{
171}
172
173void
174AtomicSimpleCPU::serialize(ostream &os)
175{
176    SimObject::State so_state = SimObject::getState();
177    SERIALIZE_ENUM(so_state);
178    Status _status = status();
179    SERIALIZE_ENUM(_status);
180    BaseSimpleCPU::serialize(os);
181    nameOut(os, csprintf("%s.tickEvent", name()));
182    tickEvent.serialize(os);
183}
184
185void
186AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
187{
188    SimObject::State so_state;
189    UNSERIALIZE_ENUM(so_state);
190    UNSERIALIZE_ENUM(_status);
191    BaseSimpleCPU::unserialize(cp, section);
192    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
193}
194
195void
196AtomicSimpleCPU::resume()
197{
198    if (_status == Idle || _status == SwitchedOut)
199        return;
200
201    DPRINTF(SimpleCPU, "Resume\n");
202    assert(system->getMemoryMode() == Enums::atomic);
203
204    changeState(SimObject::Running);
205    if (thread->status() == ThreadContext::Active) {
206        if (!tickEvent.scheduled()) {
207            tickEvent.schedule(nextCycle());
208        }
209    }
210}
211
212void
213AtomicSimpleCPU::switchOut()
214{
215    assert(status() == Running || status() == Idle);
216    _status = SwitchedOut;
217
218    tickEvent.squash();
219}
220
221
222void
223AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
224{
225    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
226
227    assert(!tickEvent.scheduled());
228
229    // if any of this CPU's ThreadContexts are active, mark the CPU as
230    // running and schedule its tick event.
231    for (int i = 0; i < threadContexts.size(); ++i) {
232        ThreadContext *tc = threadContexts[i];
233        if (tc->status() == ThreadContext::Active && _status != Running) {
234            _status = Running;
235            tickEvent.schedule(nextCycle());
236            break;
237        }
238    }
239    if (_status != Running) {
240        _status = Idle;
241    }
242    assert(threadContexts.size() == 1);
243    cpuId = tc->readCpuId();
244    ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
245    data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
246    data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
247}
248
249
250void
251AtomicSimpleCPU::activateContext(int thread_num, int delay)
252{
253    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
254
255    assert(thread_num == 0);
256    assert(thread);
257
258    assert(_status == Idle);
259    assert(!tickEvent.scheduled());
260
261    notIdleFraction++;
262    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
263
264    //Make sure ticks are still on multiples of cycles
265    tickEvent.schedule(nextCycle(curTick + ticks(delay)));
266    _status = Running;
267}
268
269
270void
271AtomicSimpleCPU::suspendContext(int thread_num)
272{
273    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
274
275    assert(thread_num == 0);
276    assert(thread);
277
278    assert(_status == Running);
279
280    // tick event may not be scheduled if this gets called from inside
281    // an instruction's execution, e.g. "quiesce"
282    if (tickEvent.scheduled())
283        tickEvent.deschedule();
284
285    notIdleFraction--;
286    _status = Idle;
287}
288
289
290template <class T>
291Fault
292AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
293{
294    // use the CPU's statically allocated read request and packet objects
295    Request *req = &data_read_req;
296
297    if (traceData) {
298        traceData->setAddr(addr);
299    }
300
301    //The block size of our peer.
302    int blockSize = dcachePort.peerBlockSize();
303    //The size of the data we're trying to read.
304    int dataSize = sizeof(T);
305
306    uint8_t * dataPtr = (uint8_t *)&data;
307
308    //The address of the second part of this access if it needs to be split
309    //across a cache line boundary.
310    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
311
312    if(secondAddr > addr)
313        dataSize = secondAddr - addr;
314
315    dcache_latency = 0;
316
317    while(1) {
318        req->setVirt(0, addr, dataSize, flags, thread->readPC());
319
320        // translate to physical address
321        Fault fault = thread->translateDataReadReq(req);
322
323        // Now do the access.
324        if (fault == NoFault) {
325            Packet pkt = Packet(req,
326                    req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
327                    Packet::Broadcast);
328            pkt.dataStatic(dataPtr);
329
330            if (req->isMmapedIpr())
331                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
332            else {
333                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
334                    dcache_latency += physmemPort.sendAtomic(&pkt);
335                else
336                    dcache_latency += dcachePort.sendAtomic(&pkt);
337            }
338            dcache_access = true;
339
340            assert(!pkt.isError());
341
342            if (req->isLocked()) {
343                TheISA::handleLockedRead(thread, req);
344            }
345        }
346
347        // This will need a new way to tell if it has a dcache attached.
348        if (req->isUncacheable())
349            recordEvent("Uncached Read");
350
351        //If there's a fault, return it
352        if (fault != NoFault)
353            return fault;
354        //If we don't need to access a second cache line, stop now.
355        if (secondAddr <= addr)
356        {
357            data = gtoh(data);
358            return fault;
359        }
360
361        /*
362         * Set up for accessing the second cache line.
363         */
364
365        //Move the pointer we're reading into to the correct location.
366        dataPtr += dataSize;
367        //Adjust the size to get the remaining bytes.
368        dataSize = addr + sizeof(T) - secondAddr;
369        //And access the right address.
370        addr = secondAddr;
371    }
372}
373
374Fault
375AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
376        int size, unsigned flags)
377{
378    // use the CPU's statically allocated read request and packet objects
379    Request *req = &data_read_req;
380
381    if (traceData) {
382        traceData->setAddr(vaddr);
383    }
384
385    //The block size of our peer.
386    int blockSize = dcachePort.peerBlockSize();
387    //The size of the data we're trying to read.
388    int dataSize = size;
389
390    bool firstTimeThrough = true;
391
392    //The address of the second part of this access if it needs to be split
393    //across a cache line boundary.
394    Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
395
396    if(secondAddr > vaddr)
397        dataSize = secondAddr - vaddr;
398
399    while(1) {
400        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
401
402        // translate to physical address
403        Fault fault = thread->translateDataReadReq(req);
404
405        //If there's a fault, return it
406        if (fault != NoFault)
407            return fault;
408
409        if (firstTimeThrough) {
410            paddr = req->getPaddr();
411            firstTimeThrough = false;
412        }
413
414        //If we don't need to access a second cache line, stop now.
415        if (secondAddr <= vaddr)
416            return fault;
417
418        /*
419         * Set up for accessing the second cache line.
420         */
421
422        //Adjust the size to get the remaining bytes.
423        dataSize = vaddr + size - secondAddr;
424        //And access the right address.
425        vaddr = secondAddr;
426    }
427}
428
429#ifndef DOXYGEN_SHOULD_SKIP_THIS
430
431template
432Fault
433AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
434
435template
436Fault
437AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
438
439template
440Fault
441AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
442
443template
444Fault
445AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
446
447template
448Fault
449AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
450
451template
452Fault
453AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
454
455#endif //DOXYGEN_SHOULD_SKIP_THIS
456
457template<>
458Fault
459AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
460{
461    return read(addr, *(uint64_t*)&data, flags);
462}
463
464template<>
465Fault
466AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
467{
468    return read(addr, *(uint32_t*)&data, flags);
469}
470
471
472template<>
473Fault
474AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
475{
476    return read(addr, (uint32_t&)data, flags);
477}
478
479
480template <class T>
481Fault
482AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
483{
484    // use the CPU's statically allocated write request and packet objects
485    Request *req = &data_write_req;
486
487    if (traceData) {
488        traceData->setAddr(addr);
489    }
490
491    //The block size of our peer.
492    int blockSize = dcachePort.peerBlockSize();
493    //The size of the data we're trying to read.
494    int dataSize = sizeof(T);
495
496    uint8_t * dataPtr = (uint8_t *)&data;
497
498    //The address of the second part of this access if it needs to be split
499    //across a cache line boundary.
500    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
501
502    if(secondAddr > addr)
503        dataSize = secondAddr - addr;
504
505    dcache_latency = 0;
506
507    while(1) {
508        req->setVirt(0, addr, dataSize, flags, thread->readPC());
509
510        // translate to physical address
511        Fault fault = thread->translateDataWriteReq(req);
512
513        // Now do the access.
514        if (fault == NoFault) {
515            MemCmd cmd = MemCmd::WriteReq; // default
516            bool do_access = true;  // flag to suppress cache access
517
518            if (req->isLocked()) {
519                cmd = MemCmd::StoreCondReq;
520                do_access = TheISA::handleLockedWrite(thread, req);
521            } else if (req->isSwap()) {
522                cmd = MemCmd::SwapReq;
523                if (req->isCondSwap()) {
524                    assert(res);
525                    req->setExtraData(*res);
526                }
527            }
528
529            if (do_access) {
530                Packet pkt = Packet(req, cmd, Packet::Broadcast);
531                pkt.dataStatic(dataPtr);
532
533                if (req->isMmapedIpr()) {
534                    dcache_latency +=
535                        TheISA::handleIprWrite(thread->getTC(), &pkt);
536                } else {
537                    //XXX This needs to be outside of the loop in order to
538                    //work properly for cache line boundary crossing
539                    //accesses in transendian simulations.
540                    data = htog(data);
541                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
542                        dcache_latency += physmemPort.sendAtomic(&pkt);
543                    else
544                        dcache_latency += dcachePort.sendAtomic(&pkt);
545                }
546                dcache_access = true;
547                assert(!pkt.isError());
548
549                if (req->isSwap()) {
550                    assert(res);
551                    *res = pkt.get<T>();
552                }
553            }
554
555            if (res && !req->isSwap()) {
556                *res = req->getExtraData();
557            }
558        }
559
560        // This will need a new way to tell if it's hooked up to a cache or not.
561        if (req->isUncacheable())
562            recordEvent("Uncached Write");
563
564        //If there's a fault or we don't need to access a second cache line,
565        //stop now.
566        if (fault != NoFault || secondAddr <= addr)
567        {
568            // If the write needs to have a fault on the access, consider
569            // calling changeStatus() and changing it to "bad addr write"
570            // or something.
571            return fault;
572        }
573
574        /*
575         * Set up for accessing the second cache line.
576         */
577
578        //Move the pointer we're reading into to the correct location.
579        dataPtr += dataSize;
580        //Adjust the size to get the remaining bytes.
581        dataSize = addr + sizeof(T) - secondAddr;
582        //And access the right address.
583        addr = secondAddr;
584    }
585}
586
587Fault
588AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
589        int size, unsigned flags)
590{
591    // use the CPU's statically allocated write request and packet objects
592    Request *req = &data_write_req;
593
594    if (traceData) {
595        traceData->setAddr(vaddr);
596    }
597
598    //The block size of our peer.
599    int blockSize = dcachePort.peerBlockSize();
600
601    //The address of the second part of this access if it needs to be split
602    //across a cache line boundary.
603    Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
604
605    //The size of the data we're trying to read.
606    int dataSize = size;
607
608    bool firstTimeThrough = true;
609
610    if(secondAddr > vaddr)
611        dataSize = secondAddr - vaddr;
612
613    dcache_latency = 0;
614
615    while(1) {
616        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
617
618        // translate to physical address
619        Fault fault = thread->translateDataWriteReq(req);
620
621        //If there's a fault or we don't need to access a second cache line,
622        //stop now.
623        if (fault != NoFault)
624            return fault;
625
626        if (firstTimeThrough) {
627            paddr = req->getPaddr();
628            firstTimeThrough = false;
629        }
630
631        if (secondAddr <= vaddr)
632            return fault;
633
634        /*
635         * Set up for accessing the second cache line.
636         */
637
638        //Adjust the size to get the remaining bytes.
639        dataSize = vaddr + size - secondAddr;
640        //And access the right address.
641        vaddr = secondAddr;
642    }
643}
644
645
646#ifndef DOXYGEN_SHOULD_SKIP_THIS
647
648template
649Fault
650AtomicSimpleCPU::write(Twin32_t data, Addr addr,
651                       unsigned flags, uint64_t *res);
652
653template
654Fault
655AtomicSimpleCPU::write(Twin64_t data, Addr addr,
656                       unsigned flags, uint64_t *res);
657
658template
659Fault
660AtomicSimpleCPU::write(uint64_t data, Addr addr,
661                       unsigned flags, uint64_t *res);
662
663template
664Fault
665AtomicSimpleCPU::write(uint32_t data, Addr addr,
666                       unsigned flags, uint64_t *res);
667
668template
669Fault
670AtomicSimpleCPU::write(uint16_t data, Addr addr,
671                       unsigned flags, uint64_t *res);
672
673template
674Fault
675AtomicSimpleCPU::write(uint8_t data, Addr addr,
676                       unsigned flags, uint64_t *res);
677
678#endif //DOXYGEN_SHOULD_SKIP_THIS
679
680template<>
681Fault
682AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
683{
684    return write(*(uint64_t*)&data, addr, flags, res);
685}
686
687template<>
688Fault
689AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
690{
691    return write(*(uint32_t*)&data, addr, flags, res);
692}
693
694
695template<>
696Fault
697AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
698{
699    return write((uint32_t)data, addr, flags, res);
700}
701
702
703void
704AtomicSimpleCPU::tick()
705{
706    DPRINTF(SimpleCPU, "Tick\n");
707
708    Tick latency = ticks(1); // instruction takes one cycle by default
709
710    for (int i = 0; i < width; ++i) {
711        numCycles++;
712
713        if (!curStaticInst || !curStaticInst->isDelayedCommit())
714            checkForInterrupts();
715
716        Fault fault = setupFetchRequest(&ifetch_req);
717
718        if (fault == NoFault) {
719            Tick icache_latency = 0;
720            bool icache_access = false;
721            dcache_access = false; // assume no dcache access
722
723            //Fetch more instruction memory if necessary
724            //if(predecoder.needMoreBytes())
725            //{
726                icache_access = true;
727                Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
728                                           Packet::Broadcast);
729                ifetch_pkt.dataStatic(&inst);
730
731                if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
732                    icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
733                else
734                    icache_latency = icachePort.sendAtomic(&ifetch_pkt);
735
736                assert(!ifetch_pkt.isError());
737
738                // ifetch_req is initialized to read the instruction directly
739                // into the CPU object's inst field.
740            //}
741
742            preExecute();
743
744            if (curStaticInst) {
745                fault = curStaticInst->execute(this, traceData);
746
747                // keep an instruction count
748                if (fault == NoFault)
749                    countInst();
750                else if (traceData) {
751                    // If there was a fault, we should trace this instruction.
752                    delete traceData;
753                    traceData = NULL;
754                }
755
756                postExecute();
757            }
758
759            // @todo remove me after debugging with legion done
760            if (curStaticInst && (!curStaticInst->isMicroop() ||
761                        curStaticInst->isFirstMicroop()))
762                instCnt++;
763
764            if (simulate_stalls) {
765                Tick icache_stall =
766                    icache_access ? icache_latency - ticks(1) : 0;
767                Tick dcache_stall =
768                    dcache_access ? dcache_latency - ticks(1) : 0;
769                Tick stall_cycles = (icache_stall + dcache_stall) / ticks(1);
770                if (ticks(stall_cycles) < (icache_stall + dcache_stall))
771                    latency += ticks(stall_cycles+1);
772                else
773                    latency += ticks(stall_cycles);
774            }
775
776        }
777        if(fault != NoFault || !stayAtPC)
778            advancePC(fault);
779    }
780
781    if (_status != Idle)
782        tickEvent.schedule(curTick + latency);
783}
784
785
786void
787AtomicSimpleCPU::printAddr(Addr a)
788{
789    dcachePort.printAddr(a);
790}
791
792
793////////////////////////////////////////////////////////////////////////
794//
795//  AtomicSimpleCPU Simulation Object
796//
797AtomicSimpleCPU *
798AtomicSimpleCPUParams::create()
799{
800    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
801    params->name = name;
802    params->numberOfThreads = 1;
803    params->max_insts_any_thread = max_insts_any_thread;
804    params->max_insts_all_threads = max_insts_all_threads;
805    params->max_loads_any_thread = max_loads_any_thread;
806    params->max_loads_all_threads = max_loads_all_threads;
807    params->progress_interval = progress_interval;
808    params->deferRegistration = defer_registration;
809    params->phase = phase;
810    params->clock = clock;
811    params->functionTrace = function_trace;
812    params->functionTraceStart = function_trace_start;
813    params->width = width;
814    params->simulate_stalls = simulate_stalls;
815    params->system = system;
816    params->cpu_id = cpu_id;
817    params->tracer = tracer;
818
819    params->itb = itb;
820    params->dtb = dtb;
821#if FULL_SYSTEM
822    params->profile = profile;
823    params->do_quiesce = do_quiesce;
824    params->do_checkpoint_insts = do_checkpoint_insts;
825    params->do_statistics_insts = do_statistics_insts;
826#else
827    if (workload.size() != 1)
828        panic("only one workload allowed");
829    params->process = workload[0];
830#endif
831
832    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
833    return cpu;
834}
835