atomic.cc revision 5278:4c963dc4ab07
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82#if FULL_SYSTEM
83    for (int i = 0; i < threadContexts.size(); ++i) {
84        ThreadContext *tc = threadContexts[i];
85
86        // initialize CPU, including PC
87        TheISA::initCPU(tc, tc->readCpuId());
88    }
89#endif
90    if (hasPhysMemPort) {
91        bool snoop = false;
92        AddrRangeList pmAddrList;
93        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94        physMemAddr = *pmAddrList.begin();
95    }
96}
97
98bool
99AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
100{
101    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
102    return true;
103}
104
105Tick
106AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
107{
108    //Snooping a coherence request, just return
109    return 0;
110}
111
112void
113AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
114{
115    //No internal storage to update, just return
116    return;
117}
118
119void
120AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
121{
122    if (status == RangeChange) {
123        if (!snoopRangeSent) {
124            snoopRangeSent = true;
125            sendStatusChange(Port::RangeChange);
126        }
127        return;
128    }
129
130    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
131}
132
133void
134AtomicSimpleCPU::CpuPort::recvRetry()
135{
136    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
137}
138
139void
140AtomicSimpleCPU::DcachePort::setPeer(Port *port)
141{
142    Port::setPeer(port);
143
144#if FULL_SYSTEM
145    // Update the ThreadContext's memory ports (Functional/Virtual
146    // Ports)
147    cpu->tcBase()->connectMemPorts();
148#endif
149}
150
151AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
152    : BaseSimpleCPU(p), tickEvent(this),
153      width(p->width), simulate_stalls(p->simulate_stalls),
154      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
155      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
156{
157    _status = Idle;
158
159    icachePort.snoopRangeSent = false;
160    dcachePort.snoopRangeSent = false;
161
162    ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
163    data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
164    data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
165}
166
167
168AtomicSimpleCPU::~AtomicSimpleCPU()
169{
170}
171
172void
173AtomicSimpleCPU::serialize(ostream &os)
174{
175    SimObject::State so_state = SimObject::getState();
176    SERIALIZE_ENUM(so_state);
177    Status _status = status();
178    SERIALIZE_ENUM(_status);
179    BaseSimpleCPU::serialize(os);
180    nameOut(os, csprintf("%s.tickEvent", name()));
181    tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187    SimObject::State so_state;
188    UNSERIALIZE_ENUM(so_state);
189    UNSERIALIZE_ENUM(_status);
190    BaseSimpleCPU::unserialize(cp, section);
191    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
192}
193
194void
195AtomicSimpleCPU::resume()
196{
197    if (_status == Idle || _status == SwitchedOut)
198        return;
199
200    DPRINTF(SimpleCPU, "Resume\n");
201    assert(system->getMemoryMode() == Enums::atomic);
202
203    changeState(SimObject::Running);
204    if (thread->status() == ThreadContext::Active) {
205        if (!tickEvent.scheduled()) {
206            tickEvent.schedule(nextCycle());
207        }
208    }
209}
210
211void
212AtomicSimpleCPU::switchOut()
213{
214    assert(status() == Running || status() == Idle);
215    _status = SwitchedOut;
216
217    tickEvent.squash();
218}
219
220
221void
222AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
223{
224    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
225
226    assert(!tickEvent.scheduled());
227
228    // if any of this CPU's ThreadContexts are active, mark the CPU as
229    // running and schedule its tick event.
230    for (int i = 0; i < threadContexts.size(); ++i) {
231        ThreadContext *tc = threadContexts[i];
232        if (tc->status() == ThreadContext::Active && _status != Running) {
233            _status = Running;
234            tickEvent.schedule(nextCycle());
235            break;
236        }
237    }
238    if (_status != Running) {
239        _status = Idle;
240    }
241    assert(threadContexts.size() == 1);
242    cpuId = tc->readCpuId();
243}
244
245
246void
247AtomicSimpleCPU::activateContext(int thread_num, int delay)
248{
249    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
250
251    assert(thread_num == 0);
252    assert(thread);
253
254    assert(_status == Idle);
255    assert(!tickEvent.scheduled());
256
257    notIdleFraction++;
258    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
259
260    //Make sure ticks are still on multiples of cycles
261    tickEvent.schedule(nextCycle(curTick + ticks(delay)));
262    _status = Running;
263}
264
265
266void
267AtomicSimpleCPU::suspendContext(int thread_num)
268{
269    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
270
271    assert(thread_num == 0);
272    assert(thread);
273
274    assert(_status == Running);
275
276    // tick event may not be scheduled if this gets called from inside
277    // an instruction's execution, e.g. "quiesce"
278    if (tickEvent.scheduled())
279        tickEvent.deschedule();
280
281    notIdleFraction--;
282    _status = Idle;
283}
284
285
286template <class T>
287Fault
288AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
289{
290    // use the CPU's statically allocated read request and packet objects
291    Request *req = &data_read_req;
292
293    if (traceData) {
294        traceData->setAddr(addr);
295    }
296
297    //The block size of our peer.
298    int blockSize = dcachePort.peerBlockSize();
299    //The size of the data we're trying to read.
300    int dataSize = sizeof(T);
301
302    uint8_t * dataPtr = (uint8_t *)&data;
303
304    //The address of the second part of this access if it needs to be split
305    //across a cache line boundary.
306    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
307
308    if(secondAddr > addr)
309        dataSize = secondAddr - addr;
310
311    dcache_latency = 0;
312
313    while(1) {
314        req->setVirt(0, addr, dataSize, flags, thread->readPC());
315
316        // translate to physical address
317        Fault fault = thread->translateDataReadReq(req);
318
319        // Now do the access.
320        if (fault == NoFault) {
321            Packet pkt = Packet(req,
322                    req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
323                    Packet::Broadcast);
324            pkt.dataStatic(dataPtr);
325
326            if (req->isMmapedIpr())
327                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
328            else {
329                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
330                    dcache_latency += physmemPort.sendAtomic(&pkt);
331                else
332                    dcache_latency += dcachePort.sendAtomic(&pkt);
333            }
334            dcache_access = true;
335
336            assert(!pkt.isError());
337
338            if (req->isLocked()) {
339                TheISA::handleLockedRead(thread, req);
340            }
341        }
342
343        // This will need a new way to tell if it has a dcache attached.
344        if (req->isUncacheable())
345            recordEvent("Uncached Read");
346
347        //If there's a fault, return it
348        if (fault != NoFault)
349            return fault;
350        //If we don't need to access a second cache line, stop now.
351        if (secondAddr <= addr)
352        {
353            data = gtoh(data);
354            return fault;
355        }
356
357        /*
358         * Set up for accessing the second cache line.
359         */
360
361        //Move the pointer we're reading into to the correct location.
362        dataPtr += dataSize;
363        //Adjust the size to get the remaining bytes.
364        dataSize = addr + sizeof(T) - secondAddr;
365        //And access the right address.
366        addr = secondAddr;
367    }
368}
369
370Fault
371AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
372        int size, unsigned flags)
373{
374    // use the CPU's statically allocated read request and packet objects
375    Request *req = &data_read_req;
376
377    if (traceData) {
378        traceData->setAddr(vaddr);
379    }
380
381    //The block size of our peer.
382    int blockSize = dcachePort.peerBlockSize();
383    //The size of the data we're trying to read.
384    int dataSize = size;
385
386    bool firstTimeThrough = true;
387
388    //The address of the second part of this access if it needs to be split
389    //across a cache line boundary.
390    Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
391
392    if(secondAddr > vaddr)
393        dataSize = secondAddr - vaddr;
394
395    while(1) {
396        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
397
398        // translate to physical address
399        Fault fault = thread->translateDataReadReq(req);
400
401        //If there's a fault, return it
402        if (fault != NoFault)
403            return fault;
404
405        if (firstTimeThrough) {
406            paddr = req->getPaddr();
407            firstTimeThrough = false;
408        }
409
410        //If we don't need to access a second cache line, stop now.
411        if (secondAddr <= vaddr)
412            return fault;
413
414        /*
415         * Set up for accessing the second cache line.
416         */
417
418        //Adjust the size to get the remaining bytes.
419        dataSize = vaddr + size - secondAddr;
420        //And access the right address.
421        vaddr = secondAddr;
422    }
423}
424
425#ifndef DOXYGEN_SHOULD_SKIP_THIS
426
427template
428Fault
429AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
430
431template
432Fault
433AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
434
435template
436Fault
437AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
438
439template
440Fault
441AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
442
443template
444Fault
445AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
446
447template
448Fault
449AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
450
451#endif //DOXYGEN_SHOULD_SKIP_THIS
452
453template<>
454Fault
455AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
456{
457    return read(addr, *(uint64_t*)&data, flags);
458}
459
460template<>
461Fault
462AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
463{
464    return read(addr, *(uint32_t*)&data, flags);
465}
466
467
468template<>
469Fault
470AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
471{
472    return read(addr, (uint32_t&)data, flags);
473}
474
475
476template <class T>
477Fault
478AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
479{
480    // use the CPU's statically allocated write request and packet objects
481    Request *req = &data_write_req;
482
483    if (traceData) {
484        traceData->setAddr(addr);
485    }
486
487    //The block size of our peer.
488    int blockSize = dcachePort.peerBlockSize();
489    //The size of the data we're trying to read.
490    int dataSize = sizeof(T);
491
492    uint8_t * dataPtr = (uint8_t *)&data;
493
494    //The address of the second part of this access if it needs to be split
495    //across a cache line boundary.
496    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
497
498    if(secondAddr > addr)
499        dataSize = secondAddr - addr;
500
501    dcache_latency = 0;
502
503    while(1) {
504        req->setVirt(0, addr, dataSize, flags, thread->readPC());
505
506        // translate to physical address
507        Fault fault = thread->translateDataWriteReq(req);
508
509        // Now do the access.
510        if (fault == NoFault) {
511            MemCmd cmd = MemCmd::WriteReq; // default
512            bool do_access = true;  // flag to suppress cache access
513
514            if (req->isLocked()) {
515                cmd = MemCmd::StoreCondReq;
516                do_access = TheISA::handleLockedWrite(thread, req);
517            } else if (req->isSwap()) {
518                cmd = MemCmd::SwapReq;
519                if (req->isCondSwap()) {
520                    assert(res);
521                    req->setExtraData(*res);
522                }
523            }
524
525            if (do_access) {
526                Packet pkt = Packet(req, cmd, Packet::Broadcast);
527                pkt.dataStatic(dataPtr);
528
529                if (req->isMmapedIpr()) {
530                    dcache_latency +=
531                        TheISA::handleIprWrite(thread->getTC(), &pkt);
532                } else {
533                    //XXX This needs to be outside of the loop in order to
534                    //work properly for cache line boundary crossing
535                    //accesses in transendian simulations.
536                    data = htog(data);
537                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
538                        dcache_latency += physmemPort.sendAtomic(&pkt);
539                    else
540                        dcache_latency += dcachePort.sendAtomic(&pkt);
541                }
542                dcache_access = true;
543                assert(!pkt.isError());
544
545                if (req->isSwap()) {
546                    assert(res);
547                    *res = pkt.get<T>();
548                }
549            }
550
551            if (res && !req->isSwap()) {
552                *res = req->getExtraData();
553            }
554        }
555
556        // This will need a new way to tell if it's hooked up to a cache or not.
557        if (req->isUncacheable())
558            recordEvent("Uncached Write");
559
560        //If there's a fault or we don't need to access a second cache line,
561        //stop now.
562        if (fault != NoFault || secondAddr <= addr)
563        {
564            // If the write needs to have a fault on the access, consider
565            // calling changeStatus() and changing it to "bad addr write"
566            // or something.
567            return fault;
568        }
569
570        /*
571         * Set up for accessing the second cache line.
572         */
573
574        //Move the pointer we're reading into to the correct location.
575        dataPtr += dataSize;
576        //Adjust the size to get the remaining bytes.
577        dataSize = addr + sizeof(T) - secondAddr;
578        //And access the right address.
579        addr = secondAddr;
580    }
581}
582
583Fault
584AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
585        int size, unsigned flags)
586{
587    // use the CPU's statically allocated write request and packet objects
588    Request *req = &data_write_req;
589
590    if (traceData) {
591        traceData->setAddr(vaddr);
592    }
593
594    //The block size of our peer.
595    int blockSize = dcachePort.peerBlockSize();
596
597    //The address of the second part of this access if it needs to be split
598    //across a cache line boundary.
599    Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
600
601    //The size of the data we're trying to read.
602    int dataSize = size;
603
604    bool firstTimeThrough = true;
605
606    if(secondAddr > vaddr)
607        dataSize = secondAddr - vaddr;
608
609    dcache_latency = 0;
610
611    while(1) {
612        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
613
614        // translate to physical address
615        Fault fault = thread->translateDataWriteReq(req);
616
617        //If there's a fault or we don't need to access a second cache line,
618        //stop now.
619        if (fault != NoFault)
620            return fault;
621
622        if (firstTimeThrough) {
623            paddr = req->getPaddr();
624            firstTimeThrough = false;
625        }
626
627        if (secondAddr <= vaddr)
628            return fault;
629
630        /*
631         * Set up for accessing the second cache line.
632         */
633
634        //Adjust the size to get the remaining bytes.
635        dataSize = vaddr + size - secondAddr;
636        //And access the right address.
637        vaddr = secondAddr;
638    }
639}
640
641
642#ifndef DOXYGEN_SHOULD_SKIP_THIS
643
644template
645Fault
646AtomicSimpleCPU::write(Twin32_t data, Addr addr,
647                       unsigned flags, uint64_t *res);
648
649template
650Fault
651AtomicSimpleCPU::write(Twin64_t data, Addr addr,
652                       unsigned flags, uint64_t *res);
653
654template
655Fault
656AtomicSimpleCPU::write(uint64_t data, Addr addr,
657                       unsigned flags, uint64_t *res);
658
659template
660Fault
661AtomicSimpleCPU::write(uint32_t data, Addr addr,
662                       unsigned flags, uint64_t *res);
663
664template
665Fault
666AtomicSimpleCPU::write(uint16_t data, Addr addr,
667                       unsigned flags, uint64_t *res);
668
669template
670Fault
671AtomicSimpleCPU::write(uint8_t data, Addr addr,
672                       unsigned flags, uint64_t *res);
673
674#endif //DOXYGEN_SHOULD_SKIP_THIS
675
676template<>
677Fault
678AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
679{
680    return write(*(uint64_t*)&data, addr, flags, res);
681}
682
683template<>
684Fault
685AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
686{
687    return write(*(uint32_t*)&data, addr, flags, res);
688}
689
690
691template<>
692Fault
693AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
694{
695    return write((uint32_t)data, addr, flags, res);
696}
697
698
699void
700AtomicSimpleCPU::tick()
701{
702    DPRINTF(SimpleCPU, "Tick\n");
703
704    Tick latency = ticks(1); // instruction takes one cycle by default
705
706    for (int i = 0; i < width; ++i) {
707        numCycles++;
708
709        if (!curStaticInst || !curStaticInst->isDelayedCommit())
710            checkForInterrupts();
711
712        Fault fault = setupFetchRequest(&ifetch_req);
713
714        if (fault == NoFault) {
715            Tick icache_latency = 0;
716            bool icache_access = false;
717            dcache_access = false; // assume no dcache access
718
719            //Fetch more instruction memory if necessary
720            //if(predecoder.needMoreBytes())
721            //{
722                icache_access = true;
723                Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
724                                           Packet::Broadcast);
725                ifetch_pkt.dataStatic(&inst);
726
727                if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
728                    icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
729                else
730                    icache_latency = icachePort.sendAtomic(&ifetch_pkt);
731
732                assert(!ifetch_pkt.isError());
733
734                // ifetch_req is initialized to read the instruction directly
735                // into the CPU object's inst field.
736            //}
737
738            preExecute();
739
740            if (curStaticInst) {
741                fault = curStaticInst->execute(this, traceData);
742
743                // keep an instruction count
744                if (fault == NoFault)
745                    countInst();
746                else if (traceData) {
747                    // If there was a fault, we should trace this instruction.
748                    delete traceData;
749                    traceData = NULL;
750                }
751
752                postExecute();
753            }
754
755            // @todo remove me after debugging with legion done
756            if (curStaticInst && (!curStaticInst->isMicroop() ||
757                        curStaticInst->isFirstMicroop()))
758                instCnt++;
759
760            if (simulate_stalls) {
761                Tick icache_stall =
762                    icache_access ? icache_latency - ticks(1) : 0;
763                Tick dcache_stall =
764                    dcache_access ? dcache_latency - ticks(1) : 0;
765                Tick stall_cycles = (icache_stall + dcache_stall) / ticks(1);
766                if (ticks(stall_cycles) < (icache_stall + dcache_stall))
767                    latency += ticks(stall_cycles+1);
768                else
769                    latency += ticks(stall_cycles);
770            }
771
772        }
773        if(fault != NoFault || !stayAtPC)
774            advancePC(fault);
775    }
776
777    if (_status != Idle)
778        tickEvent.schedule(curTick + latency);
779}
780
781
782////////////////////////////////////////////////////////////////////////
783//
784//  AtomicSimpleCPU Simulation Object
785//
786AtomicSimpleCPU *
787AtomicSimpleCPUParams::create()
788{
789    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
790    params->name = name;
791    params->numberOfThreads = 1;
792    params->max_insts_any_thread = max_insts_any_thread;
793    params->max_insts_all_threads = max_insts_all_threads;
794    params->max_loads_any_thread = max_loads_any_thread;
795    params->max_loads_all_threads = max_loads_all_threads;
796    params->progress_interval = progress_interval;
797    params->deferRegistration = defer_registration;
798    params->phase = phase;
799    params->clock = clock;
800    params->functionTrace = function_trace;
801    params->functionTraceStart = function_trace_start;
802    params->width = width;
803    params->simulate_stalls = simulate_stalls;
804    params->system = system;
805    params->cpu_id = cpu_id;
806    params->tracer = tracer;
807
808    params->itb = itb;
809    params->dtb = dtb;
810#if FULL_SYSTEM
811    params->profile = profile;
812    params->do_quiesce = do_quiesce;
813    params->do_checkpoint_insts = do_checkpoint_insts;
814    params->do_statistics_insts = do_statistics_insts;
815#else
816    if (workload.size() != 1)
817        panic("only one workload allowed");
818    params->process = workload[0];
819#endif
820
821    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
822    return cpu;
823}
824