atomic.cc revision 5169:bfd18d401251
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82#if FULL_SYSTEM
83    for (int i = 0; i < threadContexts.size(); ++i) {
84        ThreadContext *tc = threadContexts[i];
85
86        // initialize CPU, including PC
87        TheISA::initCPU(tc, tc->readCpuId());
88    }
89#endif
90    if (hasPhysMemPort) {
91        bool snoop = false;
92        AddrRangeList pmAddrList;
93        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94        physMemAddr = *pmAddrList.begin();
95    }
96}
97
98bool
99AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
100{
101    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
102    return true;
103}
104
105Tick
106AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
107{
108    //Snooping a coherence request, just return
109    return 0;
110}
111
112void
113AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
114{
115    //No internal storage to update, just return
116    return;
117}
118
119void
120AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
121{
122    if (status == RangeChange) {
123        if (!snoopRangeSent) {
124            snoopRangeSent = true;
125            sendStatusChange(Port::RangeChange);
126        }
127        return;
128    }
129
130    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
131}
132
133void
134AtomicSimpleCPU::CpuPort::recvRetry()
135{
136    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
137}
138
139void
140AtomicSimpleCPU::DcachePort::setPeer(Port *port)
141{
142    Port::setPeer(port);
143
144#if FULL_SYSTEM
145    // Update the ThreadContext's memory ports (Functional/Virtual
146    // Ports)
147    cpu->tcBase()->connectMemPorts();
148#endif
149}
150
151AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
152    : BaseSimpleCPU(p), tickEvent(this),
153      width(p->width), simulate_stalls(p->simulate_stalls),
154      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
155      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
156{
157    _status = Idle;
158
159    icachePort.snoopRangeSent = false;
160    dcachePort.snoopRangeSent = false;
161
162    ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
163    data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
164    data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
165}
166
167
168AtomicSimpleCPU::~AtomicSimpleCPU()
169{
170}
171
172void
173AtomicSimpleCPU::serialize(ostream &os)
174{
175    SimObject::State so_state = SimObject::getState();
176    SERIALIZE_ENUM(so_state);
177    Status _status = status();
178    SERIALIZE_ENUM(_status);
179    BaseSimpleCPU::serialize(os);
180    nameOut(os, csprintf("%s.tickEvent", name()));
181    tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187    SimObject::State so_state;
188    UNSERIALIZE_ENUM(so_state);
189    UNSERIALIZE_ENUM(_status);
190    BaseSimpleCPU::unserialize(cp, section);
191    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
192}
193
194void
195AtomicSimpleCPU::resume()
196{
197    DPRINTF(SimpleCPU, "Resume\n");
198    if (_status != SwitchedOut && _status != Idle) {
199        assert(system->getMemoryMode() == Enums::atomic);
200
201        changeState(SimObject::Running);
202        if (thread->status() == ThreadContext::Active) {
203            if (!tickEvent.scheduled()) {
204                tickEvent.schedule(nextCycle());
205            }
206        }
207    }
208}
209
210void
211AtomicSimpleCPU::switchOut()
212{
213    assert(status() == Running || status() == Idle);
214    _status = SwitchedOut;
215
216    tickEvent.squash();
217}
218
219
220void
221AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
222{
223    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
224
225    assert(!tickEvent.scheduled());
226
227    // if any of this CPU's ThreadContexts are active, mark the CPU as
228    // running and schedule its tick event.
229    for (int i = 0; i < threadContexts.size(); ++i) {
230        ThreadContext *tc = threadContexts[i];
231        if (tc->status() == ThreadContext::Active && _status != Running) {
232            _status = Running;
233            tickEvent.schedule(nextCycle());
234            break;
235        }
236    }
237    if (_status != Running) {
238        _status = Idle;
239    }
240    assert(threadContexts.size() == 1);
241    cpuId = tc->readCpuId();
242}
243
244
245void
246AtomicSimpleCPU::activateContext(int thread_num, int delay)
247{
248    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
249
250    assert(thread_num == 0);
251    assert(thread);
252
253    assert(_status == Idle);
254    assert(!tickEvent.scheduled());
255
256    notIdleFraction++;
257    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
258
259    //Make sure ticks are still on multiples of cycles
260    tickEvent.schedule(nextCycle(curTick + ticks(delay)));
261    _status = Running;
262}
263
264
265void
266AtomicSimpleCPU::suspendContext(int thread_num)
267{
268    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
269
270    assert(thread_num == 0);
271    assert(thread);
272
273    assert(_status == Running);
274
275    // tick event may not be scheduled if this gets called from inside
276    // an instruction's execution, e.g. "quiesce"
277    if (tickEvent.scheduled())
278        tickEvent.deschedule();
279
280    notIdleFraction--;
281    _status = Idle;
282}
283
284
285template <class T>
286Fault
287AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
288{
289    // use the CPU's statically allocated read request and packet objects
290    Request *req = &data_read_req;
291
292    if (traceData) {
293        traceData->setAddr(addr);
294    }
295
296    //The block size of our peer.
297    int blockSize = dcachePort.peerBlockSize();
298    //The size of the data we're trying to read.
299    int dataSize = sizeof(T);
300
301    uint8_t * dataPtr = (uint8_t *)&data;
302
303    //The address of the second part of this access if it needs to be split
304    //across a cache line boundary.
305    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
306
307    if(secondAddr > addr)
308        dataSize = secondAddr - addr;
309
310    dcache_latency = 0;
311
312    while(1) {
313        req->setVirt(0, addr, dataSize, flags, thread->readPC());
314
315        // translate to physical address
316        Fault fault = thread->translateDataReadReq(req);
317
318        // Now do the access.
319        if (fault == NoFault) {
320            Packet pkt = Packet(req,
321                    req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
322                    Packet::Broadcast);
323            pkt.dataStatic(dataPtr);
324
325            if (req->isMmapedIpr())
326                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
327            else {
328                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
329                    dcache_latency += physmemPort.sendAtomic(&pkt);
330                else
331                    dcache_latency += dcachePort.sendAtomic(&pkt);
332            }
333            dcache_access = true;
334
335            assert(!pkt.isError());
336
337            if (req->isLocked()) {
338                TheISA::handleLockedRead(thread, req);
339            }
340        }
341
342        // This will need a new way to tell if it has a dcache attached.
343        if (req->isUncacheable())
344            recordEvent("Uncached Read");
345
346        //If there's a fault, return it
347        if (fault != NoFault)
348            return fault;
349        //If we don't need to access a second cache line, stop now.
350        if (secondAddr <= addr)
351        {
352            data = gtoh(data);
353            return fault;
354        }
355
356        /*
357         * Set up for accessing the second cache line.
358         */
359
360        //Move the pointer we're reading into to the correct location.
361        dataPtr += dataSize;
362        //Adjust the size to get the remaining bytes.
363        dataSize = addr + sizeof(T) - secondAddr;
364        //And access the right address.
365        addr = secondAddr;
366    }
367}
368
369#ifndef DOXYGEN_SHOULD_SKIP_THIS
370
371template
372Fault
373AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
374
375template
376Fault
377AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
378
379template
380Fault
381AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
382
383template
384Fault
385AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
386
387template
388Fault
389AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
390
391template
392Fault
393AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
394
395#endif //DOXYGEN_SHOULD_SKIP_THIS
396
397template<>
398Fault
399AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
400{
401    return read(addr, *(uint64_t*)&data, flags);
402}
403
404template<>
405Fault
406AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
407{
408    return read(addr, *(uint32_t*)&data, flags);
409}
410
411
412template<>
413Fault
414AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
415{
416    return read(addr, (uint32_t&)data, flags);
417}
418
419
420template <class T>
421Fault
422AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
423{
424    // use the CPU's statically allocated write request and packet objects
425    Request *req = &data_write_req;
426
427    if (traceData) {
428        traceData->setAddr(addr);
429    }
430
431    //The block size of our peer.
432    int blockSize = dcachePort.peerBlockSize();
433    //The size of the data we're trying to read.
434    int dataSize = sizeof(T);
435
436    uint8_t * dataPtr = (uint8_t *)&data;
437
438    //The address of the second part of this access if it needs to be split
439    //across a cache line boundary.
440    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
441
442    if(secondAddr > addr)
443        dataSize = secondAddr - addr;
444
445    dcache_latency = 0;
446
447    while(1) {
448        req->setVirt(0, addr, dataSize, flags, thread->readPC());
449
450        // translate to physical address
451        Fault fault = thread->translateDataWriteReq(req);
452
453        // Now do the access.
454        if (fault == NoFault) {
455            MemCmd cmd = MemCmd::WriteReq; // default
456            bool do_access = true;  // flag to suppress cache access
457
458            if (req->isLocked()) {
459                cmd = MemCmd::StoreCondReq;
460                do_access = TheISA::handleLockedWrite(thread, req);
461            } else if (req->isSwap()) {
462                cmd = MemCmd::SwapReq;
463                if (req->isCondSwap()) {
464                    assert(res);
465                    req->setExtraData(*res);
466                }
467            }
468
469            if (do_access) {
470                Packet pkt = Packet(req, cmd, Packet::Broadcast);
471                pkt.dataStatic(dataPtr);
472
473                if (req->isMmapedIpr()) {
474                    dcache_latency +=
475                        TheISA::handleIprWrite(thread->getTC(), &pkt);
476                } else {
477                    //XXX This needs to be outside of the loop in order to
478                    //work properly for cache line boundary crossing
479                    //accesses in transendian simulations.
480                    data = htog(data);
481                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
482                        dcache_latency += physmemPort.sendAtomic(&pkt);
483                    else
484                        dcache_latency += dcachePort.sendAtomic(&pkt);
485                }
486                dcache_access = true;
487                assert(!pkt.isError());
488
489                if (req->isSwap()) {
490                    assert(res);
491                    *res = pkt.get<T>();
492                }
493            }
494
495            if (res && !req->isSwap()) {
496                *res = req->getExtraData();
497            }
498        }
499
500        // This will need a new way to tell if it's hooked up to a cache or not.
501        if (req->isUncacheable())
502            recordEvent("Uncached Write");
503
504        //If there's a fault or we don't need to access a second cache line,
505        //stop now.
506        if (fault != NoFault || secondAddr <= addr)
507        {
508            // If the write needs to have a fault on the access, consider
509            // calling changeStatus() and changing it to "bad addr write"
510            // or something.
511            return fault;
512        }
513
514        /*
515         * Set up for accessing the second cache line.
516         */
517
518        //Move the pointer we're reading into to the correct location.
519        dataPtr += dataSize;
520        //Adjust the size to get the remaining bytes.
521        dataSize = addr + sizeof(T) - secondAddr;
522        //And access the right address.
523        addr = secondAddr;
524    }
525}
526
527
528#ifndef DOXYGEN_SHOULD_SKIP_THIS
529
530template
531Fault
532AtomicSimpleCPU::write(Twin32_t data, Addr addr,
533                       unsigned flags, uint64_t *res);
534
535template
536Fault
537AtomicSimpleCPU::write(Twin64_t data, Addr addr,
538                       unsigned flags, uint64_t *res);
539
540template
541Fault
542AtomicSimpleCPU::write(uint64_t data, Addr addr,
543                       unsigned flags, uint64_t *res);
544
545template
546Fault
547AtomicSimpleCPU::write(uint32_t data, Addr addr,
548                       unsigned flags, uint64_t *res);
549
550template
551Fault
552AtomicSimpleCPU::write(uint16_t data, Addr addr,
553                       unsigned flags, uint64_t *res);
554
555template
556Fault
557AtomicSimpleCPU::write(uint8_t data, Addr addr,
558                       unsigned flags, uint64_t *res);
559
560#endif //DOXYGEN_SHOULD_SKIP_THIS
561
562template<>
563Fault
564AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
565{
566    return write(*(uint64_t*)&data, addr, flags, res);
567}
568
569template<>
570Fault
571AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
572{
573    return write(*(uint32_t*)&data, addr, flags, res);
574}
575
576
577template<>
578Fault
579AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
580{
581    return write((uint32_t)data, addr, flags, res);
582}
583
584
585void
586AtomicSimpleCPU::tick()
587{
588    DPRINTF(SimpleCPU, "Tick\n");
589
590    Tick latency = ticks(1); // instruction takes one cycle by default
591
592    for (int i = 0; i < width; ++i) {
593        numCycles++;
594
595        if (!curStaticInst || !curStaticInst->isDelayedCommit())
596            checkForInterrupts();
597
598        Fault fault = setupFetchRequest(&ifetch_req);
599
600        if (fault == NoFault) {
601            Tick icache_latency = 0;
602            bool icache_access = false;
603            dcache_access = false; // assume no dcache access
604
605            //Fetch more instruction memory if necessary
606            //if(predecoder.needMoreBytes())
607            //{
608                icache_access = true;
609                Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
610                                           Packet::Broadcast);
611                ifetch_pkt.dataStatic(&inst);
612
613                if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
614                    icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
615                else
616                    icache_latency = icachePort.sendAtomic(&ifetch_pkt);
617
618                assert(!ifetch_pkt.isError());
619
620                // ifetch_req is initialized to read the instruction directly
621                // into the CPU object's inst field.
622            //}
623
624            preExecute();
625
626            if (curStaticInst) {
627                fault = curStaticInst->execute(this, traceData);
628
629                // keep an instruction count
630                if (fault == NoFault)
631                    countInst();
632                else if (traceData) {
633                    // If there was a fault, we should trace this instruction.
634                    delete traceData;
635                    traceData = NULL;
636                }
637
638                postExecute();
639            }
640
641            // @todo remove me after debugging with legion done
642            if (curStaticInst && (!curStaticInst->isMicroop() ||
643                        curStaticInst->isFirstMicroop()))
644                instCnt++;
645
646            if (simulate_stalls) {
647                Tick icache_stall =
648                    icache_access ? icache_latency - ticks(1) : 0;
649                Tick dcache_stall =
650                    dcache_access ? dcache_latency - ticks(1) : 0;
651                Tick stall_cycles = (icache_stall + dcache_stall) / ticks(1);
652                if (ticks(stall_cycles) < (icache_stall + dcache_stall))
653                    latency += ticks(stall_cycles+1);
654                else
655                    latency += ticks(stall_cycles);
656            }
657
658        }
659        if(fault != NoFault || !stayAtPC)
660            advancePC(fault);
661    }
662
663    if (_status != Idle)
664        tickEvent.schedule(curTick + latency);
665}
666
667
668////////////////////////////////////////////////////////////////////////
669//
670//  AtomicSimpleCPU Simulation Object
671//
672AtomicSimpleCPU *
673AtomicSimpleCPUParams::create()
674{
675    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
676    params->name = name;
677    params->numberOfThreads = 1;
678    params->max_insts_any_thread = max_insts_any_thread;
679    params->max_insts_all_threads = max_insts_all_threads;
680    params->max_loads_any_thread = max_loads_any_thread;
681    params->max_loads_all_threads = max_loads_all_threads;
682    params->progress_interval = progress_interval;
683    params->deferRegistration = defer_registration;
684    params->phase = phase;
685    params->clock = clock;
686    params->functionTrace = function_trace;
687    params->functionTraceStart = function_trace_start;
688    params->width = width;
689    params->simulate_stalls = simulate_stalls;
690    params->system = system;
691    params->cpu_id = cpu_id;
692    params->tracer = tracer;
693
694    params->itb = itb;
695    params->dtb = dtb;
696#if FULL_SYSTEM
697    params->profile = profile;
698    params->do_quiesce = do_quiesce;
699    params->do_checkpoint_insts = do_checkpoint_insts;
700    params->do_statistics_insts = do_statistics_insts;
701#else
702    if (workload.size() != 1)
703        panic("only one workload allowed");
704    params->process = workload[0];
705#endif
706
707    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
708    return cpu;
709}
710