atomic.cc revision 5100:7a0180040755
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82#if FULL_SYSTEM
83    for (int i = 0; i < threadContexts.size(); ++i) {
84        ThreadContext *tc = threadContexts[i];
85
86        // initialize CPU, including PC
87        TheISA::initCPU(tc, tc->readCpuId());
88    }
89#endif
90    if (hasPhysMemPort) {
91        bool snoop = false;
92        AddrRangeList pmAddrList;
93        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94        physMemAddr = *pmAddrList.begin();
95    }
96}
97
98bool
99AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
100{
101    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
102    return true;
103}
104
105Tick
106AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
107{
108    //Snooping a coherence request, just return
109    return 0;
110}
111
112void
113AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
114{
115    //No internal storage to update, just return
116    return;
117}
118
119void
120AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
121{
122    if (status == RangeChange) {
123        if (!snoopRangeSent) {
124            snoopRangeSent = true;
125            sendStatusChange(Port::RangeChange);
126        }
127        return;
128    }
129
130    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
131}
132
133void
134AtomicSimpleCPU::CpuPort::recvRetry()
135{
136    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
137}
138
139void
140AtomicSimpleCPU::DcachePort::setPeer(Port *port)
141{
142    Port::setPeer(port);
143
144#if FULL_SYSTEM
145    // Update the ThreadContext's memory ports (Functional/Virtual
146    // Ports)
147    cpu->tcBase()->connectMemPorts();
148#endif
149}
150
151AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
152    : BaseSimpleCPU(p), tickEvent(this),
153      width(p->width), simulate_stalls(p->simulate_stalls),
154      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
155      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
156{
157    _status = Idle;
158
159    icachePort.snoopRangeSent = false;
160    dcachePort.snoopRangeSent = false;
161
162    ifetch_req.setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
163    data_read_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too
164    data_write_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too
165}
166
167
168AtomicSimpleCPU::~AtomicSimpleCPU()
169{
170}
171
172void
173AtomicSimpleCPU::serialize(ostream &os)
174{
175    SimObject::State so_state = SimObject::getState();
176    SERIALIZE_ENUM(so_state);
177    Status _status = status();
178    SERIALIZE_ENUM(_status);
179    BaseSimpleCPU::serialize(os);
180    nameOut(os, csprintf("%s.tickEvent", name()));
181    tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187    SimObject::State so_state;
188    UNSERIALIZE_ENUM(so_state);
189    UNSERIALIZE_ENUM(_status);
190    BaseSimpleCPU::unserialize(cp, section);
191    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
192}
193
194void
195AtomicSimpleCPU::resume()
196{
197    DPRINTF(SimpleCPU, "Resume\n");
198    if (_status != SwitchedOut && _status != Idle) {
199        assert(system->getMemoryMode() == Enums::atomic);
200
201        changeState(SimObject::Running);
202        if (thread->status() == ThreadContext::Active) {
203            if (!tickEvent.scheduled()) {
204                tickEvent.schedule(nextCycle());
205            }
206        }
207    }
208}
209
210void
211AtomicSimpleCPU::switchOut()
212{
213    assert(status() == Running || status() == Idle);
214    _status = SwitchedOut;
215
216    tickEvent.squash();
217}
218
219
220void
221AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
222{
223    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
224
225    assert(!tickEvent.scheduled());
226
227    // if any of this CPU's ThreadContexts are active, mark the CPU as
228    // running and schedule its tick event.
229    for (int i = 0; i < threadContexts.size(); ++i) {
230        ThreadContext *tc = threadContexts[i];
231        if (tc->status() == ThreadContext::Active && _status != Running) {
232            _status = Running;
233            tickEvent.schedule(nextCycle());
234            break;
235        }
236    }
237    if (_status != Running) {
238        _status = Idle;
239    }
240}
241
242
243void
244AtomicSimpleCPU::activateContext(int thread_num, int delay)
245{
246    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
247
248    assert(thread_num == 0);
249    assert(thread);
250
251    assert(_status == Idle);
252    assert(!tickEvent.scheduled());
253
254    notIdleFraction++;
255
256    //Make sure ticks are still on multiples of cycles
257    tickEvent.schedule(nextCycle(curTick + ticks(delay)));
258    _status = Running;
259}
260
261
262void
263AtomicSimpleCPU::suspendContext(int thread_num)
264{
265    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
266
267    assert(thread_num == 0);
268    assert(thread);
269
270    assert(_status == Running);
271
272    // tick event may not be scheduled if this gets called from inside
273    // an instruction's execution, e.g. "quiesce"
274    if (tickEvent.scheduled())
275        tickEvent.deschedule();
276
277    notIdleFraction--;
278    _status = Idle;
279}
280
281
282template <class T>
283Fault
284AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
285{
286    // use the CPU's statically allocated read request and packet objects
287    Request *req = &data_read_req;
288
289    if (traceData) {
290        traceData->setAddr(addr);
291    }
292
293    //The block size of our peer.
294    int blockSize = dcachePort.peerBlockSize();
295    //The size of the data we're trying to read.
296    int dataSize = sizeof(T);
297
298    uint8_t * dataPtr = (uint8_t *)&data;
299
300    //The address of the second part of this access if it needs to be split
301    //across a cache line boundary.
302    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
303
304    if(secondAddr > addr)
305        dataSize = secondAddr - addr;
306
307    dcache_latency = 0;
308
309    while(1) {
310        req->setVirt(0, addr, dataSize, flags, thread->readPC());
311
312        // translate to physical address
313        Fault fault = thread->translateDataReadReq(req);
314
315        // Now do the access.
316        if (fault == NoFault) {
317            Packet pkt = Packet(req,
318                    req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
319                    Packet::Broadcast);
320            pkt.dataStatic(dataPtr);
321
322            if (req->isMmapedIpr())
323                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
324            else {
325                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
326                    dcache_latency += physmemPort.sendAtomic(&pkt);
327                else
328                    dcache_latency += dcachePort.sendAtomic(&pkt);
329            }
330            dcache_access = true;
331
332            assert(!pkt.isError());
333
334            if (req->isLocked()) {
335                TheISA::handleLockedRead(thread, req);
336            }
337        }
338
339        // This will need a new way to tell if it has a dcache attached.
340        if (req->isUncacheable())
341            recordEvent("Uncached Read");
342
343        //If there's a fault, return it
344        if (fault != NoFault)
345            return fault;
346        //If we don't need to access a second cache line, stop now.
347        if (secondAddr <= addr)
348        {
349            data = gtoh(data);
350            return fault;
351        }
352
353        /*
354         * Set up for accessing the second cache line.
355         */
356
357        //Move the pointer we're reading into to the correct location.
358        dataPtr += dataSize;
359        //Adjust the size to get the remaining bytes.
360        dataSize = addr + sizeof(T) - secondAddr;
361        //And access the right address.
362        addr = secondAddr;
363    }
364}
365
366#ifndef DOXYGEN_SHOULD_SKIP_THIS
367
368template
369Fault
370AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
371
372template
373Fault
374AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
375
376template
377Fault
378AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
379
380template
381Fault
382AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
383
384template
385Fault
386AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
387
388template
389Fault
390AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
391
392#endif //DOXYGEN_SHOULD_SKIP_THIS
393
394template<>
395Fault
396AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
397{
398    return read(addr, *(uint64_t*)&data, flags);
399}
400
401template<>
402Fault
403AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
404{
405    return read(addr, *(uint32_t*)&data, flags);
406}
407
408
409template<>
410Fault
411AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
412{
413    return read(addr, (uint32_t&)data, flags);
414}
415
416
417template <class T>
418Fault
419AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
420{
421    // use the CPU's statically allocated write request and packet objects
422    Request *req = &data_write_req;
423
424    if (traceData) {
425        traceData->setAddr(addr);
426    }
427
428    //The block size of our peer.
429    int blockSize = dcachePort.peerBlockSize();
430    //The size of the data we're trying to read.
431    int dataSize = sizeof(T);
432
433    uint8_t * dataPtr = (uint8_t *)&data;
434
435    //The address of the second part of this access if it needs to be split
436    //across a cache line boundary.
437    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
438
439    if(secondAddr > addr)
440        dataSize = secondAddr - addr;
441
442    dcache_latency = 0;
443
444    while(1) {
445        req->setVirt(0, addr, dataSize, flags, thread->readPC());
446
447        // translate to physical address
448        Fault fault = thread->translateDataWriteReq(req);
449
450        // Now do the access.
451        if (fault == NoFault) {
452            MemCmd cmd = MemCmd::WriteReq; // default
453            bool do_access = true;  // flag to suppress cache access
454
455            if (req->isLocked()) {
456                cmd = MemCmd::StoreCondReq;
457                do_access = TheISA::handleLockedWrite(thread, req);
458            } else if (req->isSwap()) {
459                cmd = MemCmd::SwapReq;
460                if (req->isCondSwap()) {
461                    assert(res);
462                    req->setExtraData(*res);
463                }
464            }
465
466            if (do_access) {
467                Packet pkt = Packet(req, cmd, Packet::Broadcast);
468                pkt.dataStatic(dataPtr);
469
470                if (req->isMmapedIpr()) {
471                    dcache_latency +=
472                        TheISA::handleIprWrite(thread->getTC(), &pkt);
473                } else {
474                    //XXX This needs to be outside of the loop in order to
475                    //work properly for cache line boundary crossing
476                    //accesses in transendian simulations.
477                    data = htog(data);
478                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
479                        dcache_latency += physmemPort.sendAtomic(&pkt);
480                    else
481                        dcache_latency += dcachePort.sendAtomic(&pkt);
482                }
483                dcache_access = true;
484                assert(!pkt.isError());
485
486                if (req->isSwap()) {
487                    assert(res);
488                    *res = pkt.get<T>();
489                }
490            }
491
492            if (res && !req->isSwap()) {
493                *res = req->getExtraData();
494            }
495        }
496
497        // This will need a new way to tell if it's hooked up to a cache or not.
498        if (req->isUncacheable())
499            recordEvent("Uncached Write");
500
501        //If there's a fault or we don't need to access a second cache line,
502        //stop now.
503        if (fault != NoFault || secondAddr <= addr)
504        {
505            // If the write needs to have a fault on the access, consider
506            // calling changeStatus() and changing it to "bad addr write"
507            // or something.
508            return fault;
509        }
510
511        /*
512         * Set up for accessing the second cache line.
513         */
514
515        //Move the pointer we're reading into to the correct location.
516        dataPtr += dataSize;
517        //Adjust the size to get the remaining bytes.
518        dataSize = addr + sizeof(T) - secondAddr;
519        //And access the right address.
520        addr = secondAddr;
521    }
522}
523
524
525#ifndef DOXYGEN_SHOULD_SKIP_THIS
526
527template
528Fault
529AtomicSimpleCPU::write(Twin32_t data, Addr addr,
530                       unsigned flags, uint64_t *res);
531
532template
533Fault
534AtomicSimpleCPU::write(Twin64_t data, Addr addr,
535                       unsigned flags, uint64_t *res);
536
537template
538Fault
539AtomicSimpleCPU::write(uint64_t data, Addr addr,
540                       unsigned flags, uint64_t *res);
541
542template
543Fault
544AtomicSimpleCPU::write(uint32_t data, Addr addr,
545                       unsigned flags, uint64_t *res);
546
547template
548Fault
549AtomicSimpleCPU::write(uint16_t data, Addr addr,
550                       unsigned flags, uint64_t *res);
551
552template
553Fault
554AtomicSimpleCPU::write(uint8_t data, Addr addr,
555                       unsigned flags, uint64_t *res);
556
557#endif //DOXYGEN_SHOULD_SKIP_THIS
558
559template<>
560Fault
561AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
562{
563    return write(*(uint64_t*)&data, addr, flags, res);
564}
565
566template<>
567Fault
568AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
569{
570    return write(*(uint32_t*)&data, addr, flags, res);
571}
572
573
574template<>
575Fault
576AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
577{
578    return write((uint32_t)data, addr, flags, res);
579}
580
581
582void
583AtomicSimpleCPU::tick()
584{
585    DPRINTF(SimpleCPU, "Tick\n");
586
587    Tick latency = ticks(1); // instruction takes one cycle by default
588
589    for (int i = 0; i < width; ++i) {
590        numCycles++;
591
592        if (!curStaticInst || !curStaticInst->isDelayedCommit())
593            checkForInterrupts();
594
595        Fault fault = setupFetchRequest(&ifetch_req);
596
597        if (fault == NoFault) {
598            Tick icache_latency = 0;
599            bool icache_access = false;
600            dcache_access = false; // assume no dcache access
601
602            //Fetch more instruction memory if necessary
603            //if(predecoder.needMoreBytes())
604            //{
605                icache_access = true;
606                Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
607                                           Packet::Broadcast);
608                ifetch_pkt.dataStatic(&inst);
609
610                if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
611                    icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
612                else
613                    icache_latency = icachePort.sendAtomic(&ifetch_pkt);
614
615                assert(!ifetch_pkt.isError());
616
617                // ifetch_req is initialized to read the instruction directly
618                // into the CPU object's inst field.
619            //}
620
621            preExecute();
622
623            if (curStaticInst) {
624                fault = curStaticInst->execute(this, traceData);
625
626                // keep an instruction count
627                if (fault == NoFault)
628                    countInst();
629                else if (traceData) {
630                    // If there was a fault, we should trace this instruction.
631                    delete traceData;
632                    traceData = NULL;
633                }
634
635                postExecute();
636            }
637
638            // @todo remove me after debugging with legion done
639            if (curStaticInst && (!curStaticInst->isMicroop() ||
640                        curStaticInst->isFirstMicroop()))
641                instCnt++;
642
643            if (simulate_stalls) {
644                Tick icache_stall =
645                    icache_access ? icache_latency - ticks(1) : 0;
646                Tick dcache_stall =
647                    dcache_access ? dcache_latency - ticks(1) : 0;
648                Tick stall_cycles = (icache_stall + dcache_stall) / ticks(1);
649                if (ticks(stall_cycles) < (icache_stall + dcache_stall))
650                    latency += ticks(stall_cycles+1);
651                else
652                    latency += ticks(stall_cycles);
653            }
654
655        }
656        if(fault != NoFault || !stayAtPC)
657            advancePC(fault);
658    }
659
660    if (_status != Idle)
661        tickEvent.schedule(curTick + latency);
662}
663
664
665////////////////////////////////////////////////////////////////////////
666//
667//  AtomicSimpleCPU Simulation Object
668//
669AtomicSimpleCPU *
670AtomicSimpleCPUParams::create()
671{
672    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
673    params->name = name;
674    params->numberOfThreads = 1;
675    params->max_insts_any_thread = max_insts_any_thread;
676    params->max_insts_all_threads = max_insts_all_threads;
677    params->max_loads_any_thread = max_loads_any_thread;
678    params->max_loads_all_threads = max_loads_all_threads;
679    params->progress_interval = progress_interval;
680    params->deferRegistration = defer_registration;
681    params->phase = phase;
682    params->clock = clock;
683    params->functionTrace = function_trace;
684    params->functionTraceStart = function_trace_start;
685    params->width = width;
686    params->simulate_stalls = simulate_stalls;
687    params->system = system;
688    params->cpu_id = cpu_id;
689    params->tracer = tracer;
690
691    params->itb = itb;
692    params->dtb = dtb;
693#if FULL_SYSTEM
694    params->profile = profile;
695    params->do_quiesce = do_quiesce;
696    params->do_checkpoint_insts = do_checkpoint_insts;
697    params->do_statistics_insts = do_statistics_insts;
698#else
699    if (workload.size() != 1)
700        panic("only one workload allowed");
701    params->process = workload[0];
702#endif
703
704    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
705    return cpu;
706}
707