atomic.cc revision 12276:22c220be30c5
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015,2017 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/atomic.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "base/bigint.hh"
50#include "base/output.hh"
51#include "config/the_isa.hh"
52#include "cpu/exetrace.hh"
53#include "debug/Drain.hh"
54#include "debug/ExecFaulting.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "mem/physical.hh"
59#include "params/AtomicSimpleCPU.hh"
60#include "sim/faults.hh"
61#include "sim/full_system.hh"
62#include "sim/system.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68AtomicSimpleCPU::init()
69{
70    BaseSimpleCPU::init();
71
72    int cid = threadContexts[0]->contextId();
73    ifetch_req.setContext(cid);
74    data_read_req.setContext(cid);
75    data_write_req.setContext(cid);
76}
77
78AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
79    : BaseSimpleCPU(p),
80      tickEvent([this]{ tick(); }, "AtomicSimpleCPU tick",
81                false, Event::CPU_Tick_Pri),
82      width(p->width), locked(false),
83      simulate_data_stalls(p->simulate_data_stalls),
84      simulate_inst_stalls(p->simulate_inst_stalls),
85      icachePort(name() + ".icache_port", this),
86      dcachePort(name() + ".dcache_port", this),
87      fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
88      ppCommit(nullptr)
89{
90    _status = Idle;
91}
92
93
94AtomicSimpleCPU::~AtomicSimpleCPU()
95{
96    if (tickEvent.scheduled()) {
97        deschedule(tickEvent);
98    }
99}
100
101DrainState
102AtomicSimpleCPU::drain()
103{
104    // Deschedule any power gating event (if any)
105    deschedulePowerGatingEvent();
106
107    if (switchedOut())
108        return DrainState::Drained;
109
110    if (!isDrained()) {
111        DPRINTF(Drain, "Requesting drain.\n");
112        return DrainState::Draining;
113    } else {
114        if (tickEvent.scheduled())
115            deschedule(tickEvent);
116
117        activeThreads.clear();
118        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
119        return DrainState::Drained;
120    }
121}
122
123void
124AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
125{
126    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
127            pkt->cmdString());
128
129    for (ThreadID tid = 0; tid < numThreads; tid++) {
130        if (tid != sender) {
131            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
132                wakeup(tid);
133            }
134
135            TheISA::handleLockedSnoop(threadInfo[tid]->thread,
136                                      pkt, dcachePort.cacheBlockMask);
137        }
138    }
139}
140
141void
142AtomicSimpleCPU::drainResume()
143{
144    assert(!tickEvent.scheduled());
145    if (switchedOut())
146        return;
147
148    DPRINTF(SimpleCPU, "Resume\n");
149    verifyMemoryMode();
150
151    assert(!threadContexts.empty());
152
153    _status = BaseSimpleCPU::Idle;
154
155    for (ThreadID tid = 0; tid < numThreads; tid++) {
156        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
157            threadInfo[tid]->notIdleFraction = 1;
158            activeThreads.push_back(tid);
159            _status = BaseSimpleCPU::Running;
160
161            // Tick if any threads active
162            if (!tickEvent.scheduled()) {
163                schedule(tickEvent, nextCycle());
164            }
165        } else {
166            threadInfo[tid]->notIdleFraction = 0;
167        }
168    }
169
170    // Reschedule any power gating event (if any)
171    schedulePowerGatingEvent();
172}
173
174bool
175AtomicSimpleCPU::tryCompleteDrain()
176{
177    if (drainState() != DrainState::Draining)
178        return false;
179
180    DPRINTF(Drain, "tryCompleteDrain.\n");
181    if (!isDrained())
182        return false;
183
184    DPRINTF(Drain, "CPU done draining, processing drain event\n");
185    signalDrainDone();
186
187    return true;
188}
189
190
191void
192AtomicSimpleCPU::switchOut()
193{
194    BaseSimpleCPU::switchOut();
195
196    assert(!tickEvent.scheduled());
197    assert(_status == BaseSimpleCPU::Running || _status == Idle);
198    assert(isDrained());
199}
200
201
202void
203AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
204{
205    BaseSimpleCPU::takeOverFrom(oldCPU);
206
207    // The tick event should have been descheduled by drain()
208    assert(!tickEvent.scheduled());
209}
210
211void
212AtomicSimpleCPU::verifyMemoryMode() const
213{
214    if (!system->isAtomicMode()) {
215        fatal("The atomic CPU requires the memory system to be in "
216              "'atomic' mode.\n");
217    }
218}
219
220void
221AtomicSimpleCPU::activateContext(ThreadID thread_num)
222{
223    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
224
225    assert(thread_num < numThreads);
226
227    threadInfo[thread_num]->notIdleFraction = 1;
228    Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
229                                 threadInfo[thread_num]->thread->lastSuspend);
230    numCycles += delta;
231    ppCycles->notify(delta);
232
233    if (!tickEvent.scheduled()) {
234        //Make sure ticks are still on multiples of cycles
235        schedule(tickEvent, clockEdge(Cycles(0)));
236    }
237    _status = BaseSimpleCPU::Running;
238    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
239        == activeThreads.end()) {
240        activeThreads.push_back(thread_num);
241    }
242
243    BaseCPU::activateContext(thread_num);
244}
245
246
247void
248AtomicSimpleCPU::suspendContext(ThreadID thread_num)
249{
250    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
251
252    assert(thread_num < numThreads);
253    activeThreads.remove(thread_num);
254
255    if (_status == Idle)
256        return;
257
258    assert(_status == BaseSimpleCPU::Running);
259
260    threadInfo[thread_num]->notIdleFraction = 0;
261
262    if (activeThreads.empty()) {
263        _status = Idle;
264
265        if (tickEvent.scheduled()) {
266            deschedule(tickEvent);
267        }
268    }
269
270    BaseCPU::suspendContext(thread_num);
271}
272
273
274Tick
275AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
276{
277    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
278            pkt->cmdString());
279
280    // X86 ISA: Snooping an invalidation for monitor/mwait
281    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
282
283    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
284        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
285            cpu->wakeup(tid);
286        }
287    }
288
289    // if snoop invalidates, release any associated locks
290    // When run without caches, Invalidation packets will not be received
291    // hence we must check if the incoming packets are writes and wakeup
292    // the processor accordingly
293    if (pkt->isInvalidate() || pkt->isWrite()) {
294        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
295                pkt->getAddr());
296        for (auto &t_info : cpu->threadInfo) {
297            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
298        }
299    }
300
301    return 0;
302}
303
304void
305AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
306{
307    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
308            pkt->cmdString());
309
310    // X86 ISA: Snooping an invalidation for monitor/mwait
311    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
312    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
313        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
314            cpu->wakeup(tid);
315        }
316    }
317
318    // if snoop invalidates, release any associated locks
319    if (pkt->isInvalidate()) {
320        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
321                pkt->getAddr());
322        for (auto &t_info : cpu->threadInfo) {
323            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
324        }
325    }
326}
327
328Fault
329AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
330                         Request::Flags flags)
331{
332    SimpleExecContext& t_info = *threadInfo[curThread];
333    SimpleThread* thread = t_info.thread;
334
335    // use the CPU's statically allocated read request and packet objects
336    Request *req = &data_read_req;
337
338    if (traceData)
339        traceData->setMem(addr, size, flags);
340
341    //The size of the data we're trying to read.
342    int fullSize = size;
343
344    //The address of the second part of this access if it needs to be split
345    //across a cache line boundary.
346    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
347
348    if (secondAddr > addr)
349        size = secondAddr - addr;
350
351    dcache_latency = 0;
352
353    req->taskId(taskId());
354    while (1) {
355        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
356
357        // translate to physical address
358        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
359                                                          BaseTLB::Read);
360
361        // Now do the access.
362        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
363            Packet pkt(req, Packet::makeReadCmd(req));
364            pkt.dataStatic(data);
365
366            if (req->isMmappedIpr())
367                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
368            else {
369                if (fastmem && system->isMemAddr(pkt.getAddr()))
370                    system->getPhysMem().access(&pkt);
371                else
372                    dcache_latency += dcachePort.sendAtomic(&pkt);
373            }
374            dcache_access = true;
375
376            assert(!pkt.isError());
377
378            if (req->isLLSC()) {
379                TheISA::handleLockedRead(thread, req);
380            }
381        }
382
383        //If there's a fault, return it
384        if (fault != NoFault) {
385            if (req->isPrefetch()) {
386                return NoFault;
387            } else {
388                return fault;
389            }
390        }
391
392        //If we don't need to access a second cache line, stop now.
393        if (secondAddr <= addr)
394        {
395            if (req->isLockedRMW() && fault == NoFault) {
396                assert(!locked);
397                locked = true;
398            }
399
400            return fault;
401        }
402
403        /*
404         * Set up for accessing the second cache line.
405         */
406
407        //Move the pointer we're reading into to the correct location.
408        data += size;
409        //Adjust the size to get the remaining bytes.
410        size = addr + fullSize - secondAddr;
411        //And access the right address.
412        addr = secondAddr;
413    }
414}
415
416Fault
417AtomicSimpleCPU::initiateMemRead(Addr addr, unsigned size,
418                                 Request::Flags flags)
419{
420    panic("initiateMemRead() is for timing accesses, and should "
421          "never be called on AtomicSimpleCPU.\n");
422}
423
424Fault
425AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
426                          Request::Flags flags, uint64_t *res)
427{
428    SimpleExecContext& t_info = *threadInfo[curThread];
429    SimpleThread* thread = t_info.thread;
430    static uint8_t zero_array[64] = {};
431
432    if (data == NULL) {
433        assert(size <= 64);
434        assert(flags & Request::CACHE_BLOCK_ZERO);
435        // This must be a cache block cleaning request
436        data = zero_array;
437    }
438
439    // use the CPU's statically allocated write request and packet objects
440    Request *req = &data_write_req;
441
442    if (traceData)
443        traceData->setMem(addr, size, flags);
444
445    //The size of the data we're trying to read.
446    int fullSize = size;
447
448    //The address of the second part of this access if it needs to be split
449    //across a cache line boundary.
450    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
451
452    if (secondAddr > addr)
453        size = secondAddr - addr;
454
455    dcache_latency = 0;
456
457    req->taskId(taskId());
458    while (1) {
459        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
460
461        // translate to physical address
462        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
463
464        // Now do the access.
465        if (fault == NoFault) {
466            MemCmd cmd = MemCmd::WriteReq; // default
467            bool do_access = true;  // flag to suppress cache access
468
469            if (req->isLLSC()) {
470                cmd = MemCmd::StoreCondReq;
471                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
472            } else if (req->isSwap()) {
473                cmd = MemCmd::SwapReq;
474                if (req->isCondSwap()) {
475                    assert(res);
476                    req->setExtraData(*res);
477                }
478            }
479
480            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
481                Packet pkt = Packet(req, cmd);
482                pkt.dataStatic(data);
483
484                if (req->isMmappedIpr()) {
485                    dcache_latency +=
486                        TheISA::handleIprWrite(thread->getTC(), &pkt);
487                } else {
488                    if (fastmem && system->isMemAddr(pkt.getAddr()))
489                        system->getPhysMem().access(&pkt);
490                    else
491                        dcache_latency += dcachePort.sendAtomic(&pkt);
492
493                    // Notify other threads on this CPU of write
494                    threadSnoop(&pkt, curThread);
495                }
496                dcache_access = true;
497                assert(!pkt.isError());
498
499                if (req->isSwap()) {
500                    assert(res);
501                    memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
502                }
503            }
504
505            if (res && !req->isSwap()) {
506                *res = req->getExtraData();
507            }
508        }
509
510        //If there's a fault or we don't need to access a second cache line,
511        //stop now.
512        if (fault != NoFault || secondAddr <= addr)
513        {
514            if (req->isLockedRMW() && fault == NoFault) {
515                assert(locked);
516                locked = false;
517            }
518
519
520            if (fault != NoFault && req->isPrefetch()) {
521                return NoFault;
522            } else {
523                return fault;
524            }
525        }
526
527        /*
528         * Set up for accessing the second cache line.
529         */
530
531        //Move the pointer we're reading into to the correct location.
532        data += size;
533        //Adjust the size to get the remaining bytes.
534        size = addr + fullSize - secondAddr;
535        //And access the right address.
536        addr = secondAddr;
537    }
538}
539
540
541void
542AtomicSimpleCPU::tick()
543{
544    DPRINTF(SimpleCPU, "Tick\n");
545
546    // Change thread if multi-threaded
547    swapActiveThread();
548
549    // Set memroy request ids to current thread
550    if (numThreads > 1) {
551        ContextID cid = threadContexts[curThread]->contextId();
552
553        ifetch_req.setContext(cid);
554        data_read_req.setContext(cid);
555        data_write_req.setContext(cid);
556    }
557
558    SimpleExecContext& t_info = *threadInfo[curThread];
559    SimpleThread* thread = t_info.thread;
560
561    Tick latency = 0;
562
563    for (int i = 0; i < width || locked; ++i) {
564        numCycles++;
565        ppCycles->notify(1);
566
567        if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
568            checkForInterrupts();
569            checkPcEventQueue();
570        }
571
572        // We must have just got suspended by a PC event
573        if (_status == Idle) {
574            tryCompleteDrain();
575            return;
576        }
577
578        Fault fault = NoFault;
579
580        TheISA::PCState pcState = thread->pcState();
581
582        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
583                           !curMacroStaticInst;
584        if (needToFetch) {
585            ifetch_req.taskId(taskId());
586            setupFetchRequest(&ifetch_req);
587            fault = thread->itb->translateAtomic(&ifetch_req, thread->getTC(),
588                                                 BaseTLB::Execute);
589        }
590
591        if (fault == NoFault) {
592            Tick icache_latency = 0;
593            bool icache_access = false;
594            dcache_access = false; // assume no dcache access
595
596            if (needToFetch) {
597                // This is commented out because the decoder would act like
598                // a tiny cache otherwise. It wouldn't be flushed when needed
599                // like the I cache. It should be flushed, and when that works
600                // this code should be uncommented.
601                //Fetch more instruction memory if necessary
602                //if (decoder.needMoreBytes())
603                //{
604                    icache_access = true;
605                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
606                    ifetch_pkt.dataStatic(&inst);
607
608                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
609                        system->getPhysMem().access(&ifetch_pkt);
610                    else
611                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
612
613                    assert(!ifetch_pkt.isError());
614
615                    // ifetch_req is initialized to read the instruction directly
616                    // into the CPU object's inst field.
617                //}
618            }
619
620            preExecute();
621
622            Tick stall_ticks = 0;
623            if (curStaticInst) {
624                fault = curStaticInst->execute(&t_info, traceData);
625
626                // keep an instruction count
627                if (fault == NoFault) {
628                    countInst();
629                    ppCommit->notify(std::make_pair(thread, curStaticInst));
630                }
631                else if (traceData && !DTRACE(ExecFaulting)) {
632                    delete traceData;
633                    traceData = NULL;
634                }
635
636                if (dynamic_pointer_cast<SyscallRetryFault>(fault)) {
637                    // Retry execution of system calls after a delay.
638                    // Prevents immediate re-execution since conditions which
639                    // caused the retry are unlikely to change every tick.
640                    stall_ticks += clockEdge(syscallRetryLatency) - curTick();
641                }
642
643                postExecute();
644            }
645
646            // @todo remove me after debugging with legion done
647            if (curStaticInst && (!curStaticInst->isMicroop() ||
648                        curStaticInst->isFirstMicroop()))
649                instCnt++;
650
651            if (simulate_inst_stalls && icache_access)
652                stall_ticks += icache_latency;
653
654            if (simulate_data_stalls && dcache_access)
655                stall_ticks += dcache_latency;
656
657            if (stall_ticks) {
658                // the atomic cpu does its accounting in ticks, so
659                // keep counting in ticks but round to the clock
660                // period
661                latency += divCeil(stall_ticks, clockPeriod()) *
662                    clockPeriod();
663            }
664
665        }
666        if (fault != NoFault || !t_info.stayAtPC)
667            advancePC(fault);
668    }
669
670    if (tryCompleteDrain())
671        return;
672
673    // instruction takes at least one cycle
674    if (latency < clockPeriod())
675        latency = clockPeriod();
676
677    if (_status != Idle)
678        reschedule(tickEvent, curTick() + latency, true);
679}
680
681void
682AtomicSimpleCPU::regProbePoints()
683{
684    BaseCPU::regProbePoints();
685
686    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
687                                (getProbeManager(), "Commit");
688}
689
690void
691AtomicSimpleCPU::printAddr(Addr a)
692{
693    dcachePort.printAddr(a);
694}
695
696////////////////////////////////////////////////////////////////////////
697//
698//  AtomicSimpleCPU Simulation Object
699//
700AtomicSimpleCPU *
701AtomicSimpleCPUParams::create()
702{
703    return new AtomicSimpleCPU(this);
704}
705