atomic.cc revision 11429:cf5af0cc3be4
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "base/output.hh"
49#include "config/the_isa.hh"
50#include "cpu/simple/atomic.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "mem/physical.hh"
58#include "params/AtomicSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/system.hh"
61#include "sim/full_system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
67    : Event(CPU_Tick_Pri), cpu(c)
68{
69}
70
71
72void
73AtomicSimpleCPU::TickEvent::process()
74{
75    cpu->tick();
76}
77
78const char *
79AtomicSimpleCPU::TickEvent::description() const
80{
81    return "AtomicSimpleCPU tick";
82}
83
84void
85AtomicSimpleCPU::init()
86{
87    BaseSimpleCPU::init();
88
89    int cid = threadContexts[0]->contextId();
90    ifetch_req.setThreadContext(cid, 0);
91    data_read_req.setThreadContext(cid, 0);
92    data_write_req.setThreadContext(cid, 0);
93}
94
95AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
96    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
97      simulate_data_stalls(p->simulate_data_stalls),
98      simulate_inst_stalls(p->simulate_inst_stalls),
99      icachePort(name() + ".icache_port", this),
100      dcachePort(name() + ".dcache_port", this),
101      fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
102      ppCommit(nullptr)
103{
104    _status = Idle;
105}
106
107
108AtomicSimpleCPU::~AtomicSimpleCPU()
109{
110    if (tickEvent.scheduled()) {
111        deschedule(tickEvent);
112    }
113}
114
115DrainState
116AtomicSimpleCPU::drain()
117{
118    if (switchedOut())
119        return DrainState::Drained;
120
121    if (!isDrained()) {
122        DPRINTF(Drain, "Requesting drain.\n");
123        return DrainState::Draining;
124    } else {
125        if (tickEvent.scheduled())
126            deschedule(tickEvent);
127
128        activeThreads.clear();
129        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
130        return DrainState::Drained;
131    }
132}
133
134void
135AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
136{
137    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
138            pkt->cmdString());
139
140    for (ThreadID tid = 0; tid < numThreads; tid++) {
141        if (tid != sender) {
142            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
143                wakeup(tid);
144            }
145
146            TheISA::handleLockedSnoop(threadInfo[tid]->thread,
147                                      pkt, dcachePort.cacheBlockMask);
148        }
149    }
150}
151
152void
153AtomicSimpleCPU::drainResume()
154{
155    assert(!tickEvent.scheduled());
156    if (switchedOut())
157        return;
158
159    DPRINTF(SimpleCPU, "Resume\n");
160    verifyMemoryMode();
161
162    assert(!threadContexts.empty());
163
164    _status = BaseSimpleCPU::Idle;
165
166    for (ThreadID tid = 0; tid < numThreads; tid++) {
167        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
168            threadInfo[tid]->notIdleFraction = 1;
169            activeThreads.push_back(tid);
170            _status = BaseSimpleCPU::Running;
171
172            // Tick if any threads active
173            if (!tickEvent.scheduled()) {
174                schedule(tickEvent, nextCycle());
175            }
176        } else {
177            threadInfo[tid]->notIdleFraction = 0;
178        }
179    }
180}
181
182bool
183AtomicSimpleCPU::tryCompleteDrain()
184{
185    if (drainState() != DrainState::Draining)
186        return false;
187
188    DPRINTF(Drain, "tryCompleteDrain.\n");
189    if (!isDrained())
190        return false;
191
192    DPRINTF(Drain, "CPU done draining, processing drain event\n");
193    signalDrainDone();
194
195    return true;
196}
197
198
199void
200AtomicSimpleCPU::switchOut()
201{
202    BaseSimpleCPU::switchOut();
203
204    assert(!tickEvent.scheduled());
205    assert(_status == BaseSimpleCPU::Running || _status == Idle);
206    assert(isDrained());
207}
208
209
210void
211AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
212{
213    BaseSimpleCPU::takeOverFrom(oldCPU);
214
215    // The tick event should have been descheduled by drain()
216    assert(!tickEvent.scheduled());
217}
218
219void
220AtomicSimpleCPU::verifyMemoryMode() const
221{
222    if (!system->isAtomicMode()) {
223        fatal("The atomic CPU requires the memory system to be in "
224              "'atomic' mode.\n");
225    }
226}
227
228void
229AtomicSimpleCPU::activateContext(ThreadID thread_num)
230{
231    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
232
233    assert(thread_num < numThreads);
234
235    threadInfo[thread_num]->notIdleFraction = 1;
236    Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
237                                 threadInfo[thread_num]->thread->lastSuspend);
238    numCycles += delta;
239    ppCycles->notify(delta);
240
241    if (!tickEvent.scheduled()) {
242        //Make sure ticks are still on multiples of cycles
243        schedule(tickEvent, clockEdge(Cycles(0)));
244    }
245    _status = BaseSimpleCPU::Running;
246    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
247        == activeThreads.end()) {
248        activeThreads.push_back(thread_num);
249    }
250}
251
252
253void
254AtomicSimpleCPU::suspendContext(ThreadID thread_num)
255{
256    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
257
258    assert(thread_num < numThreads);
259    activeThreads.remove(thread_num);
260
261    if (_status == Idle)
262        return;
263
264    assert(_status == BaseSimpleCPU::Running);
265
266    threadInfo[thread_num]->notIdleFraction = 0;
267
268    if (activeThreads.empty()) {
269        _status = Idle;
270
271        if (tickEvent.scheduled()) {
272            deschedule(tickEvent);
273        }
274    }
275
276}
277
278
279Tick
280AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
281{
282    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
283            pkt->cmdString());
284
285    // X86 ISA: Snooping an invalidation for monitor/mwait
286    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
287
288    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
289        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
290            cpu->wakeup(tid);
291        }
292    }
293
294    // if snoop invalidates, release any associated locks
295    // When run without caches, Invalidation packets will not be received
296    // hence we must check if the incoming packets are writes and wakeup
297    // the processor accordingly
298    if (pkt->isInvalidate() || pkt->isWrite()) {
299        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
300                pkt->getAddr());
301        for (auto &t_info : cpu->threadInfo) {
302            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
303        }
304    }
305
306    return 0;
307}
308
309void
310AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
311{
312    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
313            pkt->cmdString());
314
315    // X86 ISA: Snooping an invalidation for monitor/mwait
316    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
317    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
318        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
319            cpu->wakeup(tid);
320        }
321    }
322
323    // if snoop invalidates, release any associated locks
324    if (pkt->isInvalidate()) {
325        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
326                pkt->getAddr());
327        for (auto &t_info : cpu->threadInfo) {
328            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
329        }
330    }
331}
332
333Fault
334AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
335                         unsigned size, unsigned flags)
336{
337    SimpleExecContext& t_info = *threadInfo[curThread];
338    SimpleThread* thread = t_info.thread;
339
340    // use the CPU's statically allocated read request and packet objects
341    Request *req = &data_read_req;
342
343    if (traceData)
344        traceData->setMem(addr, size, flags);
345
346    //The size of the data we're trying to read.
347    int fullSize = size;
348
349    //The address of the second part of this access if it needs to be split
350    //across a cache line boundary.
351    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
352
353    if (secondAddr > addr)
354        size = secondAddr - addr;
355
356    dcache_latency = 0;
357
358    req->taskId(taskId());
359    while (1) {
360        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
361
362        // translate to physical address
363        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
364                                                          BaseTLB::Read);
365
366        // Now do the access.
367        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
368            Packet pkt(req, Packet::makeReadCmd(req));
369            pkt.dataStatic(data);
370
371            if (req->isMmappedIpr())
372                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
373            else {
374                if (fastmem && system->isMemAddr(pkt.getAddr()))
375                    system->getPhysMem().access(&pkt);
376                else
377                    dcache_latency += dcachePort.sendAtomic(&pkt);
378            }
379            dcache_access = true;
380
381            assert(!pkt.isError());
382
383            if (req->isLLSC()) {
384                TheISA::handleLockedRead(thread, req);
385            }
386        }
387
388        //If there's a fault, return it
389        if (fault != NoFault) {
390            if (req->isPrefetch()) {
391                return NoFault;
392            } else {
393                return fault;
394            }
395        }
396
397        //If we don't need to access a second cache line, stop now.
398        if (secondAddr <= addr)
399        {
400            if (req->isLockedRMW() && fault == NoFault) {
401                assert(!locked);
402                locked = true;
403            }
404
405            return fault;
406        }
407
408        /*
409         * Set up for accessing the second cache line.
410         */
411
412        //Move the pointer we're reading into to the correct location.
413        data += size;
414        //Adjust the size to get the remaining bytes.
415        size = addr + fullSize - secondAddr;
416        //And access the right address.
417        addr = secondAddr;
418    }
419}
420
421Fault
422AtomicSimpleCPU::initiateMemRead(Addr addr, unsigned size, unsigned flags)
423{
424    panic("initiateMemRead() is for timing accesses, and should "
425          "never be called on AtomicSimpleCPU.\n");
426}
427
428Fault
429AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
430                          Addr addr, unsigned flags, uint64_t *res)
431{
432    SimpleExecContext& t_info = *threadInfo[curThread];
433    SimpleThread* thread = t_info.thread;
434    static uint8_t zero_array[64] = {};
435
436    if (data == NULL) {
437        assert(size <= 64);
438        assert(flags & Request::CACHE_BLOCK_ZERO);
439        // This must be a cache block cleaning request
440        data = zero_array;
441    }
442
443    // use the CPU's statically allocated write request and packet objects
444    Request *req = &data_write_req;
445
446    if (traceData)
447        traceData->setMem(addr, size, flags);
448
449    //The size of the data we're trying to read.
450    int fullSize = size;
451
452    //The address of the second part of this access if it needs to be split
453    //across a cache line boundary.
454    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
455
456    if (secondAddr > addr)
457        size = secondAddr - addr;
458
459    dcache_latency = 0;
460
461    req->taskId(taskId());
462    while (1) {
463        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
464
465        // translate to physical address
466        Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
467
468        // Now do the access.
469        if (fault == NoFault) {
470            MemCmd cmd = MemCmd::WriteReq; // default
471            bool do_access = true;  // flag to suppress cache access
472
473            if (req->isLLSC()) {
474                cmd = MemCmd::StoreCondReq;
475                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
476            } else if (req->isSwap()) {
477                cmd = MemCmd::SwapReq;
478                if (req->isCondSwap()) {
479                    assert(res);
480                    req->setExtraData(*res);
481                }
482            }
483
484            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
485                Packet pkt = Packet(req, cmd);
486                pkt.dataStatic(data);
487
488                if (req->isMmappedIpr()) {
489                    dcache_latency +=
490                        TheISA::handleIprWrite(thread->getTC(), &pkt);
491                } else {
492                    if (fastmem && system->isMemAddr(pkt.getAddr()))
493                        system->getPhysMem().access(&pkt);
494                    else
495                        dcache_latency += dcachePort.sendAtomic(&pkt);
496
497                    // Notify other threads on this CPU of write
498                    threadSnoop(&pkt, curThread);
499                }
500                dcache_access = true;
501                assert(!pkt.isError());
502
503                if (req->isSwap()) {
504                    assert(res);
505                    memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
506                }
507            }
508
509            if (res && !req->isSwap()) {
510                *res = req->getExtraData();
511            }
512        }
513
514        //If there's a fault or we don't need to access a second cache line,
515        //stop now.
516        if (fault != NoFault || secondAddr <= addr)
517        {
518            if (req->isLockedRMW() && fault == NoFault) {
519                assert(locked);
520                locked = false;
521            }
522
523
524            if (fault != NoFault && req->isPrefetch()) {
525                return NoFault;
526            } else {
527                return fault;
528            }
529        }
530
531        /*
532         * Set up for accessing the second cache line.
533         */
534
535        //Move the pointer we're reading into to the correct location.
536        data += size;
537        //Adjust the size to get the remaining bytes.
538        size = addr + fullSize - secondAddr;
539        //And access the right address.
540        addr = secondAddr;
541    }
542}
543
544
545void
546AtomicSimpleCPU::tick()
547{
548    DPRINTF(SimpleCPU, "Tick\n");
549
550    // Change thread if multi-threaded
551    swapActiveThread();
552
553    // Set memroy request ids to current thread
554    if (numThreads > 1) {
555        ContextID cid = threadContexts[curThread]->contextId();
556
557        ifetch_req.setThreadContext(cid, curThread);
558        data_read_req.setThreadContext(cid, curThread);
559        data_write_req.setThreadContext(cid, curThread);
560    }
561
562    SimpleExecContext& t_info = *threadInfo[curThread];
563    SimpleThread* thread = t_info.thread;
564
565    Tick latency = 0;
566
567    for (int i = 0; i < width || locked; ++i) {
568        numCycles++;
569        ppCycles->notify(1);
570
571        if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
572            checkForInterrupts();
573            checkPcEventQueue();
574        }
575
576        // We must have just got suspended by a PC event
577        if (_status == Idle) {
578            tryCompleteDrain();
579            return;
580        }
581
582        Fault fault = NoFault;
583
584        TheISA::PCState pcState = thread->pcState();
585
586        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
587                           !curMacroStaticInst;
588        if (needToFetch) {
589            ifetch_req.taskId(taskId());
590            setupFetchRequest(&ifetch_req);
591            fault = thread->itb->translateAtomic(&ifetch_req, thread->getTC(),
592                                                 BaseTLB::Execute);
593        }
594
595        if (fault == NoFault) {
596            Tick icache_latency = 0;
597            bool icache_access = false;
598            dcache_access = false; // assume no dcache access
599
600            if (needToFetch) {
601                // This is commented out because the decoder would act like
602                // a tiny cache otherwise. It wouldn't be flushed when needed
603                // like the I cache. It should be flushed, and when that works
604                // this code should be uncommented.
605                //Fetch more instruction memory if necessary
606                //if (decoder.needMoreBytes())
607                //{
608                    icache_access = true;
609                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
610                    ifetch_pkt.dataStatic(&inst);
611
612                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
613                        system->getPhysMem().access(&ifetch_pkt);
614                    else
615                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
616
617                    assert(!ifetch_pkt.isError());
618
619                    // ifetch_req is initialized to read the instruction directly
620                    // into the CPU object's inst field.
621                //}
622            }
623
624            preExecute();
625
626            if (curStaticInst) {
627                fault = curStaticInst->execute(&t_info, traceData);
628
629                // keep an instruction count
630                if (fault == NoFault) {
631                    countInst();
632                    ppCommit->notify(std::make_pair(thread, curStaticInst));
633                }
634                else if (traceData && !DTRACE(ExecFaulting)) {
635                    delete traceData;
636                    traceData = NULL;
637                }
638
639                postExecute();
640            }
641
642            // @todo remove me after debugging with legion done
643            if (curStaticInst && (!curStaticInst->isMicroop() ||
644                        curStaticInst->isFirstMicroop()))
645                instCnt++;
646
647            Tick stall_ticks = 0;
648            if (simulate_inst_stalls && icache_access)
649                stall_ticks += icache_latency;
650
651            if (simulate_data_stalls && dcache_access)
652                stall_ticks += dcache_latency;
653
654            if (stall_ticks) {
655                // the atomic cpu does its accounting in ticks, so
656                // keep counting in ticks but round to the clock
657                // period
658                latency += divCeil(stall_ticks, clockPeriod()) *
659                    clockPeriod();
660            }
661
662        }
663        if (fault != NoFault || !t_info.stayAtPC)
664            advancePC(fault);
665    }
666
667    if (tryCompleteDrain())
668        return;
669
670    // instruction takes at least one cycle
671    if (latency < clockPeriod())
672        latency = clockPeriod();
673
674    if (_status != Idle)
675        reschedule(tickEvent, curTick() + latency, true);
676}
677
678void
679AtomicSimpleCPU::regProbePoints()
680{
681    BaseCPU::regProbePoints();
682
683    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
684                                (getProbeManager(), "Commit");
685}
686
687void
688AtomicSimpleCPU::printAddr(Addr a)
689{
690    dcachePort.printAddr(a);
691}
692
693////////////////////////////////////////////////////////////////////////
694//
695//  AtomicSimpleCPU Simulation Object
696//
697AtomicSimpleCPU *
698AtomicSimpleCPUParams::create()
699{
700    return new AtomicSimpleCPU(this);
701}
702