atomic.cc revision 11151:ca4ea9b5c052
1/* 2 * Copyright 2014 Google, Inc. 3 * Copyright (c) 2012-2013,2015 ARM Limited 4 * All rights reserved. 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2002-2005 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Steve Reinhardt 42 */ 43 44#include "arch/locked_mem.hh" 45#include "arch/mmapped_ipr.hh" 46#include "arch/utility.hh" 47#include "base/bigint.hh" 48#include "base/output.hh" 49#include "config/the_isa.hh" 50#include "cpu/simple/atomic.hh" 51#include "cpu/exetrace.hh" 52#include "debug/Drain.hh" 53#include "debug/ExecFaulting.hh" 54#include "debug/SimpleCPU.hh" 55#include "mem/packet.hh" 56#include "mem/packet_access.hh" 57#include "mem/physical.hh" 58#include "params/AtomicSimpleCPU.hh" 59#include "sim/faults.hh" 60#include "sim/system.hh" 61#include "sim/full_system.hh" 62 63using namespace std; 64using namespace TheISA; 65 66AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) 67 : Event(CPU_Tick_Pri), cpu(c) 68{ 69} 70 71 72void 73AtomicSimpleCPU::TickEvent::process() 74{ 75 cpu->tick(); 76} 77 78const char * 79AtomicSimpleCPU::TickEvent::description() const 80{ 81 return "AtomicSimpleCPU tick"; 82} 83 84void 85AtomicSimpleCPU::init() 86{ 87 BaseSimpleCPU::init(); 88 89 int cid = threadContexts[0]->contextId(); 90 ifetch_req.setThreadContext(cid, 0); 91 data_read_req.setThreadContext(cid, 0); 92 data_write_req.setThreadContext(cid, 0); 93} 94 95AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p) 96 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false), 97 simulate_data_stalls(p->simulate_data_stalls), 98 simulate_inst_stalls(p->simulate_inst_stalls), 99 icachePort(name() + ".icache_port", this), 100 dcachePort(name() + ".dcache_port", this), 101 fastmem(p->fastmem), dcache_access(false), dcache_latency(0), 102 ppCommit(nullptr) 103{ 104 _status = Idle; 105} 106 107 108AtomicSimpleCPU::~AtomicSimpleCPU() 109{ 110 if (tickEvent.scheduled()) { 111 deschedule(tickEvent); 112 } 113} 114 115DrainState 116AtomicSimpleCPU::drain() 117{ 118 if (switchedOut()) 119 return DrainState::Drained; 120 121 if (!isDrained()) { 122 DPRINTF(Drain, "Requesting drain.\n"); 123 return DrainState::Draining; 124 } else { 125 if (tickEvent.scheduled()) 126 deschedule(tickEvent); 127 128 activeThreads.clear(); 129 DPRINTF(Drain, "Not executing microcode, no need to drain.\n"); 130 return DrainState::Drained; 131 } 132} 133 134void 135AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender) 136{ 137 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 138 pkt->cmdString()); 139 140 for (ThreadID tid = 0; tid < numThreads; tid++) { 141 if (tid != sender) { 142 if(getCpuAddrMonitor(tid)->doMonitor(pkt)) { 143 wakeup(tid); 144 } 145 146 TheISA::handleLockedSnoop(threadInfo[tid]->thread, 147 pkt, dcachePort.cacheBlockMask); 148 } 149 } 150} 151 152void 153AtomicSimpleCPU::drainResume() 154{ 155 assert(!tickEvent.scheduled()); 156 if (switchedOut()) 157 return; 158 159 DPRINTF(SimpleCPU, "Resume\n"); 160 verifyMemoryMode(); 161 162 assert(!threadContexts.empty()); 163 164 _status = BaseSimpleCPU::Idle; 165 166 for (ThreadID tid = 0; tid < numThreads; tid++) { 167 if (threadInfo[tid]->thread->status() == ThreadContext::Active) { 168 threadInfo[tid]->notIdleFraction = 1; 169 activeThreads.push_back(tid); 170 _status = BaseSimpleCPU::Running; 171 172 // Tick if any threads active 173 if (!tickEvent.scheduled()) { 174 schedule(tickEvent, nextCycle()); 175 } 176 } else { 177 threadInfo[tid]->notIdleFraction = 0; 178 } 179 } 180} 181 182bool 183AtomicSimpleCPU::tryCompleteDrain() 184{ 185 if (drainState() != DrainState::Draining) 186 return false; 187 188 DPRINTF(Drain, "tryCompleteDrain.\n"); 189 if (!isDrained()) 190 return false; 191 192 DPRINTF(Drain, "CPU done draining, processing drain event\n"); 193 signalDrainDone(); 194 195 return true; 196} 197 198 199void 200AtomicSimpleCPU::switchOut() 201{ 202 BaseSimpleCPU::switchOut(); 203 204 assert(!tickEvent.scheduled()); 205 assert(_status == BaseSimpleCPU::Running || _status == Idle); 206 assert(isDrained()); 207} 208 209 210void 211AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) 212{ 213 BaseSimpleCPU::takeOverFrom(oldCPU); 214 215 // The tick event should have been descheduled by drain() 216 assert(!tickEvent.scheduled()); 217} 218 219void 220AtomicSimpleCPU::verifyMemoryMode() const 221{ 222 if (!system->isAtomicMode()) { 223 fatal("The atomic CPU requires the memory system to be in " 224 "'atomic' mode.\n"); 225 } 226} 227 228void 229AtomicSimpleCPU::activateContext(ThreadID thread_num) 230{ 231 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num); 232 233 assert(thread_num < numThreads); 234 235 threadInfo[thread_num]->notIdleFraction = 1; 236 Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate - 237 threadInfo[thread_num]->thread->lastSuspend); 238 numCycles += delta; 239 ppCycles->notify(delta); 240 241 if (!tickEvent.scheduled()) { 242 //Make sure ticks are still on multiples of cycles 243 schedule(tickEvent, clockEdge(Cycles(0))); 244 } 245 _status = BaseSimpleCPU::Running; 246 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num) 247 == activeThreads.end()) { 248 activeThreads.push_back(thread_num); 249 } 250} 251 252 253void 254AtomicSimpleCPU::suspendContext(ThreadID thread_num) 255{ 256 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num); 257 258 assert(thread_num < numThreads); 259 activeThreads.remove(thread_num); 260 261 if (_status == Idle) 262 return; 263 264 assert(_status == BaseSimpleCPU::Running); 265 266 threadInfo[thread_num]->notIdleFraction = 0; 267 268 if (activeThreads.empty()) { 269 _status = Idle; 270 271 if (tickEvent.scheduled()) { 272 deschedule(tickEvent); 273 } 274 } 275 276} 277 278 279Tick 280AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt) 281{ 282 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 283 pkt->cmdString()); 284 285 // X86 ISA: Snooping an invalidation for monitor/mwait 286 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner); 287 288 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) { 289 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) { 290 cpu->wakeup(tid); 291 } 292 } 293 294 // if snoop invalidates, release any associated locks 295 if (pkt->isInvalidate()) { 296 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", 297 pkt->getAddr()); 298 for (auto &t_info : cpu->threadInfo) { 299 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask); 300 } 301 } 302 303 return 0; 304} 305 306void 307AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt) 308{ 309 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 310 pkt->cmdString()); 311 312 // X86 ISA: Snooping an invalidation for monitor/mwait 313 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner); 314 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) { 315 if(cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) { 316 cpu->wakeup(tid); 317 } 318 } 319 320 // if snoop invalidates, release any associated locks 321 if (pkt->isInvalidate()) { 322 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", 323 pkt->getAddr()); 324 for (auto &t_info : cpu->threadInfo) { 325 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask); 326 } 327 } 328} 329 330Fault 331AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, 332 unsigned size, unsigned flags) 333{ 334 SimpleExecContext& t_info = *threadInfo[curThread]; 335 SimpleThread* thread = t_info.thread; 336 337 // use the CPU's statically allocated read request and packet objects 338 Request *req = &data_read_req; 339 340 if (traceData) 341 traceData->setMem(addr, size, flags); 342 343 //The size of the data we're trying to read. 344 int fullSize = size; 345 346 //The address of the second part of this access if it needs to be split 347 //across a cache line boundary. 348 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); 349 350 if (secondAddr > addr) 351 size = secondAddr - addr; 352 353 dcache_latency = 0; 354 355 req->taskId(taskId()); 356 while (1) { 357 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); 358 359 // translate to physical address 360 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), 361 BaseTLB::Read); 362 363 // Now do the access. 364 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) { 365 Packet pkt(req, Packet::makeReadCmd(req)); 366 pkt.dataStatic(data); 367 368 if (req->isMmappedIpr()) 369 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt); 370 else { 371 if (fastmem && system->isMemAddr(pkt.getAddr())) 372 system->getPhysMem().access(&pkt); 373 else 374 dcache_latency += dcachePort.sendAtomic(&pkt); 375 } 376 dcache_access = true; 377 378 assert(!pkt.isError()); 379 380 if (req->isLLSC()) { 381 TheISA::handleLockedRead(thread, req); 382 } 383 } 384 385 //If there's a fault, return it 386 if (fault != NoFault) { 387 if (req->isPrefetch()) { 388 return NoFault; 389 } else { 390 return fault; 391 } 392 } 393 394 //If we don't need to access a second cache line, stop now. 395 if (secondAddr <= addr) 396 { 397 if (req->isLockedRMW() && fault == NoFault) { 398 assert(!locked); 399 locked = true; 400 } 401 402 return fault; 403 } 404 405 /* 406 * Set up for accessing the second cache line. 407 */ 408 409 //Move the pointer we're reading into to the correct location. 410 data += size; 411 //Adjust the size to get the remaining bytes. 412 size = addr + fullSize - secondAddr; 413 //And access the right address. 414 addr = secondAddr; 415 } 416} 417 418 419Fault 420AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, 421 Addr addr, unsigned flags, uint64_t *res) 422{ 423 SimpleExecContext& t_info = *threadInfo[curThread]; 424 SimpleThread* thread = t_info.thread; 425 static uint8_t zero_array[64] = {}; 426 427 if (data == NULL) { 428 assert(size <= 64); 429 assert(flags & Request::CACHE_BLOCK_ZERO); 430 // This must be a cache block cleaning request 431 data = zero_array; 432 } 433 434 // use the CPU's statically allocated write request and packet objects 435 Request *req = &data_write_req; 436 437 if (traceData) 438 traceData->setMem(addr, size, flags); 439 440 //The size of the data we're trying to read. 441 int fullSize = size; 442 443 //The address of the second part of this access if it needs to be split 444 //across a cache line boundary. 445 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); 446 447 if(secondAddr > addr) 448 size = secondAddr - addr; 449 450 dcache_latency = 0; 451 452 req->taskId(taskId()); 453 while(1) { 454 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); 455 456 // translate to physical address 457 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write); 458 459 // Now do the access. 460 if (fault == NoFault) { 461 MemCmd cmd = MemCmd::WriteReq; // default 462 bool do_access = true; // flag to suppress cache access 463 464 if (req->isLLSC()) { 465 cmd = MemCmd::StoreCondReq; 466 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask); 467 } else if (req->isSwap()) { 468 cmd = MemCmd::SwapReq; 469 if (req->isCondSwap()) { 470 assert(res); 471 req->setExtraData(*res); 472 } 473 } 474 475 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) { 476 Packet pkt = Packet(req, cmd); 477 pkt.dataStatic(data); 478 479 if (req->isMmappedIpr()) { 480 dcache_latency += 481 TheISA::handleIprWrite(thread->getTC(), &pkt); 482 } else { 483 if (fastmem && system->isMemAddr(pkt.getAddr())) 484 system->getPhysMem().access(&pkt); 485 else 486 dcache_latency += dcachePort.sendAtomic(&pkt); 487 488 // Notify other threads on this CPU of write 489 threadSnoop(&pkt, curThread); 490 } 491 dcache_access = true; 492 assert(!pkt.isError()); 493 494 if (req->isSwap()) { 495 assert(res); 496 memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize); 497 } 498 } 499 500 if (res && !req->isSwap()) { 501 *res = req->getExtraData(); 502 } 503 } 504 505 //If there's a fault or we don't need to access a second cache line, 506 //stop now. 507 if (fault != NoFault || secondAddr <= addr) 508 { 509 if (req->isLockedRMW() && fault == NoFault) { 510 assert(locked); 511 locked = false; 512 } 513 514 515 if (fault != NoFault && req->isPrefetch()) { 516 return NoFault; 517 } else { 518 return fault; 519 } 520 } 521 522 /* 523 * Set up for accessing the second cache line. 524 */ 525 526 //Move the pointer we're reading into to the correct location. 527 data += size; 528 //Adjust the size to get the remaining bytes. 529 size = addr + fullSize - secondAddr; 530 //And access the right address. 531 addr = secondAddr; 532 } 533} 534 535 536void 537AtomicSimpleCPU::tick() 538{ 539 DPRINTF(SimpleCPU, "Tick\n"); 540 541 // Change thread if multi-threaded 542 swapActiveThread(); 543 544 // Set memroy request ids to current thread 545 if (numThreads > 1) { 546 ContextID cid = threadContexts[curThread]->contextId(); 547 548 ifetch_req.setThreadContext(cid, curThread); 549 data_read_req.setThreadContext(cid, curThread); 550 data_write_req.setThreadContext(cid, curThread); 551 } 552 553 SimpleExecContext& t_info = *threadInfo[curThread]; 554 SimpleThread* thread = t_info.thread; 555 556 Tick latency = 0; 557 558 for (int i = 0; i < width || locked; ++i) { 559 numCycles++; 560 ppCycles->notify(1); 561 562 if (!curStaticInst || !curStaticInst->isDelayedCommit()) { 563 checkForInterrupts(); 564 checkPcEventQueue(); 565 } 566 567 // We must have just got suspended by a PC event 568 if (_status == Idle) { 569 tryCompleteDrain(); 570 return; 571 } 572 573 Fault fault = NoFault; 574 575 TheISA::PCState pcState = thread->pcState(); 576 577 bool needToFetch = !isRomMicroPC(pcState.microPC()) && 578 !curMacroStaticInst; 579 if (needToFetch) { 580 ifetch_req.taskId(taskId()); 581 setupFetchRequest(&ifetch_req); 582 fault = thread->itb->translateAtomic(&ifetch_req, thread->getTC(), 583 BaseTLB::Execute); 584 } 585 586 if (fault == NoFault) { 587 Tick icache_latency = 0; 588 bool icache_access = false; 589 dcache_access = false; // assume no dcache access 590 591 if (needToFetch) { 592 // This is commented out because the decoder would act like 593 // a tiny cache otherwise. It wouldn't be flushed when needed 594 // like the I cache. It should be flushed, and when that works 595 // this code should be uncommented. 596 //Fetch more instruction memory if necessary 597 //if(decoder.needMoreBytes()) 598 //{ 599 icache_access = true; 600 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq); 601 ifetch_pkt.dataStatic(&inst); 602 603 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr())) 604 system->getPhysMem().access(&ifetch_pkt); 605 else 606 icache_latency = icachePort.sendAtomic(&ifetch_pkt); 607 608 assert(!ifetch_pkt.isError()); 609 610 // ifetch_req is initialized to read the instruction directly 611 // into the CPU object's inst field. 612 //} 613 } 614 615 preExecute(); 616 617 if (curStaticInst) { 618 fault = curStaticInst->execute(&t_info, traceData); 619 620 // keep an instruction count 621 if (fault == NoFault) { 622 countInst(); 623 ppCommit->notify(std::make_pair(thread, curStaticInst)); 624 } 625 else if (traceData && !DTRACE(ExecFaulting)) { 626 delete traceData; 627 traceData = NULL; 628 } 629 630 postExecute(); 631 } 632 633 // @todo remove me after debugging with legion done 634 if (curStaticInst && (!curStaticInst->isMicroop() || 635 curStaticInst->isFirstMicroop())) 636 instCnt++; 637 638 Tick stall_ticks = 0; 639 if (simulate_inst_stalls && icache_access) 640 stall_ticks += icache_latency; 641 642 if (simulate_data_stalls && dcache_access) 643 stall_ticks += dcache_latency; 644 645 if (stall_ticks) { 646 // the atomic cpu does its accounting in ticks, so 647 // keep counting in ticks but round to the clock 648 // period 649 latency += divCeil(stall_ticks, clockPeriod()) * 650 clockPeriod(); 651 } 652 653 } 654 if(fault != NoFault || !t_info.stayAtPC) 655 advancePC(fault); 656 } 657 658 if (tryCompleteDrain()) 659 return; 660 661 // instruction takes at least one cycle 662 if (latency < clockPeriod()) 663 latency = clockPeriod(); 664 665 if (_status != Idle) 666 reschedule(tickEvent, curTick() + latency, true); 667} 668 669void 670AtomicSimpleCPU::regProbePoints() 671{ 672 BaseCPU::regProbePoints(); 673 674 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>> 675 (getProbeManager(), "Commit"); 676} 677 678void 679AtomicSimpleCPU::printAddr(Addr a) 680{ 681 dcachePort.printAddr(a); 682} 683 684//////////////////////////////////////////////////////////////////////// 685// 686// AtomicSimpleCPU Simulation Object 687// 688AtomicSimpleCPU * 689AtomicSimpleCPUParams::create() 690{ 691 return new AtomicSimpleCPU(this); 692} 693