atomic.cc revision 10529:05b5a6cf3521
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "base/output.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/atomic.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "mem/physical.hh"
57#include "params/AtomicSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/system.hh"
60#include "sim/full_system.hh"
61
62using namespace std;
63using namespace TheISA;
64
65AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
66    : Event(CPU_Tick_Pri), cpu(c)
67{
68}
69
70
71void
72AtomicSimpleCPU::TickEvent::process()
73{
74    cpu->tick();
75}
76
77const char *
78AtomicSimpleCPU::TickEvent::description() const
79{
80    return "AtomicSimpleCPU tick";
81}
82
83void
84AtomicSimpleCPU::init()
85{
86    BaseCPU::init();
87
88    // Initialise the ThreadContext's memory proxies
89    tcBase()->initMemProxies(tcBase());
90
91    if (FullSystem && !params()->switched_out) {
92        ThreadID size = threadContexts.size();
93        for (ThreadID i = 0; i < size; ++i) {
94            ThreadContext *tc = threadContexts[i];
95            // initialize CPU, including PC
96            TheISA::initCPU(tc, tc->contextId());
97        }
98    }
99
100    // Atomic doesn't do MT right now, so contextId == threadId
101    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
102    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104}
105
106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
107    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
108      simulate_data_stalls(p->simulate_data_stalls),
109      simulate_inst_stalls(p->simulate_inst_stalls),
110      drain_manager(NULL),
111      icachePort(name() + ".icache_port", this),
112      dcachePort(name() + ".dcache_port", this),
113      fastmem(p->fastmem)
114{
115    _status = Idle;
116}
117
118
119AtomicSimpleCPU::~AtomicSimpleCPU()
120{
121    if (tickEvent.scheduled()) {
122        deschedule(tickEvent);
123    }
124}
125
126unsigned int
127AtomicSimpleCPU::drain(DrainManager *dm)
128{
129    assert(!drain_manager);
130    if (switchedOut())
131        return 0;
132
133    if (!isDrained()) {
134        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
135        drain_manager = dm;
136        return 1;
137    } else {
138        if (tickEvent.scheduled())
139            deschedule(tickEvent);
140
141        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
142        return 0;
143    }
144}
145
146void
147AtomicSimpleCPU::drainResume()
148{
149    assert(!tickEvent.scheduled());
150    assert(!drain_manager);
151    if (switchedOut())
152        return;
153
154    DPRINTF(SimpleCPU, "Resume\n");
155    verifyMemoryMode();
156
157    assert(!threadContexts.empty());
158    if (threadContexts.size() > 1)
159        fatal("The atomic CPU only supports one thread.\n");
160
161    if (thread->status() == ThreadContext::Active) {
162        schedule(tickEvent, nextCycle());
163        _status = BaseSimpleCPU::Running;
164        notIdleFraction = 1;
165    } else {
166        _status = BaseSimpleCPU::Idle;
167        notIdleFraction = 0;
168    }
169
170    system->totalNumInsts = 0;
171}
172
173bool
174AtomicSimpleCPU::tryCompleteDrain()
175{
176    if (!drain_manager)
177        return false;
178
179    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
180    if (!isDrained())
181        return false;
182
183    DPRINTF(Drain, "CPU done draining, processing drain event\n");
184    drain_manager->signalDrainDone();
185    drain_manager = NULL;
186
187    return true;
188}
189
190
191void
192AtomicSimpleCPU::switchOut()
193{
194    BaseSimpleCPU::switchOut();
195
196    assert(!tickEvent.scheduled());
197    assert(_status == BaseSimpleCPU::Running || _status == Idle);
198    assert(isDrained());
199}
200
201
202void
203AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
204{
205    BaseSimpleCPU::takeOverFrom(oldCPU);
206
207    // The tick event should have been descheduled by drain()
208    assert(!tickEvent.scheduled());
209
210    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
211    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
212    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
213}
214
215void
216AtomicSimpleCPU::verifyMemoryMode() const
217{
218    if (!system->isAtomicMode()) {
219        fatal("The atomic CPU requires the memory system to be in "
220              "'atomic' mode.\n");
221    }
222}
223
224void
225AtomicSimpleCPU::activateContext(ThreadID thread_num)
226{
227    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
228
229    assert(thread_num == 0);
230    assert(thread);
231
232    assert(_status == Idle);
233    assert(!tickEvent.scheduled());
234
235    notIdleFraction = 1;
236    Cycles delta = ticksToCycles(thread->lastActivate - thread->lastSuspend);
237    numCycles += delta;
238    ppCycles->notify(delta);
239
240    //Make sure ticks are still on multiples of cycles
241    schedule(tickEvent, clockEdge(Cycles(0)));
242    _status = BaseSimpleCPU::Running;
243}
244
245
246void
247AtomicSimpleCPU::suspendContext(ThreadID thread_num)
248{
249    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
250
251    assert(thread_num == 0);
252    assert(thread);
253
254    if (_status == Idle)
255        return;
256
257    assert(_status == BaseSimpleCPU::Running);
258
259    // tick event may not be scheduled if this gets called from inside
260    // an instruction's execution, e.g. "quiesce"
261    if (tickEvent.scheduled())
262        deschedule(tickEvent);
263
264    notIdleFraction = 0;
265    _status = Idle;
266}
267
268
269Tick
270AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
271{
272    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
273            pkt->cmdString());
274
275    // X86 ISA: Snooping an invalidation for monitor/mwait
276    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
277    if(cpu->getAddrMonitor()->doMonitor(pkt)) {
278        cpu->wakeup();
279    }
280
281    // if snoop invalidates, release any associated locks
282    if (pkt->isInvalidate()) {
283        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
284                pkt->getAddr());
285        TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
286    }
287
288    return 0;
289}
290
291void
292AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
293{
294    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
295            pkt->cmdString());
296
297    // X86 ISA: Snooping an invalidation for monitor/mwait
298    AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
299    if(cpu->getAddrMonitor()->doMonitor(pkt)) {
300        cpu->wakeup();
301    }
302
303    // if snoop invalidates, release any associated locks
304    if (pkt->isInvalidate()) {
305        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
306                pkt->getAddr());
307        TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
308    }
309}
310
311Fault
312AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
313                         unsigned size, unsigned flags)
314{
315    // use the CPU's statically allocated read request and packet objects
316    Request *req = &data_read_req;
317
318    if (traceData) {
319        traceData->setAddr(addr);
320    }
321
322    //The size of the data we're trying to read.
323    int fullSize = size;
324
325    //The address of the second part of this access if it needs to be split
326    //across a cache line boundary.
327    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
328
329    if (secondAddr > addr)
330        size = secondAddr - addr;
331
332    dcache_latency = 0;
333
334    req->taskId(taskId());
335    while (1) {
336        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
337
338        // translate to physical address
339        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
340
341        // Now do the access.
342        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
343            Packet pkt(req, MemCmd::ReadReq);
344            pkt.refineCommand();
345            pkt.dataStatic(data);
346
347            if (req->isMmappedIpr())
348                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
349            else {
350                if (fastmem && system->isMemAddr(pkt.getAddr()))
351                    system->getPhysMem().access(&pkt);
352                else
353                    dcache_latency += dcachePort.sendAtomic(&pkt);
354            }
355            dcache_access = true;
356
357            assert(!pkt.isError());
358
359            if (req->isLLSC()) {
360                TheISA::handleLockedRead(thread, req);
361            }
362        }
363
364        //If there's a fault, return it
365        if (fault != NoFault) {
366            if (req->isPrefetch()) {
367                return NoFault;
368            } else {
369                return fault;
370            }
371        }
372
373        //If we don't need to access a second cache line, stop now.
374        if (secondAddr <= addr)
375        {
376            if (req->isLocked() && fault == NoFault) {
377                assert(!locked);
378                locked = true;
379            }
380            return fault;
381        }
382
383        /*
384         * Set up for accessing the second cache line.
385         */
386
387        //Move the pointer we're reading into to the correct location.
388        data += size;
389        //Adjust the size to get the remaining bytes.
390        size = addr + fullSize - secondAddr;
391        //And access the right address.
392        addr = secondAddr;
393    }
394}
395
396
397Fault
398AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
399                          Addr addr, unsigned flags, uint64_t *res)
400{
401
402    static uint8_t zero_array[64] = {};
403
404    if (data == NULL) {
405        assert(size <= 64);
406        assert(flags & Request::CACHE_BLOCK_ZERO);
407        // This must be a cache block cleaning request
408        data = zero_array;
409    }
410
411    // use the CPU's statically allocated write request and packet objects
412    Request *req = &data_write_req;
413
414    if (traceData) {
415        traceData->setAddr(addr);
416    }
417
418    //The size of the data we're trying to read.
419    int fullSize = size;
420
421    //The address of the second part of this access if it needs to be split
422    //across a cache line boundary.
423    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
424
425    if(secondAddr > addr)
426        size = secondAddr - addr;
427
428    dcache_latency = 0;
429
430    req->taskId(taskId());
431    while(1) {
432        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
433
434        // translate to physical address
435        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
436
437        // Now do the access.
438        if (fault == NoFault) {
439            MemCmd cmd = MemCmd::WriteReq; // default
440            bool do_access = true;  // flag to suppress cache access
441
442            if (req->isLLSC()) {
443                cmd = MemCmd::StoreCondReq;
444                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
445            } else if (req->isSwap()) {
446                cmd = MemCmd::SwapReq;
447                if (req->isCondSwap()) {
448                    assert(res);
449                    req->setExtraData(*res);
450                }
451            }
452
453            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
454                Packet pkt = Packet(req, cmd);
455                pkt.dataStatic(data);
456
457                if (req->isMmappedIpr()) {
458                    dcache_latency +=
459                        TheISA::handleIprWrite(thread->getTC(), &pkt);
460                } else {
461                    if (fastmem && system->isMemAddr(pkt.getAddr()))
462                        system->getPhysMem().access(&pkt);
463                    else
464                        dcache_latency += dcachePort.sendAtomic(&pkt);
465                }
466                dcache_access = true;
467                assert(!pkt.isError());
468
469                if (req->isSwap()) {
470                    assert(res);
471                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
472                }
473            }
474
475            if (res && !req->isSwap()) {
476                *res = req->getExtraData();
477            }
478        }
479
480        //If there's a fault or we don't need to access a second cache line,
481        //stop now.
482        if (fault != NoFault || secondAddr <= addr)
483        {
484            if (req->isLocked() && fault == NoFault) {
485                assert(locked);
486                locked = false;
487            }
488            if (fault != NoFault && req->isPrefetch()) {
489                return NoFault;
490            } else {
491                return fault;
492            }
493        }
494
495        /*
496         * Set up for accessing the second cache line.
497         */
498
499        //Move the pointer we're reading into to the correct location.
500        data += size;
501        //Adjust the size to get the remaining bytes.
502        size = addr + fullSize - secondAddr;
503        //And access the right address.
504        addr = secondAddr;
505    }
506}
507
508
509void
510AtomicSimpleCPU::tick()
511{
512    DPRINTF(SimpleCPU, "Tick\n");
513
514    Tick latency = 0;
515
516    for (int i = 0; i < width || locked; ++i) {
517        numCycles++;
518        ppCycles->notify(1);
519
520        if (!curStaticInst || !curStaticInst->isDelayedCommit())
521            checkForInterrupts();
522
523        checkPcEventQueue();
524        // We must have just got suspended by a PC event
525        if (_status == Idle) {
526            tryCompleteDrain();
527            return;
528        }
529
530        Fault fault = NoFault;
531
532        TheISA::PCState pcState = thread->pcState();
533
534        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
535                           !curMacroStaticInst;
536        if (needToFetch) {
537            ifetch_req.taskId(taskId());
538            setupFetchRequest(&ifetch_req);
539            fault = thread->itb->translateAtomic(&ifetch_req, tc,
540                                                 BaseTLB::Execute);
541        }
542
543        if (fault == NoFault) {
544            Tick icache_latency = 0;
545            bool icache_access = false;
546            dcache_access = false; // assume no dcache access
547
548            if (needToFetch) {
549                // This is commented out because the decoder would act like
550                // a tiny cache otherwise. It wouldn't be flushed when needed
551                // like the I cache. It should be flushed, and when that works
552                // this code should be uncommented.
553                //Fetch more instruction memory if necessary
554                //if(decoder.needMoreBytes())
555                //{
556                    icache_access = true;
557                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
558                    ifetch_pkt.dataStatic(&inst);
559
560                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
561                        system->getPhysMem().access(&ifetch_pkt);
562                    else
563                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
564
565                    assert(!ifetch_pkt.isError());
566
567                    // ifetch_req is initialized to read the instruction directly
568                    // into the CPU object's inst field.
569                //}
570            }
571
572            preExecute();
573
574            if (curStaticInst) {
575                fault = curStaticInst->execute(this, traceData);
576
577                // keep an instruction count
578                if (fault == NoFault) {
579                    countInst();
580                    if (!curStaticInst->isMicroop() ||
581                         curStaticInst->isLastMicroop()) {
582                        ppCommit->notify(std::make_pair(thread, curStaticInst));
583                    }
584                }
585                else if (traceData && !DTRACE(ExecFaulting)) {
586                    delete traceData;
587                    traceData = NULL;
588                }
589
590                postExecute();
591            }
592
593            // @todo remove me after debugging with legion done
594            if (curStaticInst && (!curStaticInst->isMicroop() ||
595                        curStaticInst->isFirstMicroop()))
596                instCnt++;
597
598            Tick stall_ticks = 0;
599            if (simulate_inst_stalls && icache_access)
600                stall_ticks += icache_latency;
601
602            if (simulate_data_stalls && dcache_access)
603                stall_ticks += dcache_latency;
604
605            if (stall_ticks) {
606                // the atomic cpu does its accounting in ticks, so
607                // keep counting in ticks but round to the clock
608                // period
609                latency += divCeil(stall_ticks, clockPeriod()) *
610                    clockPeriod();
611            }
612
613        }
614        if(fault != NoFault || !stayAtPC)
615            advancePC(fault);
616    }
617
618    if (tryCompleteDrain())
619        return;
620
621    // instruction takes at least one cycle
622    if (latency < clockPeriod())
623        latency = clockPeriod();
624
625    if (_status != Idle)
626        schedule(tickEvent, curTick() + latency);
627}
628
629void
630AtomicSimpleCPU::regProbePoints()
631{
632    BaseCPU::regProbePoints();
633
634    ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
635                                (getProbeManager(), "Commit");
636}
637
638void
639AtomicSimpleCPU::printAddr(Addr a)
640{
641    dcachePort.printAddr(a);
642}
643
644////////////////////////////////////////////////////////////////////////
645//
646//  AtomicSimpleCPU Simulation Object
647//
648AtomicSimpleCPU *
649AtomicSimpleCPUParams::create()
650{
651    numThreads = 1;
652    if (!FullSystem && workload.size() != 1)
653        panic("only one workload allowed");
654    return new AtomicSimpleCPU(this);
655}
656