atomic.cc revision 10529
1/* 2 * Copyright (c) 2012-2013 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Steve Reinhardt 41 */ 42 43#include "arch/locked_mem.hh" 44#include "arch/mmapped_ipr.hh" 45#include "arch/utility.hh" 46#include "base/bigint.hh" 47#include "base/output.hh" 48#include "config/the_isa.hh" 49#include "cpu/simple/atomic.hh" 50#include "cpu/exetrace.hh" 51#include "debug/Drain.hh" 52#include "debug/ExecFaulting.hh" 53#include "debug/SimpleCPU.hh" 54#include "mem/packet.hh" 55#include "mem/packet_access.hh" 56#include "mem/physical.hh" 57#include "params/AtomicSimpleCPU.hh" 58#include "sim/faults.hh" 59#include "sim/system.hh" 60#include "sim/full_system.hh" 61 62using namespace std; 63using namespace TheISA; 64 65AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) 66 : Event(CPU_Tick_Pri), cpu(c) 67{ 68} 69 70 71void 72AtomicSimpleCPU::TickEvent::process() 73{ 74 cpu->tick(); 75} 76 77const char * 78AtomicSimpleCPU::TickEvent::description() const 79{ 80 return "AtomicSimpleCPU tick"; 81} 82 83void 84AtomicSimpleCPU::init() 85{ 86 BaseCPU::init(); 87 88 // Initialise the ThreadContext's memory proxies 89 tcBase()->initMemProxies(tcBase()); 90 91 if (FullSystem && !params()->switched_out) { 92 ThreadID size = threadContexts.size(); 93 for (ThreadID i = 0; i < size; ++i) { 94 ThreadContext *tc = threadContexts[i]; 95 // initialize CPU, including PC 96 TheISA::initCPU(tc, tc->contextId()); 97 } 98 } 99 100 // Atomic doesn't do MT right now, so contextId == threadId 101 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT 102 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too 103 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too 104} 105 106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p) 107 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false), 108 simulate_data_stalls(p->simulate_data_stalls), 109 simulate_inst_stalls(p->simulate_inst_stalls), 110 drain_manager(NULL), 111 icachePort(name() + ".icache_port", this), 112 dcachePort(name() + ".dcache_port", this), 113 fastmem(p->fastmem) 114{ 115 _status = Idle; 116} 117 118 119AtomicSimpleCPU::~AtomicSimpleCPU() 120{ 121 if (tickEvent.scheduled()) { 122 deschedule(tickEvent); 123 } 124} 125 126unsigned int 127AtomicSimpleCPU::drain(DrainManager *dm) 128{ 129 assert(!drain_manager); 130 if (switchedOut()) 131 return 0; 132 133 if (!isDrained()) { 134 DPRINTF(Drain, "Requesting drain: %s\n", pcState()); 135 drain_manager = dm; 136 return 1; 137 } else { 138 if (tickEvent.scheduled()) 139 deschedule(tickEvent); 140 141 DPRINTF(Drain, "Not executing microcode, no need to drain.\n"); 142 return 0; 143 } 144} 145 146void 147AtomicSimpleCPU::drainResume() 148{ 149 assert(!tickEvent.scheduled()); 150 assert(!drain_manager); 151 if (switchedOut()) 152 return; 153 154 DPRINTF(SimpleCPU, "Resume\n"); 155 verifyMemoryMode(); 156 157 assert(!threadContexts.empty()); 158 if (threadContexts.size() > 1) 159 fatal("The atomic CPU only supports one thread.\n"); 160 161 if (thread->status() == ThreadContext::Active) { 162 schedule(tickEvent, nextCycle()); 163 _status = BaseSimpleCPU::Running; 164 notIdleFraction = 1; 165 } else { 166 _status = BaseSimpleCPU::Idle; 167 notIdleFraction = 0; 168 } 169 170 system->totalNumInsts = 0; 171} 172 173bool 174AtomicSimpleCPU::tryCompleteDrain() 175{ 176 if (!drain_manager) 177 return false; 178 179 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState()); 180 if (!isDrained()) 181 return false; 182 183 DPRINTF(Drain, "CPU done draining, processing drain event\n"); 184 drain_manager->signalDrainDone(); 185 drain_manager = NULL; 186 187 return true; 188} 189 190 191void 192AtomicSimpleCPU::switchOut() 193{ 194 BaseSimpleCPU::switchOut(); 195 196 assert(!tickEvent.scheduled()); 197 assert(_status == BaseSimpleCPU::Running || _status == Idle); 198 assert(isDrained()); 199} 200 201 202void 203AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) 204{ 205 BaseSimpleCPU::takeOverFrom(oldCPU); 206 207 // The tick event should have been descheduled by drain() 208 assert(!tickEvent.scheduled()); 209 210 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT 211 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too 212 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too 213} 214 215void 216AtomicSimpleCPU::verifyMemoryMode() const 217{ 218 if (!system->isAtomicMode()) { 219 fatal("The atomic CPU requires the memory system to be in " 220 "'atomic' mode.\n"); 221 } 222} 223 224void 225AtomicSimpleCPU::activateContext(ThreadID thread_num) 226{ 227 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num); 228 229 assert(thread_num == 0); 230 assert(thread); 231 232 assert(_status == Idle); 233 assert(!tickEvent.scheduled()); 234 235 notIdleFraction = 1; 236 Cycles delta = ticksToCycles(thread->lastActivate - thread->lastSuspend); 237 numCycles += delta; 238 ppCycles->notify(delta); 239 240 //Make sure ticks are still on multiples of cycles 241 schedule(tickEvent, clockEdge(Cycles(0))); 242 _status = BaseSimpleCPU::Running; 243} 244 245 246void 247AtomicSimpleCPU::suspendContext(ThreadID thread_num) 248{ 249 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num); 250 251 assert(thread_num == 0); 252 assert(thread); 253 254 if (_status == Idle) 255 return; 256 257 assert(_status == BaseSimpleCPU::Running); 258 259 // tick event may not be scheduled if this gets called from inside 260 // an instruction's execution, e.g. "quiesce" 261 if (tickEvent.scheduled()) 262 deschedule(tickEvent); 263 264 notIdleFraction = 0; 265 _status = Idle; 266} 267 268 269Tick 270AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt) 271{ 272 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 273 pkt->cmdString()); 274 275 // X86 ISA: Snooping an invalidation for monitor/mwait 276 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner); 277 if(cpu->getAddrMonitor()->doMonitor(pkt)) { 278 cpu->wakeup(); 279 } 280 281 // if snoop invalidates, release any associated locks 282 if (pkt->isInvalidate()) { 283 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", 284 pkt->getAddr()); 285 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask); 286 } 287 288 return 0; 289} 290 291void 292AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt) 293{ 294 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(), 295 pkt->cmdString()); 296 297 // X86 ISA: Snooping an invalidation for monitor/mwait 298 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner); 299 if(cpu->getAddrMonitor()->doMonitor(pkt)) { 300 cpu->wakeup(); 301 } 302 303 // if snoop invalidates, release any associated locks 304 if (pkt->isInvalidate()) { 305 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n", 306 pkt->getAddr()); 307 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask); 308 } 309} 310 311Fault 312AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, 313 unsigned size, unsigned flags) 314{ 315 // use the CPU's statically allocated read request and packet objects 316 Request *req = &data_read_req; 317 318 if (traceData) { 319 traceData->setAddr(addr); 320 } 321 322 //The size of the data we're trying to read. 323 int fullSize = size; 324 325 //The address of the second part of this access if it needs to be split 326 //across a cache line boundary. 327 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); 328 329 if (secondAddr > addr) 330 size = secondAddr - addr; 331 332 dcache_latency = 0; 333 334 req->taskId(taskId()); 335 while (1) { 336 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); 337 338 // translate to physical address 339 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read); 340 341 // Now do the access. 342 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) { 343 Packet pkt(req, MemCmd::ReadReq); 344 pkt.refineCommand(); 345 pkt.dataStatic(data); 346 347 if (req->isMmappedIpr()) 348 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt); 349 else { 350 if (fastmem && system->isMemAddr(pkt.getAddr())) 351 system->getPhysMem().access(&pkt); 352 else 353 dcache_latency += dcachePort.sendAtomic(&pkt); 354 } 355 dcache_access = true; 356 357 assert(!pkt.isError()); 358 359 if (req->isLLSC()) { 360 TheISA::handleLockedRead(thread, req); 361 } 362 } 363 364 //If there's a fault, return it 365 if (fault != NoFault) { 366 if (req->isPrefetch()) { 367 return NoFault; 368 } else { 369 return fault; 370 } 371 } 372 373 //If we don't need to access a second cache line, stop now. 374 if (secondAddr <= addr) 375 { 376 if (req->isLocked() && fault == NoFault) { 377 assert(!locked); 378 locked = true; 379 } 380 return fault; 381 } 382 383 /* 384 * Set up for accessing the second cache line. 385 */ 386 387 //Move the pointer we're reading into to the correct location. 388 data += size; 389 //Adjust the size to get the remaining bytes. 390 size = addr + fullSize - secondAddr; 391 //And access the right address. 392 addr = secondAddr; 393 } 394} 395 396 397Fault 398AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, 399 Addr addr, unsigned flags, uint64_t *res) 400{ 401 402 static uint8_t zero_array[64] = {}; 403 404 if (data == NULL) { 405 assert(size <= 64); 406 assert(flags & Request::CACHE_BLOCK_ZERO); 407 // This must be a cache block cleaning request 408 data = zero_array; 409 } 410 411 // use the CPU's statically allocated write request and packet objects 412 Request *req = &data_write_req; 413 414 if (traceData) { 415 traceData->setAddr(addr); 416 } 417 418 //The size of the data we're trying to read. 419 int fullSize = size; 420 421 //The address of the second part of this access if it needs to be split 422 //across a cache line boundary. 423 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize()); 424 425 if(secondAddr > addr) 426 size = secondAddr - addr; 427 428 dcache_latency = 0; 429 430 req->taskId(taskId()); 431 while(1) { 432 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr()); 433 434 // translate to physical address 435 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write); 436 437 // Now do the access. 438 if (fault == NoFault) { 439 MemCmd cmd = MemCmd::WriteReq; // default 440 bool do_access = true; // flag to suppress cache access 441 442 if (req->isLLSC()) { 443 cmd = MemCmd::StoreCondReq; 444 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask); 445 } else if (req->isSwap()) { 446 cmd = MemCmd::SwapReq; 447 if (req->isCondSwap()) { 448 assert(res); 449 req->setExtraData(*res); 450 } 451 } 452 453 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) { 454 Packet pkt = Packet(req, cmd); 455 pkt.dataStatic(data); 456 457 if (req->isMmappedIpr()) { 458 dcache_latency += 459 TheISA::handleIprWrite(thread->getTC(), &pkt); 460 } else { 461 if (fastmem && system->isMemAddr(pkt.getAddr())) 462 system->getPhysMem().access(&pkt); 463 else 464 dcache_latency += dcachePort.sendAtomic(&pkt); 465 } 466 dcache_access = true; 467 assert(!pkt.isError()); 468 469 if (req->isSwap()) { 470 assert(res); 471 memcpy(res, pkt.getPtr<uint8_t>(), fullSize); 472 } 473 } 474 475 if (res && !req->isSwap()) { 476 *res = req->getExtraData(); 477 } 478 } 479 480 //If there's a fault or we don't need to access a second cache line, 481 //stop now. 482 if (fault != NoFault || secondAddr <= addr) 483 { 484 if (req->isLocked() && fault == NoFault) { 485 assert(locked); 486 locked = false; 487 } 488 if (fault != NoFault && req->isPrefetch()) { 489 return NoFault; 490 } else { 491 return fault; 492 } 493 } 494 495 /* 496 * Set up for accessing the second cache line. 497 */ 498 499 //Move the pointer we're reading into to the correct location. 500 data += size; 501 //Adjust the size to get the remaining bytes. 502 size = addr + fullSize - secondAddr; 503 //And access the right address. 504 addr = secondAddr; 505 } 506} 507 508 509void 510AtomicSimpleCPU::tick() 511{ 512 DPRINTF(SimpleCPU, "Tick\n"); 513 514 Tick latency = 0; 515 516 for (int i = 0; i < width || locked; ++i) { 517 numCycles++; 518 ppCycles->notify(1); 519 520 if (!curStaticInst || !curStaticInst->isDelayedCommit()) 521 checkForInterrupts(); 522 523 checkPcEventQueue(); 524 // We must have just got suspended by a PC event 525 if (_status == Idle) { 526 tryCompleteDrain(); 527 return; 528 } 529 530 Fault fault = NoFault; 531 532 TheISA::PCState pcState = thread->pcState(); 533 534 bool needToFetch = !isRomMicroPC(pcState.microPC()) && 535 !curMacroStaticInst; 536 if (needToFetch) { 537 ifetch_req.taskId(taskId()); 538 setupFetchRequest(&ifetch_req); 539 fault = thread->itb->translateAtomic(&ifetch_req, tc, 540 BaseTLB::Execute); 541 } 542 543 if (fault == NoFault) { 544 Tick icache_latency = 0; 545 bool icache_access = false; 546 dcache_access = false; // assume no dcache access 547 548 if (needToFetch) { 549 // This is commented out because the decoder would act like 550 // a tiny cache otherwise. It wouldn't be flushed when needed 551 // like the I cache. It should be flushed, and when that works 552 // this code should be uncommented. 553 //Fetch more instruction memory if necessary 554 //if(decoder.needMoreBytes()) 555 //{ 556 icache_access = true; 557 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq); 558 ifetch_pkt.dataStatic(&inst); 559 560 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr())) 561 system->getPhysMem().access(&ifetch_pkt); 562 else 563 icache_latency = icachePort.sendAtomic(&ifetch_pkt); 564 565 assert(!ifetch_pkt.isError()); 566 567 // ifetch_req is initialized to read the instruction directly 568 // into the CPU object's inst field. 569 //} 570 } 571 572 preExecute(); 573 574 if (curStaticInst) { 575 fault = curStaticInst->execute(this, traceData); 576 577 // keep an instruction count 578 if (fault == NoFault) { 579 countInst(); 580 if (!curStaticInst->isMicroop() || 581 curStaticInst->isLastMicroop()) { 582 ppCommit->notify(std::make_pair(thread, curStaticInst)); 583 } 584 } 585 else if (traceData && !DTRACE(ExecFaulting)) { 586 delete traceData; 587 traceData = NULL; 588 } 589 590 postExecute(); 591 } 592 593 // @todo remove me after debugging with legion done 594 if (curStaticInst && (!curStaticInst->isMicroop() || 595 curStaticInst->isFirstMicroop())) 596 instCnt++; 597 598 Tick stall_ticks = 0; 599 if (simulate_inst_stalls && icache_access) 600 stall_ticks += icache_latency; 601 602 if (simulate_data_stalls && dcache_access) 603 stall_ticks += dcache_latency; 604 605 if (stall_ticks) { 606 // the atomic cpu does its accounting in ticks, so 607 // keep counting in ticks but round to the clock 608 // period 609 latency += divCeil(stall_ticks, clockPeriod()) * 610 clockPeriod(); 611 } 612 613 } 614 if(fault != NoFault || !stayAtPC) 615 advancePC(fault); 616 } 617 618 if (tryCompleteDrain()) 619 return; 620 621 // instruction takes at least one cycle 622 if (latency < clockPeriod()) 623 latency = clockPeriod(); 624 625 if (_status != Idle) 626 schedule(tickEvent, curTick() + latency); 627} 628 629void 630AtomicSimpleCPU::regProbePoints() 631{ 632 BaseCPU::regProbePoints(); 633 634 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>> 635 (getProbeManager(), "Commit"); 636} 637 638void 639AtomicSimpleCPU::printAddr(Addr a) 640{ 641 dcachePort.printAddr(a); 642} 643 644//////////////////////////////////////////////////////////////////////// 645// 646// AtomicSimpleCPU Simulation Object 647// 648AtomicSimpleCPU * 649AtomicSimpleCPUParams::create() 650{ 651 numThreads = 1; 652 if (!FullSystem && workload.size() != 1) 653 panic("only one workload allowed"); 654 return new AtomicSimpleCPU(this); 655} 656