atomic.cc revision 10030:b531e328342d
12650Ssaidi@eecs.umich.edu/*
22650Ssaidi@eecs.umich.edu * Copyright (c) 2012-2013 ARM Limited
32650Ssaidi@eecs.umich.edu * All rights reserved.
42650Ssaidi@eecs.umich.edu *
52650Ssaidi@eecs.umich.edu * The license below extends only to copyright in the software and shall
62650Ssaidi@eecs.umich.edu * not be construed as granting a license to any other intellectual
72650Ssaidi@eecs.umich.edu * property including but not limited to intellectual property relating
82650Ssaidi@eecs.umich.edu * to a hardware implementation of the functionality of the software
92650Ssaidi@eecs.umich.edu * licensed hereunder.  You may use the software subject to the license
102650Ssaidi@eecs.umich.edu * terms below provided that you ensure that this notice is replicated
112650Ssaidi@eecs.umich.edu * unmodified and in its entirety in all distributions of the software,
122650Ssaidi@eecs.umich.edu * modified or unmodified, in source code or in binary form.
132650Ssaidi@eecs.umich.edu *
142650Ssaidi@eecs.umich.edu * Copyright (c) 2002-2005 The Regents of The University of Michigan
152650Ssaidi@eecs.umich.edu * All rights reserved.
162650Ssaidi@eecs.umich.edu *
172650Ssaidi@eecs.umich.edu * Redistribution and use in source and binary forms, with or without
182650Ssaidi@eecs.umich.edu * modification, are permitted provided that the following conditions are
192650Ssaidi@eecs.umich.edu * met: redistributions of source code must retain the above copyright
202650Ssaidi@eecs.umich.edu * notice, this list of conditions and the following disclaimer;
212650Ssaidi@eecs.umich.edu * redistributions in binary form must reproduce the above copyright
222650Ssaidi@eecs.umich.edu * notice, this list of conditions and the following disclaimer in the
232650Ssaidi@eecs.umich.edu * documentation and/or other materials provided with the distribution;
242650Ssaidi@eecs.umich.edu * neither the name of the copyright holders nor the names of its
252650Ssaidi@eecs.umich.edu * contributors may be used to endorse or promote products derived from
262650Ssaidi@eecs.umich.edu * this software without specific prior written permission.
272665Ssaidi@eecs.umich.edu *
284070Ssaidi@eecs.umich.edu * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
292650Ssaidi@eecs.umich.edu * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
302650Ssaidi@eecs.umich.edu * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
312650Ssaidi@eecs.umich.edu * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
322650Ssaidi@eecs.umich.edu * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
338229Snate@binkert.org * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
343529Sgblack@eecs.umich.edu * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
358229Snate@binkert.org * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
364070Ssaidi@eecs.umich.edu * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
372650Ssaidi@eecs.umich.edu * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
382680Sktlim@umich.edu * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
392650Ssaidi@eecs.umich.edu *
402650Ssaidi@eecs.umich.edu * Authors: Steve Reinhardt
412650Ssaidi@eecs.umich.edu */
422650Ssaidi@eecs.umich.edu
435560Snate@binkert.org#include "arch/locked_mem.hh"
445560Snate@binkert.org#include "arch/mmapped_ipr.hh"
455560Snate@binkert.org#include "arch/utility.hh"
465560Snate@binkert.org#include "base/bigint.hh"
472650Ssaidi@eecs.umich.edu#include "base/output.hh"
485560Snate@binkert.org#include "config/the_isa.hh"
495560Snate@binkert.org#include "cpu/simple/atomic.hh"
505560Snate@binkert.org#include "cpu/exetrace.hh"
515560Snate@binkert.org#include "debug/Drain.hh"
525560Snate@binkert.org#include "debug/ExecFaulting.hh"
534070Ssaidi@eecs.umich.edu#include "debug/SimpleCPU.hh"
545560Snate@binkert.org#include "mem/packet.hh"
555560Snate@binkert.org#include "mem/packet_access.hh"
565560Snate@binkert.org#include "mem/physical.hh"
575560Snate@binkert.org#include "params/AtomicSimpleCPU.hh"
585560Snate@binkert.org#include "sim/faults.hh"
595560Snate@binkert.org#include "sim/system.hh"
605560Snate@binkert.org#include "sim/full_system.hh"
615560Snate@binkert.org
625560Snate@binkert.orgusing namespace std;
635560Snate@binkert.orgusing namespace TheISA;
645560Snate@binkert.org
655560Snate@binkert.orgAtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
665560Snate@binkert.org    : Event(CPU_Tick_Pri), cpu(c)
675560Snate@binkert.org{
685560Snate@binkert.org}
695560Snate@binkert.org
705560Snate@binkert.org
715560Snate@binkert.orgvoid
725560Snate@binkert.orgAtomicSimpleCPU::TickEvent::process()
735560Snate@binkert.org{
747741Sgblack@eecs.umich.edu    cpu->tick();
755560Snate@binkert.org}
765560Snate@binkert.org
775560Snate@binkert.orgconst char *
785560Snate@binkert.orgAtomicSimpleCPU::TickEvent::description() const
795560Snate@binkert.org{
805560Snate@binkert.org    return "AtomicSimpleCPU tick";
817741Sgblack@eecs.umich.edu}
825560Snate@binkert.org
835560Snate@binkert.orgvoid
846022Sgblack@eecs.umich.eduAtomicSimpleCPU::init()
856022Sgblack@eecs.umich.edu{
865560Snate@binkert.org    BaseCPU::init();
875560Snate@binkert.org
885560Snate@binkert.org    // Initialise the ThreadContext's memory proxies
895560Snate@binkert.org    tcBase()->initMemProxies(tcBase());
905560Snate@binkert.org
915560Snate@binkert.org    if (FullSystem && !params()->switched_out) {
925560Snate@binkert.org        ThreadID size = threadContexts.size();
935560Snate@binkert.org        for (ThreadID i = 0; i < size; ++i) {
945560Snate@binkert.org            ThreadContext *tc = threadContexts[i];
955560Snate@binkert.org            // initialize CPU, including PC
965560Snate@binkert.org            TheISA::initCPU(tc, tc->contextId());
975560Snate@binkert.org        }
985560Snate@binkert.org    }
995560Snate@binkert.org
1005560Snate@binkert.org    // Atomic doesn't do MT right now, so contextId == threadId
1015560Snate@binkert.org    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
1025560Snate@binkert.org    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
1035560Snate@binkert.org    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
1045560Snate@binkert.org}
1055560Snate@binkert.org
1065560Snate@binkert.orgAtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
1075560Snate@binkert.org    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
1085560Snate@binkert.org      simulate_data_stalls(p->simulate_data_stalls),
1095560Snate@binkert.org      simulate_inst_stalls(p->simulate_inst_stalls),
1105560Snate@binkert.org      drain_manager(NULL),
1115560Snate@binkert.org      icachePort(name() + ".icache_port", this),
1125560Snate@binkert.org      dcachePort(name() + ".dcache_port", this),
1135560Snate@binkert.org      fastmem(p->fastmem),
1145560Snate@binkert.org      simpoint(p->simpoint_profile),
1155560Snate@binkert.org      intervalSize(p->simpoint_interval),
1165560Snate@binkert.org      intervalCount(0),
1175560Snate@binkert.org      intervalDrift(0),
1185560Snate@binkert.org      simpointStream(NULL),
1195560Snate@binkert.org      currentBBV(0, 0),
1205560Snate@binkert.org      currentBBVInstCount(0)
1212650Ssaidi@eecs.umich.edu{
1225560Snate@binkert.org    _status = Idle;
1232650Ssaidi@eecs.umich.edu
1245560Snate@binkert.org    if (simpoint) {
1255560Snate@binkert.org        simpointStream = simout.create(p->simpoint_profile_file, false);
1265560Snate@binkert.org    }
1275560Snate@binkert.org}
1285560Snate@binkert.org
1295560Snate@binkert.org
1305560Snate@binkert.orgAtomicSimpleCPU::~AtomicSimpleCPU()
1312650Ssaidi@eecs.umich.edu{
1327811Ssteve.reinhardt@amd.com    if (tickEvent.scheduled()) {
133        deschedule(tickEvent);
134    }
135    if (simpointStream) {
136        simout.close(simpointStream);
137    }
138}
139
140unsigned int
141AtomicSimpleCPU::drain(DrainManager *dm)
142{
143    assert(!drain_manager);
144    if (switchedOut())
145        return 0;
146
147    if (!isDrained()) {
148        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
149        drain_manager = dm;
150        return 1;
151    } else {
152        if (tickEvent.scheduled())
153            deschedule(tickEvent);
154
155        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
156        return 0;
157    }
158}
159
160void
161AtomicSimpleCPU::drainResume()
162{
163    assert(!tickEvent.scheduled());
164    assert(!drain_manager);
165    if (switchedOut())
166        return;
167
168    DPRINTF(SimpleCPU, "Resume\n");
169    verifyMemoryMode();
170
171    assert(!threadContexts.empty());
172    if (threadContexts.size() > 1)
173        fatal("The atomic CPU only supports one thread.\n");
174
175    if (thread->status() == ThreadContext::Active) {
176        schedule(tickEvent, nextCycle());
177        _status = BaseSimpleCPU::Running;
178        notIdleFraction = 1;
179    } else {
180        _status = BaseSimpleCPU::Idle;
181        notIdleFraction = 0;
182    }
183
184    system->totalNumInsts = 0;
185}
186
187bool
188AtomicSimpleCPU::tryCompleteDrain()
189{
190    if (!drain_manager)
191        return false;
192
193    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
194    if (!isDrained())
195        return false;
196
197    DPRINTF(Drain, "CPU done draining, processing drain event\n");
198    drain_manager->signalDrainDone();
199    drain_manager = NULL;
200
201    return true;
202}
203
204
205void
206AtomicSimpleCPU::switchOut()
207{
208    BaseSimpleCPU::switchOut();
209
210    assert(!tickEvent.scheduled());
211    assert(_status == BaseSimpleCPU::Running || _status == Idle);
212    assert(isDrained());
213}
214
215
216void
217AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
218{
219    BaseSimpleCPU::takeOverFrom(oldCPU);
220
221    // The tick event should have been descheduled by drain()
222    assert(!tickEvent.scheduled());
223
224    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
225    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
226    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
227}
228
229void
230AtomicSimpleCPU::verifyMemoryMode() const
231{
232    if (!system->isAtomicMode()) {
233        fatal("The atomic CPU requires the memory system to be in "
234              "'atomic' mode.\n");
235    }
236}
237
238void
239AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
240{
241    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
242
243    assert(thread_num == 0);
244    assert(thread);
245
246    assert(_status == Idle);
247    assert(!tickEvent.scheduled());
248
249    notIdleFraction = 1;
250    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
251
252    //Make sure ticks are still on multiples of cycles
253    schedule(tickEvent, clockEdge(delay));
254    _status = BaseSimpleCPU::Running;
255}
256
257
258void
259AtomicSimpleCPU::suspendContext(ThreadID thread_num)
260{
261    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
262
263    assert(thread_num == 0);
264    assert(thread);
265
266    if (_status == Idle)
267        return;
268
269    assert(_status == BaseSimpleCPU::Running);
270
271    // tick event may not be scheduled if this gets called from inside
272    // an instruction's execution, e.g. "quiesce"
273    if (tickEvent.scheduled())
274        deschedule(tickEvent);
275
276    notIdleFraction = 0;
277    _status = Idle;
278}
279
280
281Tick
282AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
283{
284    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
285            pkt->cmdString());
286
287    // if snoop invalidates, release any associated locks
288    if (pkt->isInvalidate()) {
289        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
290                pkt->getAddr());
291        TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
292    }
293
294    return 0;
295}
296
297void
298AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
299{
300    DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
301            pkt->cmdString());
302
303    // if snoop invalidates, release any associated locks
304    if (pkt->isInvalidate()) {
305        DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
306                pkt->getAddr());
307        TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
308    }
309}
310
311Fault
312AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
313                         unsigned size, unsigned flags)
314{
315    // use the CPU's statically allocated read request and packet objects
316    Request *req = &data_read_req;
317
318    if (traceData) {
319        traceData->setAddr(addr);
320    }
321
322    //The size of the data we're trying to read.
323    int fullSize = size;
324
325    //The address of the second part of this access if it needs to be split
326    //across a cache line boundary.
327    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
328
329    if (secondAddr > addr)
330        size = secondAddr - addr;
331
332    dcache_latency = 0;
333
334    req->taskId(taskId());
335    while (1) {
336        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
337
338        // translate to physical address
339        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
340
341        // Now do the access.
342        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
343            Packet pkt = Packet(req,
344                                req->isLLSC() ? MemCmd::LoadLockedReq :
345                                MemCmd::ReadReq);
346            pkt.dataStatic(data);
347
348            if (req->isMmappedIpr())
349                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
350            else {
351                if (fastmem && system->isMemAddr(pkt.getAddr()))
352                    system->getPhysMem().access(&pkt);
353                else
354                    dcache_latency += dcachePort.sendAtomic(&pkt);
355            }
356            dcache_access = true;
357
358            assert(!pkt.isError());
359
360            if (req->isLLSC()) {
361                TheISA::handleLockedRead(thread, req);
362            }
363        }
364
365        //If there's a fault, return it
366        if (fault != NoFault) {
367            if (req->isPrefetch()) {
368                return NoFault;
369            } else {
370                return fault;
371            }
372        }
373
374        //If we don't need to access a second cache line, stop now.
375        if (secondAddr <= addr)
376        {
377            if (req->isLocked() && fault == NoFault) {
378                assert(!locked);
379                locked = true;
380            }
381            return fault;
382        }
383
384        /*
385         * Set up for accessing the second cache line.
386         */
387
388        //Move the pointer we're reading into to the correct location.
389        data += size;
390        //Adjust the size to get the remaining bytes.
391        size = addr + fullSize - secondAddr;
392        //And access the right address.
393        addr = secondAddr;
394    }
395}
396
397
398Fault
399AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
400                          Addr addr, unsigned flags, uint64_t *res)
401{
402    // use the CPU's statically allocated write request and packet objects
403    Request *req = &data_write_req;
404
405    if (traceData) {
406        traceData->setAddr(addr);
407    }
408
409    //The size of the data we're trying to read.
410    int fullSize = size;
411
412    //The address of the second part of this access if it needs to be split
413    //across a cache line boundary.
414    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
415
416    if(secondAddr > addr)
417        size = secondAddr - addr;
418
419    dcache_latency = 0;
420
421    req->taskId(taskId());
422    while(1) {
423        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
424
425        // translate to physical address
426        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
427
428        // Now do the access.
429        if (fault == NoFault) {
430            MemCmd cmd = MemCmd::WriteReq; // default
431            bool do_access = true;  // flag to suppress cache access
432
433            if (req->isLLSC()) {
434                cmd = MemCmd::StoreCondReq;
435                do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
436            } else if (req->isSwap()) {
437                cmd = MemCmd::SwapReq;
438                if (req->isCondSwap()) {
439                    assert(res);
440                    req->setExtraData(*res);
441                }
442            }
443
444            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
445                Packet pkt = Packet(req, cmd);
446                pkt.dataStatic(data);
447
448                if (req->isMmappedIpr()) {
449                    dcache_latency +=
450                        TheISA::handleIprWrite(thread->getTC(), &pkt);
451                } else {
452                    if (fastmem && system->isMemAddr(pkt.getAddr()))
453                        system->getPhysMem().access(&pkt);
454                    else
455                        dcache_latency += dcachePort.sendAtomic(&pkt);
456                }
457                dcache_access = true;
458                assert(!pkt.isError());
459
460                if (req->isSwap()) {
461                    assert(res);
462                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
463                }
464            }
465
466            if (res && !req->isSwap()) {
467                *res = req->getExtraData();
468            }
469        }
470
471        //If there's a fault or we don't need to access a second cache line,
472        //stop now.
473        if (fault != NoFault || secondAddr <= addr)
474        {
475            if (req->isLocked() && fault == NoFault) {
476                assert(locked);
477                locked = false;
478            }
479            if (fault != NoFault && req->isPrefetch()) {
480                return NoFault;
481            } else {
482                return fault;
483            }
484        }
485
486        /*
487         * Set up for accessing the second cache line.
488         */
489
490        //Move the pointer we're reading into to the correct location.
491        data += size;
492        //Adjust the size to get the remaining bytes.
493        size = addr + fullSize - secondAddr;
494        //And access the right address.
495        addr = secondAddr;
496    }
497}
498
499
500void
501AtomicSimpleCPU::tick()
502{
503    DPRINTF(SimpleCPU, "Tick\n");
504
505    Tick latency = 0;
506
507    for (int i = 0; i < width || locked; ++i) {
508        numCycles++;
509
510        if (!curStaticInst || !curStaticInst->isDelayedCommit())
511            checkForInterrupts();
512
513        checkPcEventQueue();
514        // We must have just got suspended by a PC event
515        if (_status == Idle) {
516            tryCompleteDrain();
517            return;
518        }
519
520        Fault fault = NoFault;
521
522        TheISA::PCState pcState = thread->pcState();
523
524        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
525                           !curMacroStaticInst;
526        if (needToFetch) {
527            ifetch_req.taskId(taskId());
528            setupFetchRequest(&ifetch_req);
529            fault = thread->itb->translateAtomic(&ifetch_req, tc,
530                                                 BaseTLB::Execute);
531        }
532
533        if (fault == NoFault) {
534            Tick icache_latency = 0;
535            bool icache_access = false;
536            dcache_access = false; // assume no dcache access
537
538            if (needToFetch) {
539                // This is commented out because the decoder would act like
540                // a tiny cache otherwise. It wouldn't be flushed when needed
541                // like the I cache. It should be flushed, and when that works
542                // this code should be uncommented.
543                //Fetch more instruction memory if necessary
544                //if(decoder.needMoreBytes())
545                //{
546                    icache_access = true;
547                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
548                    ifetch_pkt.dataStatic(&inst);
549
550                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
551                        system->getPhysMem().access(&ifetch_pkt);
552                    else
553                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
554
555                    assert(!ifetch_pkt.isError());
556
557                    // ifetch_req is initialized to read the instruction directly
558                    // into the CPU object's inst field.
559                //}
560            }
561
562            preExecute();
563
564            if (curStaticInst) {
565                fault = curStaticInst->execute(this, traceData);
566
567                // keep an instruction count
568                if (fault == NoFault)
569                    countInst();
570                else if (traceData && !DTRACE(ExecFaulting)) {
571                    delete traceData;
572                    traceData = NULL;
573                }
574
575                postExecute();
576            }
577
578            // @todo remove me after debugging with legion done
579            if (curStaticInst && (!curStaticInst->isMicroop() ||
580                        curStaticInst->isFirstMicroop()))
581                instCnt++;
582
583            // profile for SimPoints if enabled and macro inst is finished
584            if (simpoint && curStaticInst && (fault == NoFault) &&
585                    (!curStaticInst->isMicroop() ||
586                     curStaticInst->isLastMicroop())) {
587                profileSimPoint();
588            }
589
590            Tick stall_ticks = 0;
591            if (simulate_inst_stalls && icache_access)
592                stall_ticks += icache_latency;
593
594            if (simulate_data_stalls && dcache_access)
595                stall_ticks += dcache_latency;
596
597            if (stall_ticks) {
598                // the atomic cpu does its accounting in ticks, so
599                // keep counting in ticks but round to the clock
600                // period
601                latency += divCeil(stall_ticks, clockPeriod()) *
602                    clockPeriod();
603            }
604
605        }
606        if(fault != NoFault || !stayAtPC)
607            advancePC(fault);
608    }
609
610    if (tryCompleteDrain())
611        return;
612
613    // instruction takes at least one cycle
614    if (latency < clockPeriod())
615        latency = clockPeriod();
616
617    if (_status != Idle)
618        schedule(tickEvent, curTick() + latency);
619}
620
621
622void
623AtomicSimpleCPU::printAddr(Addr a)
624{
625    dcachePort.printAddr(a);
626}
627
628void
629AtomicSimpleCPU::profileSimPoint()
630{
631    if (!currentBBVInstCount)
632        currentBBV.first = thread->pcState().instAddr();
633
634    ++intervalCount;
635    ++currentBBVInstCount;
636
637    // If inst is control inst, assume end of basic block.
638    if (curStaticInst->isControl()) {
639        currentBBV.second = thread->pcState().instAddr();
640
641        auto map_itr = bbMap.find(currentBBV);
642        if (map_itr == bbMap.end()){
643            // If a new (previously unseen) basic block is found,
644            // add a new unique id, record num of insts and insert into bbMap.
645            BBInfo info;
646            info.id = bbMap.size() + 1;
647            info.insts = currentBBVInstCount;
648            info.count = currentBBVInstCount;
649            bbMap.insert(std::make_pair(currentBBV, info));
650        } else {
651            // If basic block is seen before, just increment the count by the
652            // number of insts in basic block.
653            BBInfo& info = map_itr->second;
654            info.count += currentBBVInstCount;
655        }
656        currentBBVInstCount = 0;
657
658        // Reached end of interval if the sum of the current inst count
659        // (intervalCount) and the excessive inst count from the previous
660        // interval (intervalDrift) is greater than/equal to the interval size.
661        if (intervalCount + intervalDrift >= intervalSize) {
662            // summarize interval and display BBV info
663            std::vector<pair<uint64_t, uint64_t> > counts;
664            for (auto map_itr = bbMap.begin(); map_itr != bbMap.end();
665                    ++map_itr) {
666                BBInfo& info = map_itr->second;
667                if (info.count != 0) {
668                    counts.push_back(std::make_pair(info.id, info.count));
669                    info.count = 0;
670                }
671            }
672            std::sort(counts.begin(), counts.end());
673
674            // Print output BBV info
675            *simpointStream << "T";
676            for (auto cnt_itr = counts.begin(); cnt_itr != counts.end();
677                    ++cnt_itr) {
678                *simpointStream << ":" << cnt_itr->first
679                                << ":" << cnt_itr->second << " ";
680            }
681            *simpointStream << "\n";
682
683            intervalDrift = (intervalCount + intervalDrift) - intervalSize;
684            intervalCount = 0;
685        }
686    }
687}
688
689////////////////////////////////////////////////////////////////////////
690//
691//  AtomicSimpleCPU Simulation Object
692//
693AtomicSimpleCPU *
694AtomicSimpleCPUParams::create()
695{
696    numThreads = 1;
697    if (!FullSystem && workload.size() != 1)
698        panic("only one workload allowed");
699    return new AtomicSimpleCPU(this);
700}
701