atomic.cc revision 10015:0d1467be20eb
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "base/output.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/atomic.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "mem/physical.hh"
57#include "params/AtomicSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/system.hh"
60#include "sim/full_system.hh"
61
62using namespace std;
63using namespace TheISA;
64
65AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
66    : Event(CPU_Tick_Pri), cpu(c)
67{
68}
69
70
71void
72AtomicSimpleCPU::TickEvent::process()
73{
74    cpu->tick();
75}
76
77const char *
78AtomicSimpleCPU::TickEvent::description() const
79{
80    return "AtomicSimpleCPU tick";
81}
82
83void
84AtomicSimpleCPU::init()
85{
86    BaseCPU::init();
87
88    // Initialise the ThreadContext's memory proxies
89    tcBase()->initMemProxies(tcBase());
90
91    if (FullSystem && !params()->switched_out) {
92        ThreadID size = threadContexts.size();
93        for (ThreadID i = 0; i < size; ++i) {
94            ThreadContext *tc = threadContexts[i];
95            // initialize CPU, including PC
96            TheISA::initCPU(tc, tc->contextId());
97        }
98    }
99
100    // Atomic doesn't do MT right now, so contextId == threadId
101    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
102    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104}
105
106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
107    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
108      simulate_data_stalls(p->simulate_data_stalls),
109      simulate_inst_stalls(p->simulate_inst_stalls),
110      drain_manager(NULL),
111      icachePort(name() + ".icache_port", this),
112      dcachePort(name() + ".dcache_port", this),
113      fastmem(p->fastmem),
114      simpoint(p->simpoint_profile),
115      intervalSize(p->simpoint_interval),
116      intervalCount(0),
117      intervalDrift(0),
118      simpointStream(NULL),
119      currentBBV(0, 0),
120      currentBBVInstCount(0)
121{
122    _status = Idle;
123
124    if (simpoint) {
125        simpointStream = simout.create(p->simpoint_profile_file, false);
126    }
127}
128
129
130AtomicSimpleCPU::~AtomicSimpleCPU()
131{
132    if (tickEvent.scheduled()) {
133        deschedule(tickEvent);
134    }
135    if (simpointStream) {
136        simout.close(simpointStream);
137    }
138}
139
140unsigned int
141AtomicSimpleCPU::drain(DrainManager *dm)
142{
143    assert(!drain_manager);
144    if (switchedOut())
145        return 0;
146
147    if (!isDrained()) {
148        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
149        drain_manager = dm;
150        return 1;
151    } else {
152        if (tickEvent.scheduled())
153            deschedule(tickEvent);
154
155        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
156        return 0;
157    }
158}
159
160void
161AtomicSimpleCPU::drainResume()
162{
163    assert(!tickEvent.scheduled());
164    assert(!drain_manager);
165    if (switchedOut())
166        return;
167
168    DPRINTF(SimpleCPU, "Resume\n");
169    verifyMemoryMode();
170
171    assert(!threadContexts.empty());
172    if (threadContexts.size() > 1)
173        fatal("The atomic CPU only supports one thread.\n");
174
175    if (thread->status() == ThreadContext::Active) {
176        schedule(tickEvent, nextCycle());
177        _status = BaseSimpleCPU::Running;
178        notIdleFraction = 1;
179    } else {
180        _status = BaseSimpleCPU::Idle;
181        notIdleFraction = 0;
182    }
183
184    system->totalNumInsts = 0;
185}
186
187bool
188AtomicSimpleCPU::tryCompleteDrain()
189{
190    if (!drain_manager)
191        return false;
192
193    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
194    if (!isDrained())
195        return false;
196
197    DPRINTF(Drain, "CPU done draining, processing drain event\n");
198    drain_manager->signalDrainDone();
199    drain_manager = NULL;
200
201    return true;
202}
203
204
205void
206AtomicSimpleCPU::switchOut()
207{
208    BaseSimpleCPU::switchOut();
209
210    assert(!tickEvent.scheduled());
211    assert(_status == BaseSimpleCPU::Running || _status == Idle);
212    assert(isDrained());
213}
214
215
216void
217AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
218{
219    BaseSimpleCPU::takeOverFrom(oldCPU);
220
221    // The tick event should have been descheduled by drain()
222    assert(!tickEvent.scheduled());
223
224    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
225    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
226    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
227}
228
229void
230AtomicSimpleCPU::verifyMemoryMode() const
231{
232    if (!system->isAtomicMode()) {
233        fatal("The atomic CPU requires the memory system to be in "
234              "'atomic' mode.\n");
235    }
236}
237
238void
239AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
240{
241    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
242
243    assert(thread_num == 0);
244    assert(thread);
245
246    assert(_status == Idle);
247    assert(!tickEvent.scheduled());
248
249    notIdleFraction = 1;
250    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
251
252    //Make sure ticks are still on multiples of cycles
253    schedule(tickEvent, clockEdge(delay));
254    _status = BaseSimpleCPU::Running;
255}
256
257
258void
259AtomicSimpleCPU::suspendContext(ThreadID thread_num)
260{
261    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
262
263    assert(thread_num == 0);
264    assert(thread);
265
266    if (_status == Idle)
267        return;
268
269    assert(_status == BaseSimpleCPU::Running);
270
271    // tick event may not be scheduled if this gets called from inside
272    // an instruction's execution, e.g. "quiesce"
273    if (tickEvent.scheduled())
274        deschedule(tickEvent);
275
276    notIdleFraction = 0;
277    _status = Idle;
278}
279
280
281Fault
282AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
283                         unsigned size, unsigned flags)
284{
285    // use the CPU's statically allocated read request and packet objects
286    Request *req = &data_read_req;
287
288    if (traceData) {
289        traceData->setAddr(addr);
290    }
291
292    //The size of the data we're trying to read.
293    int fullSize = size;
294
295    //The address of the second part of this access if it needs to be split
296    //across a cache line boundary.
297    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
298
299    if (secondAddr > addr)
300        size = secondAddr - addr;
301
302    dcache_latency = 0;
303
304    while (1) {
305        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
306
307        // translate to physical address
308        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
309
310        // Now do the access.
311        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
312            Packet pkt = Packet(req,
313                                req->isLLSC() ? MemCmd::LoadLockedReq :
314                                MemCmd::ReadReq);
315            pkt.dataStatic(data);
316
317            if (req->isMmappedIpr())
318                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
319            else {
320                if (fastmem && system->isMemAddr(pkt.getAddr()))
321                    system->getPhysMem().access(&pkt);
322                else
323                    dcache_latency += dcachePort.sendAtomic(&pkt);
324            }
325            dcache_access = true;
326
327            assert(!pkt.isError());
328
329            if (req->isLLSC()) {
330                TheISA::handleLockedRead(thread, req);
331            }
332        }
333
334        //If there's a fault, return it
335        if (fault != NoFault) {
336            if (req->isPrefetch()) {
337                return NoFault;
338            } else {
339                return fault;
340            }
341        }
342
343        //If we don't need to access a second cache line, stop now.
344        if (secondAddr <= addr)
345        {
346            if (req->isLocked() && fault == NoFault) {
347                assert(!locked);
348                locked = true;
349            }
350            return fault;
351        }
352
353        /*
354         * Set up for accessing the second cache line.
355         */
356
357        //Move the pointer we're reading into to the correct location.
358        data += size;
359        //Adjust the size to get the remaining bytes.
360        size = addr + fullSize - secondAddr;
361        //And access the right address.
362        addr = secondAddr;
363    }
364}
365
366
367Fault
368AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
369                          Addr addr, unsigned flags, uint64_t *res)
370{
371    // use the CPU's statically allocated write request and packet objects
372    Request *req = &data_write_req;
373
374    if (traceData) {
375        traceData->setAddr(addr);
376    }
377
378    //The size of the data we're trying to read.
379    int fullSize = size;
380
381    //The address of the second part of this access if it needs to be split
382    //across a cache line boundary.
383    Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
384
385    if(secondAddr > addr)
386        size = secondAddr - addr;
387
388    dcache_latency = 0;
389
390    while(1) {
391        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
392
393        // translate to physical address
394        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
395
396        // Now do the access.
397        if (fault == NoFault) {
398            MemCmd cmd = MemCmd::WriteReq; // default
399            bool do_access = true;  // flag to suppress cache access
400
401            if (req->isLLSC()) {
402                cmd = MemCmd::StoreCondReq;
403                do_access = TheISA::handleLockedWrite(thread, req);
404            } else if (req->isSwap()) {
405                cmd = MemCmd::SwapReq;
406                if (req->isCondSwap()) {
407                    assert(res);
408                    req->setExtraData(*res);
409                }
410            }
411
412            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
413                Packet pkt = Packet(req, cmd);
414                pkt.dataStatic(data);
415
416                if (req->isMmappedIpr()) {
417                    dcache_latency +=
418                        TheISA::handleIprWrite(thread->getTC(), &pkt);
419                } else {
420                    if (fastmem && system->isMemAddr(pkt.getAddr()))
421                        system->getPhysMem().access(&pkt);
422                    else
423                        dcache_latency += dcachePort.sendAtomic(&pkt);
424                }
425                dcache_access = true;
426                assert(!pkt.isError());
427
428                if (req->isSwap()) {
429                    assert(res);
430                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
431                }
432            }
433
434            if (res && !req->isSwap()) {
435                *res = req->getExtraData();
436            }
437        }
438
439        //If there's a fault or we don't need to access a second cache line,
440        //stop now.
441        if (fault != NoFault || secondAddr <= addr)
442        {
443            if (req->isLocked() && fault == NoFault) {
444                assert(locked);
445                locked = false;
446            }
447            if (fault != NoFault && req->isPrefetch()) {
448                return NoFault;
449            } else {
450                return fault;
451            }
452        }
453
454        /*
455         * Set up for accessing the second cache line.
456         */
457
458        //Move the pointer we're reading into to the correct location.
459        data += size;
460        //Adjust the size to get the remaining bytes.
461        size = addr + fullSize - secondAddr;
462        //And access the right address.
463        addr = secondAddr;
464    }
465}
466
467
468void
469AtomicSimpleCPU::tick()
470{
471    DPRINTF(SimpleCPU, "Tick\n");
472
473    Tick latency = 0;
474
475    for (int i = 0; i < width || locked; ++i) {
476        numCycles++;
477
478        if (!curStaticInst || !curStaticInst->isDelayedCommit())
479            checkForInterrupts();
480
481        checkPcEventQueue();
482        // We must have just got suspended by a PC event
483        if (_status == Idle) {
484            tryCompleteDrain();
485            return;
486        }
487
488        Fault fault = NoFault;
489
490        TheISA::PCState pcState = thread->pcState();
491
492        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
493                           !curMacroStaticInst;
494        if (needToFetch) {
495            setupFetchRequest(&ifetch_req);
496            fault = thread->itb->translateAtomic(&ifetch_req, tc,
497                                                 BaseTLB::Execute);
498        }
499
500        if (fault == NoFault) {
501            Tick icache_latency = 0;
502            bool icache_access = false;
503            dcache_access = false; // assume no dcache access
504
505            if (needToFetch) {
506                // This is commented out because the decoder would act like
507                // a tiny cache otherwise. It wouldn't be flushed when needed
508                // like the I cache. It should be flushed, and when that works
509                // this code should be uncommented.
510                //Fetch more instruction memory if necessary
511                //if(decoder.needMoreBytes())
512                //{
513                    icache_access = true;
514                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
515                    ifetch_pkt.dataStatic(&inst);
516
517                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
518                        system->getPhysMem().access(&ifetch_pkt);
519                    else
520                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
521
522                    assert(!ifetch_pkt.isError());
523
524                    // ifetch_req is initialized to read the instruction directly
525                    // into the CPU object's inst field.
526                //}
527            }
528
529            preExecute();
530
531            if (curStaticInst) {
532                fault = curStaticInst->execute(this, traceData);
533
534                // keep an instruction count
535                if (fault == NoFault)
536                    countInst();
537                else if (traceData && !DTRACE(ExecFaulting)) {
538                    delete traceData;
539                    traceData = NULL;
540                }
541
542                postExecute();
543            }
544
545            // @todo remove me after debugging with legion done
546            if (curStaticInst && (!curStaticInst->isMicroop() ||
547                        curStaticInst->isFirstMicroop()))
548                instCnt++;
549
550            // profile for SimPoints if enabled and macro inst is finished
551            if (simpoint && curStaticInst && (fault == NoFault) &&
552                    (!curStaticInst->isMicroop() ||
553                     curStaticInst->isLastMicroop())) {
554                profileSimPoint();
555            }
556
557            Tick stall_ticks = 0;
558            if (simulate_inst_stalls && icache_access)
559                stall_ticks += icache_latency;
560
561            if (simulate_data_stalls && dcache_access)
562                stall_ticks += dcache_latency;
563
564            if (stall_ticks) {
565                // the atomic cpu does its accounting in ticks, so
566                // keep counting in ticks but round to the clock
567                // period
568                latency += divCeil(stall_ticks, clockPeriod()) *
569                    clockPeriod();
570            }
571
572        }
573        if(fault != NoFault || !stayAtPC)
574            advancePC(fault);
575    }
576
577    if (tryCompleteDrain())
578        return;
579
580    // instruction takes at least one cycle
581    if (latency < clockPeriod())
582        latency = clockPeriod();
583
584    if (_status != Idle)
585        schedule(tickEvent, curTick() + latency);
586}
587
588
589void
590AtomicSimpleCPU::printAddr(Addr a)
591{
592    dcachePort.printAddr(a);
593}
594
595void
596AtomicSimpleCPU::profileSimPoint()
597{
598    if (!currentBBVInstCount)
599        currentBBV.first = thread->pcState().instAddr();
600
601    ++intervalCount;
602    ++currentBBVInstCount;
603
604    // If inst is control inst, assume end of basic block.
605    if (curStaticInst->isControl()) {
606        currentBBV.second = thread->pcState().instAddr();
607
608        auto map_itr = bbMap.find(currentBBV);
609        if (map_itr == bbMap.end()){
610            // If a new (previously unseen) basic block is found,
611            // add a new unique id, record num of insts and insert into bbMap.
612            BBInfo info;
613            info.id = bbMap.size() + 1;
614            info.insts = currentBBVInstCount;
615            info.count = currentBBVInstCount;
616            bbMap.insert(std::make_pair(currentBBV, info));
617        } else {
618            // If basic block is seen before, just increment the count by the
619            // number of insts in basic block.
620            BBInfo& info = map_itr->second;
621            info.count += currentBBVInstCount;
622        }
623        currentBBVInstCount = 0;
624
625        // Reached end of interval if the sum of the current inst count
626        // (intervalCount) and the excessive inst count from the previous
627        // interval (intervalDrift) is greater than/equal to the interval size.
628        if (intervalCount + intervalDrift >= intervalSize) {
629            // summarize interval and display BBV info
630            std::vector<pair<uint64_t, uint64_t> > counts;
631            for (auto map_itr = bbMap.begin(); map_itr != bbMap.end();
632                    ++map_itr) {
633                BBInfo& info = map_itr->second;
634                if (info.count != 0) {
635                    counts.push_back(std::make_pair(info.id, info.count));
636                    info.count = 0;
637                }
638            }
639            std::sort(counts.begin(), counts.end());
640
641            // Print output BBV info
642            *simpointStream << "T";
643            for (auto cnt_itr = counts.begin(); cnt_itr != counts.end();
644                    ++cnt_itr) {
645                *simpointStream << ":" << cnt_itr->first
646                                << ":" << cnt_itr->second << " ";
647            }
648            *simpointStream << "\n";
649
650            intervalDrift = (intervalCount + intervalDrift) - intervalSize;
651            intervalCount = 0;
652        }
653    }
654}
655
656////////////////////////////////////////////////////////////////////////
657//
658//  AtomicSimpleCPU Simulation Object
659//
660AtomicSimpleCPU *
661AtomicSimpleCPUParams::create()
662{
663    numThreads = 1;
664    if (!FullSystem && workload.size() != 1)
665        panic("only one workload allowed");
666    return new AtomicSimpleCPU(this);
667}
668