atomic.cc revision 5712
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description() const
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82#if FULL_SYSTEM
83    for (int i = 0; i < threadContexts.size(); ++i) {
84        ThreadContext *tc = threadContexts[i];
85
86        // initialize CPU, including PC
87        TheISA::initCPU(tc, _cpuId);
88    }
89#endif
90    if (hasPhysMemPort) {
91        bool snoop = false;
92        AddrRangeList pmAddrList;
93        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94        physMemAddr = *pmAddrList.begin();
95    }
96    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
97    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
98    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
99}
100
101bool
102AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
103{
104    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
105    return true;
106}
107
108Tick
109AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
110{
111    //Snooping a coherence request, just return
112    return 0;
113}
114
115void
116AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
117{
118    //No internal storage to update, just return
119    return;
120}
121
122void
123AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
124{
125    if (status == RangeChange) {
126        if (!snoopRangeSent) {
127            snoopRangeSent = true;
128            sendStatusChange(Port::RangeChange);
129        }
130        return;
131    }
132
133    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
134}
135
136void
137AtomicSimpleCPU::CpuPort::recvRetry()
138{
139    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
140}
141
142void
143AtomicSimpleCPU::DcachePort::setPeer(Port *port)
144{
145    Port::setPeer(port);
146
147#if FULL_SYSTEM
148    // Update the ThreadContext's memory ports (Functional/Virtual
149    // Ports)
150    cpu->tcBase()->connectMemPorts(cpu->tcBase());
151#endif
152}
153
154AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
155    : BaseSimpleCPU(p), tickEvent(this), width(p->width),
156      simulate_data_stalls(p->simulate_data_stalls),
157      simulate_inst_stalls(p->simulate_inst_stalls),
158      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
159      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
160{
161    _status = Idle;
162
163    icachePort.snoopRangeSent = false;
164    dcachePort.snoopRangeSent = false;
165
166}
167
168
169AtomicSimpleCPU::~AtomicSimpleCPU()
170{
171}
172
173void
174AtomicSimpleCPU::serialize(ostream &os)
175{
176    SimObject::State so_state = SimObject::getState();
177    SERIALIZE_ENUM(so_state);
178    BaseSimpleCPU::serialize(os);
179    nameOut(os, csprintf("%s.tickEvent", name()));
180    tickEvent.serialize(os);
181}
182
183void
184AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
185{
186    SimObject::State so_state;
187    UNSERIALIZE_ENUM(so_state);
188    BaseSimpleCPU::unserialize(cp, section);
189    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
190}
191
192void
193AtomicSimpleCPU::resume()
194{
195    if (_status == Idle || _status == SwitchedOut)
196        return;
197
198    DPRINTF(SimpleCPU, "Resume\n");
199    assert(system->getMemoryMode() == Enums::atomic);
200
201    changeState(SimObject::Running);
202    if (thread->status() == ThreadContext::Active) {
203        if (!tickEvent.scheduled())
204            schedule(tickEvent, nextCycle());
205    }
206}
207
208void
209AtomicSimpleCPU::switchOut()
210{
211    assert(_status == Running || _status == Idle);
212    _status = SwitchedOut;
213
214    tickEvent.squash();
215}
216
217
218void
219AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
220{
221    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
222
223    assert(!tickEvent.scheduled());
224
225    // if any of this CPU's ThreadContexts are active, mark the CPU as
226    // running and schedule its tick event.
227    for (int i = 0; i < threadContexts.size(); ++i) {
228        ThreadContext *tc = threadContexts[i];
229        if (tc->status() == ThreadContext::Active && _status != Running) {
230            _status = Running;
231            schedule(tickEvent, nextCycle());
232            break;
233        }
234    }
235    if (_status != Running) {
236        _status = Idle;
237    }
238    assert(threadContexts.size() == 1);
239    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
240    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
241    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
242}
243
244
245void
246AtomicSimpleCPU::activateContext(int thread_num, int delay)
247{
248    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
249
250    assert(thread_num == 0);
251    assert(thread);
252
253    assert(_status == Idle);
254    assert(!tickEvent.scheduled());
255
256    notIdleFraction++;
257    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
258
259    //Make sure ticks are still on multiples of cycles
260    schedule(tickEvent, nextCycle(curTick + ticks(delay)));
261    _status = Running;
262}
263
264
265void
266AtomicSimpleCPU::suspendContext(int thread_num)
267{
268    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
269
270    assert(thread_num == 0);
271    assert(thread);
272
273    assert(_status == Running);
274
275    // tick event may not be scheduled if this gets called from inside
276    // an instruction's execution, e.g. "quiesce"
277    if (tickEvent.scheduled())
278        deschedule(tickEvent);
279
280    notIdleFraction--;
281    _status = Idle;
282}
283
284
285template <class T>
286Fault
287AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
288{
289    // use the CPU's statically allocated read request and packet objects
290    Request *req = &data_read_req;
291
292    if (traceData) {
293        traceData->setAddr(addr);
294    }
295
296    //The block size of our peer.
297    int blockSize = dcachePort.peerBlockSize();
298    //The size of the data we're trying to read.
299    int dataSize = sizeof(T);
300
301    uint8_t * dataPtr = (uint8_t *)&data;
302
303    //The address of the second part of this access if it needs to be split
304    //across a cache line boundary.
305    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
306
307    if(secondAddr > addr)
308        dataSize = secondAddr - addr;
309
310    dcache_latency = 0;
311
312    while(1) {
313        req->setVirt(0, addr, dataSize, flags, thread->readPC());
314
315        // translate to physical address
316        Fault fault = thread->translateDataReadReq(req);
317
318        // Now do the access.
319        if (fault == NoFault) {
320            Packet pkt = Packet(req,
321                    req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
322                    Packet::Broadcast);
323            pkt.dataStatic(dataPtr);
324
325            if (req->isMmapedIpr())
326                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
327            else {
328                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
329                    dcache_latency += physmemPort.sendAtomic(&pkt);
330                else
331                    dcache_latency += dcachePort.sendAtomic(&pkt);
332            }
333            dcache_access = true;
334
335            assert(!pkt.isError());
336
337            if (req->isLocked()) {
338                TheISA::handleLockedRead(thread, req);
339            }
340        }
341
342        // This will need a new way to tell if it has a dcache attached.
343        if (req->isUncacheable())
344            recordEvent("Uncached Read");
345
346        //If there's a fault, return it
347        if (fault != NoFault)
348            return fault;
349        //If we don't need to access a second cache line, stop now.
350        if (secondAddr <= addr)
351        {
352            data = gtoh(data);
353            if (traceData) {
354                traceData->setData(data);
355            }
356            return fault;
357        }
358
359        /*
360         * Set up for accessing the second cache line.
361         */
362
363        //Move the pointer we're reading into to the correct location.
364        dataPtr += dataSize;
365        //Adjust the size to get the remaining bytes.
366        dataSize = addr + sizeof(T) - secondAddr;
367        //And access the right address.
368        addr = secondAddr;
369    }
370}
371
372Fault
373AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
374        int size, unsigned flags)
375{
376    // use the CPU's statically allocated read request and packet objects
377    Request *req = &data_read_req;
378
379    if (traceData) {
380        traceData->setAddr(vaddr);
381    }
382
383    //The block size of our peer.
384    int blockSize = dcachePort.peerBlockSize();
385    //The size of the data we're trying to read.
386    int dataSize = size;
387
388    bool firstTimeThrough = true;
389
390    //The address of the second part of this access if it needs to be split
391    //across a cache line boundary.
392    Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
393
394    if(secondAddr > vaddr)
395        dataSize = secondAddr - vaddr;
396
397    while(1) {
398        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
399
400        // translate to physical address
401        Fault fault = thread->translateDataReadReq(req);
402
403        //If there's a fault, return it
404        if (fault != NoFault)
405            return fault;
406
407        if (firstTimeThrough) {
408            paddr = req->getPaddr();
409            firstTimeThrough = false;
410        }
411
412        //If we don't need to access a second cache line, stop now.
413        if (secondAddr <= vaddr)
414            return fault;
415
416        /*
417         * Set up for accessing the second cache line.
418         */
419
420        //Adjust the size to get the remaining bytes.
421        dataSize = vaddr + size - secondAddr;
422        //And access the right address.
423        vaddr = secondAddr;
424    }
425}
426
427#ifndef DOXYGEN_SHOULD_SKIP_THIS
428
429template
430Fault
431AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
432
433template
434Fault
435AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
436
437template
438Fault
439AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
440
441template
442Fault
443AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
444
445template
446Fault
447AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
448
449template
450Fault
451AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
452
453#endif //DOXYGEN_SHOULD_SKIP_THIS
454
455template<>
456Fault
457AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
458{
459    return read(addr, *(uint64_t*)&data, flags);
460}
461
462template<>
463Fault
464AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
465{
466    return read(addr, *(uint32_t*)&data, flags);
467}
468
469
470template<>
471Fault
472AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
473{
474    return read(addr, (uint32_t&)data, flags);
475}
476
477
478template <class T>
479Fault
480AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
481{
482    // use the CPU's statically allocated write request and packet objects
483    Request *req = &data_write_req;
484
485    if (traceData) {
486        traceData->setAddr(addr);
487    }
488
489    //The block size of our peer.
490    int blockSize = dcachePort.peerBlockSize();
491    //The size of the data we're trying to read.
492    int dataSize = sizeof(T);
493
494    uint8_t * dataPtr = (uint8_t *)&data;
495
496    //The address of the second part of this access if it needs to be split
497    //across a cache line boundary.
498    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
499
500    if(secondAddr > addr)
501        dataSize = secondAddr - addr;
502
503    dcache_latency = 0;
504
505    while(1) {
506        req->setVirt(0, addr, dataSize, flags, thread->readPC());
507
508        // translate to physical address
509        Fault fault = thread->translateDataWriteReq(req);
510
511        // Now do the access.
512        if (fault == NoFault) {
513            MemCmd cmd = MemCmd::WriteReq; // default
514            bool do_access = true;  // flag to suppress cache access
515
516            if (req->isLocked()) {
517                cmd = MemCmd::StoreCondReq;
518                do_access = TheISA::handleLockedWrite(thread, req);
519            } else if (req->isSwap()) {
520                cmd = MemCmd::SwapReq;
521                if (req->isCondSwap()) {
522                    assert(res);
523                    req->setExtraData(*res);
524                }
525            }
526
527            if (do_access) {
528                Packet pkt = Packet(req, cmd, Packet::Broadcast);
529                pkt.dataStatic(dataPtr);
530
531                if (req->isMmapedIpr()) {
532                    dcache_latency +=
533                        TheISA::handleIprWrite(thread->getTC(), &pkt);
534                } else {
535                    //XXX This needs to be outside of the loop in order to
536                    //work properly for cache line boundary crossing
537                    //accesses in transendian simulations.
538                    data = htog(data);
539                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
540                        dcache_latency += physmemPort.sendAtomic(&pkt);
541                    else
542                        dcache_latency += dcachePort.sendAtomic(&pkt);
543                }
544                dcache_access = true;
545                assert(!pkt.isError());
546
547                if (req->isSwap()) {
548                    assert(res);
549                    *res = pkt.get<T>();
550                }
551            }
552
553            if (res && !req->isSwap()) {
554                *res = req->getExtraData();
555            }
556        }
557
558        // This will need a new way to tell if it's hooked up to a cache or not.
559        if (req->isUncacheable())
560            recordEvent("Uncached Write");
561
562        //If there's a fault or we don't need to access a second cache line,
563        //stop now.
564        if (fault != NoFault || secondAddr <= addr)
565        {
566            // If the write needs to have a fault on the access, consider
567            // calling changeStatus() and changing it to "bad addr write"
568            // or something.
569            if (traceData) {
570                traceData->setData(data);
571            }
572            return fault;
573        }
574
575        /*
576         * Set up for accessing the second cache line.
577         */
578
579        //Move the pointer we're reading into to the correct location.
580        dataPtr += dataSize;
581        //Adjust the size to get the remaining bytes.
582        dataSize = addr + sizeof(T) - secondAddr;
583        //And access the right address.
584        addr = secondAddr;
585    }
586}
587
588Fault
589AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
590        int size, unsigned flags)
591{
592    // use the CPU's statically allocated write request and packet objects
593    Request *req = &data_write_req;
594
595    if (traceData) {
596        traceData->setAddr(vaddr);
597    }
598
599    //The block size of our peer.
600    int blockSize = dcachePort.peerBlockSize();
601
602    //The address of the second part of this access if it needs to be split
603    //across a cache line boundary.
604    Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
605
606    //The size of the data we're trying to read.
607    int dataSize = size;
608
609    bool firstTimeThrough = true;
610
611    if(secondAddr > vaddr)
612        dataSize = secondAddr - vaddr;
613
614    dcache_latency = 0;
615
616    while(1) {
617        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
618
619        // translate to physical address
620        Fault fault = thread->translateDataWriteReq(req);
621
622        //If there's a fault or we don't need to access a second cache line,
623        //stop now.
624        if (fault != NoFault)
625            return fault;
626
627        if (firstTimeThrough) {
628            paddr = req->getPaddr();
629            firstTimeThrough = false;
630        }
631
632        if (secondAddr <= vaddr)
633            return fault;
634
635        /*
636         * Set up for accessing the second cache line.
637         */
638
639        //Adjust the size to get the remaining bytes.
640        dataSize = vaddr + size - secondAddr;
641        //And access the right address.
642        vaddr = secondAddr;
643    }
644}
645
646
647#ifndef DOXYGEN_SHOULD_SKIP_THIS
648
649template
650Fault
651AtomicSimpleCPU::write(Twin32_t data, Addr addr,
652                       unsigned flags, uint64_t *res);
653
654template
655Fault
656AtomicSimpleCPU::write(Twin64_t data, Addr addr,
657                       unsigned flags, uint64_t *res);
658
659template
660Fault
661AtomicSimpleCPU::write(uint64_t data, Addr addr,
662                       unsigned flags, uint64_t *res);
663
664template
665Fault
666AtomicSimpleCPU::write(uint32_t data, Addr addr,
667                       unsigned flags, uint64_t *res);
668
669template
670Fault
671AtomicSimpleCPU::write(uint16_t data, Addr addr,
672                       unsigned flags, uint64_t *res);
673
674template
675Fault
676AtomicSimpleCPU::write(uint8_t data, Addr addr,
677                       unsigned flags, uint64_t *res);
678
679#endif //DOXYGEN_SHOULD_SKIP_THIS
680
681template<>
682Fault
683AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
684{
685    return write(*(uint64_t*)&data, addr, flags, res);
686}
687
688template<>
689Fault
690AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
691{
692    return write(*(uint32_t*)&data, addr, flags, res);
693}
694
695
696template<>
697Fault
698AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
699{
700    return write((uint32_t)data, addr, flags, res);
701}
702
703
704void
705AtomicSimpleCPU::tick()
706{
707    DPRINTF(SimpleCPU, "Tick\n");
708
709    Tick latency = 0;
710
711    for (int i = 0; i < width; ++i) {
712        numCycles++;
713
714        if (!curStaticInst || !curStaticInst->isDelayedCommit())
715            checkForInterrupts();
716
717        checkPcEventQueue();
718
719        Fault fault = NoFault;
720
721        bool fromRom = isRomMicroPC(thread->readMicroPC());
722        if (!fromRom)
723            fault = setupFetchRequest(&ifetch_req);
724
725        if (fault == NoFault) {
726            Tick icache_latency = 0;
727            bool icache_access = false;
728            dcache_access = false; // assume no dcache access
729
730            if (!fromRom) {
731                // This is commented out because the predecoder would act like
732                // a tiny cache otherwise. It wouldn't be flushed when needed
733                // like the I cache. It should be flushed, and when that works
734                // this code should be uncommented.
735                //Fetch more instruction memory if necessary
736                //if(predecoder.needMoreBytes())
737                //{
738                    icache_access = true;
739                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
740                                               Packet::Broadcast);
741                    ifetch_pkt.dataStatic(&inst);
742
743                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
744                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
745                    else
746                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
747
748                    assert(!ifetch_pkt.isError());
749
750                    // ifetch_req is initialized to read the instruction directly
751                    // into the CPU object's inst field.
752                //}
753            }
754
755            preExecute();
756
757            if (curStaticInst) {
758                fault = curStaticInst->execute(this, traceData);
759
760                // keep an instruction count
761                if (fault == NoFault)
762                    countInst();
763                else if (traceData) {
764                    // If there was a fault, we should trace this instruction.
765                    delete traceData;
766                    traceData = NULL;
767                }
768
769                postExecute();
770            }
771
772            // @todo remove me after debugging with legion done
773            if (curStaticInst && (!curStaticInst->isMicroop() ||
774                        curStaticInst->isFirstMicroop()))
775                instCnt++;
776
777            Tick stall_ticks = 0;
778            if (simulate_inst_stalls && icache_access)
779                stall_ticks += icache_latency;
780
781            if (simulate_data_stalls && dcache_access)
782                stall_ticks += dcache_latency;
783
784            if (stall_ticks) {
785                Tick stall_cycles = stall_ticks / ticks(1);
786                Tick aligned_stall_ticks = ticks(stall_cycles);
787
788                if (aligned_stall_ticks < stall_ticks)
789                    aligned_stall_ticks += 1;
790
791                latency += aligned_stall_ticks;
792            }
793
794        }
795        if(fault != NoFault || !stayAtPC)
796            advancePC(fault);
797    }
798
799    // instruction takes at least one cycle
800    if (latency < ticks(1))
801        latency = ticks(1);
802
803    if (_status != Idle)
804        schedule(tickEvent, curTick + latency);
805}
806
807
808void
809AtomicSimpleCPU::printAddr(Addr a)
810{
811    dcachePort.printAddr(a);
812}
813
814
815////////////////////////////////////////////////////////////////////////
816//
817//  AtomicSimpleCPU Simulation Object
818//
819AtomicSimpleCPU *
820AtomicSimpleCPUParams::create()
821{
822    numThreads = 1;
823#if !FULL_SYSTEM
824    if (workload.size() != 1)
825        panic("only one workload allowed");
826#endif
827    return new AtomicSimpleCPU(this);
828}
829