atomic.cc revision 5497
112855Sgabeblack@google.com/*
212855Sgabeblack@google.com * Copyright (c) 2002-2005 The Regents of The University of Michigan
312855Sgabeblack@google.com * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description() const
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82    cpuId = tc->readCpuId();
83#if FULL_SYSTEM
84    for (int i = 0; i < threadContexts.size(); ++i) {
85        ThreadContext *tc = threadContexts[i];
86
87        // initialize CPU, including PC
88        TheISA::initCPU(tc, cpuId);
89    }
90#endif
91    if (hasPhysMemPort) {
92        bool snoop = false;
93        AddrRangeList pmAddrList;
94        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
95        physMemAddr = *pmAddrList.begin();
96    }
97    ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
98    data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
99    data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
100}
101
102bool
103AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
104{
105    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
106    return true;
107}
108
109Tick
110AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
111{
112    //Snooping a coherence request, just return
113    return 0;
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
118{
119    //No internal storage to update, just return
120    return;
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
125{
126    if (status == RangeChange) {
127        if (!snoopRangeSent) {
128            snoopRangeSent = true;
129            sendStatusChange(Port::RangeChange);
130        }
131        return;
132    }
133
134    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
135}
136
137void
138AtomicSimpleCPU::CpuPort::recvRetry()
139{
140    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
141}
142
143void
144AtomicSimpleCPU::DcachePort::setPeer(Port *port)
145{
146    Port::setPeer(port);
147
148#if FULL_SYSTEM
149    // Update the ThreadContext's memory ports (Functional/Virtual
150    // Ports)
151    cpu->tcBase()->connectMemPorts(cpu->tcBase());
152#endif
153}
154
155AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
156    : BaseSimpleCPU(p), tickEvent(this), width(p->width),
157      simulate_data_stalls(p->simulate_data_stalls),
158      simulate_inst_stalls(p->simulate_inst_stalls),
159      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
160      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
161{
162    _status = Idle;
163
164    icachePort.snoopRangeSent = false;
165    dcachePort.snoopRangeSent = false;
166
167}
168
169
170AtomicSimpleCPU::~AtomicSimpleCPU()
171{
172}
173
174void
175AtomicSimpleCPU::serialize(ostream &os)
176{
177    SimObject::State so_state = SimObject::getState();
178    SERIALIZE_ENUM(so_state);
179    BaseSimpleCPU::serialize(os);
180    nameOut(os, csprintf("%s.tickEvent", name()));
181    tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187    SimObject::State so_state;
188    UNSERIALIZE_ENUM(so_state);
189    BaseSimpleCPU::unserialize(cp, section);
190    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
191}
192
193void
194AtomicSimpleCPU::resume()
195{
196    if (_status == Idle || _status == SwitchedOut)
197        return;
198
199    DPRINTF(SimpleCPU, "Resume\n");
200    assert(system->getMemoryMode() == Enums::atomic);
201
202    changeState(SimObject::Running);
203    if (thread->status() == ThreadContext::Active) {
204        if (!tickEvent.scheduled()) {
205            tickEvent.schedule(nextCycle());
206        }
207    }
208}
209
210void
211AtomicSimpleCPU::switchOut()
212{
213    assert(_status == Running || _status == Idle);
214    _status = SwitchedOut;
215
216    tickEvent.squash();
217}
218
219
220void
221AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
222{
223    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
224
225    assert(!tickEvent.scheduled());
226
227    // if any of this CPU's ThreadContexts are active, mark the CPU as
228    // running and schedule its tick event.
229    for (int i = 0; i < threadContexts.size(); ++i) {
230        ThreadContext *tc = threadContexts[i];
231        if (tc->status() == ThreadContext::Active && _status != Running) {
232            _status = Running;
233            tickEvent.schedule(nextCycle());
234            break;
235        }
236    }
237    if (_status != Running) {
238        _status = Idle;
239    }
240    assert(threadContexts.size() == 1);
241    cpuId = tc->readCpuId();
242    ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
243    data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
244    data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
245}
246
247
248void
249AtomicSimpleCPU::activateContext(int thread_num, int delay)
250{
251    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
252
253    assert(thread_num == 0);
254    assert(thread);
255
256    assert(_status == Idle);
257    assert(!tickEvent.scheduled());
258
259    notIdleFraction++;
260    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
261
262    //Make sure ticks are still on multiples of cycles
263    tickEvent.schedule(nextCycle(curTick + ticks(delay)));
264    _status = Running;
265}
266
267
268void
269AtomicSimpleCPU::suspendContext(int thread_num)
270{
271    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
272
273    assert(thread_num == 0);
274    assert(thread);
275
276    assert(_status == Running);
277
278    // tick event may not be scheduled if this gets called from inside
279    // an instruction's execution, e.g. "quiesce"
280    if (tickEvent.scheduled())
281        tickEvent.deschedule();
282
283    notIdleFraction--;
284    _status = Idle;
285}
286
287
288template <class T>
289Fault
290AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
291{
292    // use the CPU's statically allocated read request and packet objects
293    Request *req = &data_read_req;
294
295    if (traceData) {
296        traceData->setAddr(addr);
297    }
298
299    //The block size of our peer.
300    int blockSize = dcachePort.peerBlockSize();
301    //The size of the data we're trying to read.
302    int dataSize = sizeof(T);
303
304    uint8_t * dataPtr = (uint8_t *)&data;
305
306    //The address of the second part of this access if it needs to be split
307    //across a cache line boundary.
308    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
309
310    if(secondAddr > addr)
311        dataSize = secondAddr - addr;
312
313    dcache_latency = 0;
314
315    while(1) {
316        req->setVirt(0, addr, dataSize, flags, thread->readPC());
317
318        // translate to physical address
319        Fault fault = thread->translateDataReadReq(req);
320
321        // Now do the access.
322        if (fault == NoFault) {
323            Packet pkt = Packet(req,
324                    req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
325                    Packet::Broadcast);
326            pkt.dataStatic(dataPtr);
327
328            if (req->isMmapedIpr())
329                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
330            else {
331                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
332                    dcache_latency += physmemPort.sendAtomic(&pkt);
333                else
334                    dcache_latency += dcachePort.sendAtomic(&pkt);
335            }
336            dcache_access = true;
337
338            assert(!pkt.isError());
339
340            if (req->isLocked()) {
341                TheISA::handleLockedRead(thread, req);
342            }
343        }
344
345        // This will need a new way to tell if it has a dcache attached.
346        if (req->isUncacheable())
347            recordEvent("Uncached Read");
348
349        //If there's a fault, return it
350        if (fault != NoFault)
351            return fault;
352        //If we don't need to access a second cache line, stop now.
353        if (secondAddr <= addr)
354        {
355            data = gtoh(data);
356            if (traceData) {
357                traceData->setData(data);
358            }
359            return fault;
360        }
361
362        /*
363         * Set up for accessing the second cache line.
364         */
365
366        //Move the pointer we're reading into to the correct location.
367        dataPtr += dataSize;
368        //Adjust the size to get the remaining bytes.
369        dataSize = addr + sizeof(T) - secondAddr;
370        //And access the right address.
371        addr = secondAddr;
372    }
373}
374
375Fault
376AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
377        int size, unsigned flags)
378{
379    // use the CPU's statically allocated read request and packet objects
380    Request *req = &data_read_req;
381
382    if (traceData) {
383        traceData->setAddr(vaddr);
384    }
385
386    //The block size of our peer.
387    int blockSize = dcachePort.peerBlockSize();
388    //The size of the data we're trying to read.
389    int dataSize = size;
390
391    bool firstTimeThrough = true;
392
393    //The address of the second part of this access if it needs to be split
394    //across a cache line boundary.
395    Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
396
397    if(secondAddr > vaddr)
398        dataSize = secondAddr - vaddr;
399
400    while(1) {
401        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
402
403        // translate to physical address
404        Fault fault = thread->translateDataReadReq(req);
405
406        //If there's a fault, return it
407        if (fault != NoFault)
408            return fault;
409
410        if (firstTimeThrough) {
411            paddr = req->getPaddr();
412            firstTimeThrough = false;
413        }
414
415        //If we don't need to access a second cache line, stop now.
416        if (secondAddr <= vaddr)
417            return fault;
418
419        /*
420         * Set up for accessing the second cache line.
421         */
422
423        //Adjust the size to get the remaining bytes.
424        dataSize = vaddr + size - secondAddr;
425        //And access the right address.
426        vaddr = secondAddr;
427    }
428}
429
430#ifndef DOXYGEN_SHOULD_SKIP_THIS
431
432template
433Fault
434AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
435
436template
437Fault
438AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
439
440template
441Fault
442AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
443
444template
445Fault
446AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
447
448template
449Fault
450AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
451
452template
453Fault
454AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
455
456#endif //DOXYGEN_SHOULD_SKIP_THIS
457
458template<>
459Fault
460AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
461{
462    return read(addr, *(uint64_t*)&data, flags);
463}
464
465template<>
466Fault
467AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
468{
469    return read(addr, *(uint32_t*)&data, flags);
470}
471
472
473template<>
474Fault
475AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
476{
477    return read(addr, (uint32_t&)data, flags);
478}
479
480
481template <class T>
482Fault
483AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
484{
485    // use the CPU's statically allocated write request and packet objects
486    Request *req = &data_write_req;
487
488    if (traceData) {
489        traceData->setAddr(addr);
490    }
491
492    //The block size of our peer.
493    int blockSize = dcachePort.peerBlockSize();
494    //The size of the data we're trying to read.
495    int dataSize = sizeof(T);
496
497    uint8_t * dataPtr = (uint8_t *)&data;
498
499    //The address of the second part of this access if it needs to be split
500    //across a cache line boundary.
501    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
502
503    if(secondAddr > addr)
504        dataSize = secondAddr - addr;
505
506    dcache_latency = 0;
507
508    while(1) {
509        req->setVirt(0, addr, dataSize, flags, thread->readPC());
510
511        // translate to physical address
512        Fault fault = thread->translateDataWriteReq(req);
513
514        // Now do the access.
515        if (fault == NoFault) {
516            MemCmd cmd = MemCmd::WriteReq; // default
517            bool do_access = true;  // flag to suppress cache access
518
519            if (req->isLocked()) {
520                cmd = MemCmd::StoreCondReq;
521                do_access = TheISA::handleLockedWrite(thread, req);
522            } else if (req->isSwap()) {
523                cmd = MemCmd::SwapReq;
524                if (req->isCondSwap()) {
525                    assert(res);
526                    req->setExtraData(*res);
527                }
528            }
529
530            if (do_access) {
531                Packet pkt = Packet(req, cmd, Packet::Broadcast);
532                pkt.dataStatic(dataPtr);
533
534                if (req->isMmapedIpr()) {
535                    dcache_latency +=
536                        TheISA::handleIprWrite(thread->getTC(), &pkt);
537                } else {
538                    //XXX This needs to be outside of the loop in order to
539                    //work properly for cache line boundary crossing
540                    //accesses in transendian simulations.
541                    data = htog(data);
542                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
543                        dcache_latency += physmemPort.sendAtomic(&pkt);
544                    else
545                        dcache_latency += dcachePort.sendAtomic(&pkt);
546                }
547                dcache_access = true;
548                assert(!pkt.isError());
549
550                if (req->isSwap()) {
551                    assert(res);
552                    *res = pkt.get<T>();
553                }
554            }
555
556            if (res && !req->isSwap()) {
557                *res = req->getExtraData();
558            }
559        }
560
561        // This will need a new way to tell if it's hooked up to a cache or not.
562        if (req->isUncacheable())
563            recordEvent("Uncached Write");
564
565        //If there's a fault or we don't need to access a second cache line,
566        //stop now.
567        if (fault != NoFault || secondAddr <= addr)
568        {
569            // If the write needs to have a fault on the access, consider
570            // calling changeStatus() and changing it to "bad addr write"
571            // or something.
572            if (traceData) {
573                traceData->setData(data);
574            }
575            return fault;
576        }
577
578        /*
579         * Set up for accessing the second cache line.
580         */
581
582        //Move the pointer we're reading into to the correct location.
583        dataPtr += dataSize;
584        //Adjust the size to get the remaining bytes.
585        dataSize = addr + sizeof(T) - secondAddr;
586        //And access the right address.
587        addr = secondAddr;
588    }
589}
590
591Fault
592AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
593        int size, unsigned flags)
594{
595    // use the CPU's statically allocated write request and packet objects
596    Request *req = &data_write_req;
597
598    if (traceData) {
599        traceData->setAddr(vaddr);
600    }
601
602    //The block size of our peer.
603    int blockSize = dcachePort.peerBlockSize();
604
605    //The address of the second part of this access if it needs to be split
606    //across a cache line boundary.
607    Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
608
609    //The size of the data we're trying to read.
610    int dataSize = size;
611
612    bool firstTimeThrough = true;
613
614    if(secondAddr > vaddr)
615        dataSize = secondAddr - vaddr;
616
617    dcache_latency = 0;
618
619    while(1) {
620        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
621
622        // translate to physical address
623        Fault fault = thread->translateDataWriteReq(req);
624
625        //If there's a fault or we don't need to access a second cache line,
626        //stop now.
627        if (fault != NoFault)
628            return fault;
629
630        if (firstTimeThrough) {
631            paddr = req->getPaddr();
632            firstTimeThrough = false;
633        }
634
635        if (secondAddr <= vaddr)
636            return fault;
637
638        /*
639         * Set up for accessing the second cache line.
640         */
641
642        //Adjust the size to get the remaining bytes.
643        dataSize = vaddr + size - secondAddr;
644        //And access the right address.
645        vaddr = secondAddr;
646    }
647}
648
649
650#ifndef DOXYGEN_SHOULD_SKIP_THIS
651
652template
653Fault
654AtomicSimpleCPU::write(Twin32_t data, Addr addr,
655                       unsigned flags, uint64_t *res);
656
657template
658Fault
659AtomicSimpleCPU::write(Twin64_t data, Addr addr,
660                       unsigned flags, uint64_t *res);
661
662template
663Fault
664AtomicSimpleCPU::write(uint64_t data, Addr addr,
665                       unsigned flags, uint64_t *res);
666
667template
668Fault
669AtomicSimpleCPU::write(uint32_t data, Addr addr,
670                       unsigned flags, uint64_t *res);
671
672template
673Fault
674AtomicSimpleCPU::write(uint16_t data, Addr addr,
675                       unsigned flags, uint64_t *res);
676
677template
678Fault
679AtomicSimpleCPU::write(uint8_t data, Addr addr,
680                       unsigned flags, uint64_t *res);
681
682#endif //DOXYGEN_SHOULD_SKIP_THIS
683
684template<>
685Fault
686AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
687{
688    return write(*(uint64_t*)&data, addr, flags, res);
689}
690
691template<>
692Fault
693AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
694{
695    return write(*(uint32_t*)&data, addr, flags, res);
696}
697
698
699template<>
700Fault
701AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
702{
703    return write((uint32_t)data, addr, flags, res);
704}
705
706
707void
708AtomicSimpleCPU::tick()
709{
710    DPRINTF(SimpleCPU, "Tick\n");
711
712    Tick latency = 0;
713
714    for (int i = 0; i < width; ++i) {
715        numCycles++;
716
717        if (!curStaticInst || !curStaticInst->isDelayedCommit())
718            checkForInterrupts();
719
720        checkPcEventQueue();
721
722        Fault fault = setupFetchRequest(&ifetch_req);
723
724        if (fault == NoFault) {
725            Tick icache_latency = 0;
726            bool icache_access = false;
727            dcache_access = false; // assume no dcache access
728
729            //Fetch more instruction memory if necessary
730            //if(predecoder.needMoreBytes())
731            //{
732                icache_access = true;
733                Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
734                                           Packet::Broadcast);
735                ifetch_pkt.dataStatic(&inst);
736
737                if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
738                    icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
739                else
740                    icache_latency = icachePort.sendAtomic(&ifetch_pkt);
741
742                assert(!ifetch_pkt.isError());
743
744                // ifetch_req is initialized to read the instruction directly
745                // into the CPU object's inst field.
746            //}
747
748            preExecute();
749
750            if (curStaticInst) {
751                fault = curStaticInst->execute(this, traceData);
752
753                // keep an instruction count
754                if (fault == NoFault)
755                    countInst();
756                else if (traceData) {
757                    // If there was a fault, we should trace this instruction.
758                    delete traceData;
759                    traceData = NULL;
760                }
761
762                postExecute();
763            }
764
765            // @todo remove me after debugging with legion done
766            if (curStaticInst && (!curStaticInst->isMicroop() ||
767                        curStaticInst->isFirstMicroop()))
768                instCnt++;
769
770            Tick stall_ticks = 0;
771            if (simulate_inst_stalls && icache_access)
772                stall_ticks += icache_latency;
773
774            if (simulate_data_stalls && dcache_access)
775                stall_ticks += dcache_latency;
776
777            if (stall_ticks) {
778                Tick stall_cycles = stall_ticks / ticks(1);
779                Tick aligned_stall_ticks = ticks(stall_cycles);
780
781                if (aligned_stall_ticks < stall_ticks)
782                    aligned_stall_ticks += 1;
783
784                latency += aligned_stall_ticks;
785            }
786
787        }
788        if(fault != NoFault || !stayAtPC)
789            advancePC(fault);
790    }
791
792    // instruction takes at least one cycle
793    if (latency < ticks(1))
794        latency = ticks(1);
795
796    if (_status != Idle)
797        tickEvent.schedule(curTick + latency);
798}
799
800
801void
802AtomicSimpleCPU::printAddr(Addr a)
803{
804    dcachePort.printAddr(a);
805}
806
807
808////////////////////////////////////////////////////////////////////////
809//
810//  AtomicSimpleCPU Simulation Object
811//
812AtomicSimpleCPU *
813AtomicSimpleCPUParams::create()
814{
815    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
816    params->name = name;
817    params->numberOfThreads = 1;
818    params->max_insts_any_thread = max_insts_any_thread;
819    params->max_insts_all_threads = max_insts_all_threads;
820    params->max_loads_any_thread = max_loads_any_thread;
821    params->max_loads_all_threads = max_loads_all_threads;
822    params->progress_interval = progress_interval;
823    params->deferRegistration = defer_registration;
824    params->phase = phase;
825    params->clock = clock;
826    params->functionTrace = function_trace;
827    params->functionTraceStart = function_trace_start;
828    params->width = width;
829    params->simulate_data_stalls = simulate_data_stalls;
830    params->simulate_inst_stalls = simulate_inst_stalls;
831    params->system = system;
832    params->cpu_id = cpu_id;
833    params->tracer = tracer;
834
835    params->itb = itb;
836    params->dtb = dtb;
837#if FULL_SYSTEM
838    params->profile = profile;
839    params->do_quiesce = do_quiesce;
840    params->do_checkpoint_insts = do_checkpoint_insts;
841    params->do_statistics_insts = do_statistics_insts;
842#else
843    if (workload.size() != 1)
844        panic("only one workload allowed");
845    params->process = workload[0];
846#endif
847
848    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
849    return cpu;
850}
851