lsq_unit_impl.hh revision 9936:f00546aff354
1
2/*
3 * Copyright (c) 2010-2012 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#include "arch/generic/debugfaults.hh"
46#include "arch/locked_mem.hh"
47#include "base/str.hh"
48#include "config/the_isa.hh"
49#include "cpu/checker/cpu.hh"
50#include "cpu/o3/lsq.hh"
51#include "cpu/o3/lsq_unit.hh"
52#include "debug/Activity.hh"
53#include "debug/IEW.hh"
54#include "debug/LSQUnit.hh"
55#include "debug/O3PipeView.hh"
56#include "mem/packet.hh"
57#include "mem/request.hh"
58
59template<class Impl>
60LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
61                                              LSQUnit *lsq_ptr)
62    : Event(Default_Pri, AutoDelete),
63      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
64{
65}
66
67template<class Impl>
68void
69LSQUnit<Impl>::WritebackEvent::process()
70{
71    assert(!lsqPtr->cpu->switchedOut());
72
73    lsqPtr->writeback(inst, pkt);
74
75    if (pkt->senderState)
76        delete pkt->senderState;
77
78    delete pkt->req;
79    delete pkt;
80}
81
82template<class Impl>
83const char *
84LSQUnit<Impl>::WritebackEvent::description() const
85{
86    return "Store writeback";
87}
88
89template<class Impl>
90void
91LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
92{
93    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
94    DynInstPtr inst = state->inst;
95    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
96    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
97
98    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
99
100    // If this is a split access, wait until all packets are received.
101    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102        delete pkt->req;
103        delete pkt;
104        return;
105    }
106
107    assert(!cpu->switchedOut());
108    if (inst->isSquashed()) {
109        iewStage->decrWb(inst->seqNum);
110    } else {
111        if (!state->noWB) {
112            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
113                !state->isLoad) {
114                writeback(inst, pkt);
115            } else {
116                writeback(inst, state->mainPkt);
117            }
118        }
119
120        if (inst->isStore()) {
121            completeStore(state->idx);
122        }
123    }
124
125    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
126        delete state->mainPkt->req;
127        delete state->mainPkt;
128    }
129    delete state;
130    delete pkt->req;
131    delete pkt;
132}
133
134template <class Impl>
135LSQUnit<Impl>::LSQUnit()
136    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
137      isStoreBlocked(false), isLoadBlocked(false),
138      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
139{
140}
141
142template<class Impl>
143void
144LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
145        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
146        unsigned id)
147{
148    cpu = cpu_ptr;
149    iewStage = iew_ptr;
150
151    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
152
153    lsq = lsq_ptr;
154
155    lsqID = id;
156
157    // Add 1 for the sentinel entry (they are circular queues).
158    LQEntries = maxLQEntries + 1;
159    SQEntries = maxSQEntries + 1;
160
161    //Due to uint8_t index in LSQSenderState
162    assert(LQEntries <= 256);
163    assert(SQEntries <= 256);
164
165    loadQueue.resize(LQEntries);
166    storeQueue.resize(SQEntries);
167
168    depCheckShift = params->LSQDepCheckShift;
169    checkLoads = params->LSQCheckLoads;
170    cachePorts = params->cachePorts;
171    needsTSO = params->needsTSO;
172
173    resetState();
174}
175
176
177template<class Impl>
178void
179LSQUnit<Impl>::resetState()
180{
181    loads = stores = storesToWB = 0;
182
183    loadHead = loadTail = 0;
184
185    storeHead = storeWBIdx = storeTail = 0;
186
187    usedPorts = 0;
188
189    retryPkt = NULL;
190    memDepViolator = NULL;
191
192    blockedLoadSeqNum = 0;
193
194    stalled = false;
195    isLoadBlocked = false;
196    loadBlockedHandled = false;
197
198    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
199}
200
201template<class Impl>
202std::string
203LSQUnit<Impl>::name() const
204{
205    if (Impl::MaxThreads == 1) {
206        return iewStage->name() + ".lsq";
207    } else {
208        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
209    }
210}
211
212template<class Impl>
213void
214LSQUnit<Impl>::regStats()
215{
216    lsqForwLoads
217        .name(name() + ".forwLoads")
218        .desc("Number of loads that had data forwarded from stores");
219
220    invAddrLoads
221        .name(name() + ".invAddrLoads")
222        .desc("Number of loads ignored due to an invalid address");
223
224    lsqSquashedLoads
225        .name(name() + ".squashedLoads")
226        .desc("Number of loads squashed");
227
228    lsqIgnoredResponses
229        .name(name() + ".ignoredResponses")
230        .desc("Number of memory responses ignored because the instruction is squashed");
231
232    lsqMemOrderViolation
233        .name(name() + ".memOrderViolation")
234        .desc("Number of memory ordering violations");
235
236    lsqSquashedStores
237        .name(name() + ".squashedStores")
238        .desc("Number of stores squashed");
239
240    invAddrSwpfs
241        .name(name() + ".invAddrSwpfs")
242        .desc("Number of software prefetches ignored due to an invalid address");
243
244    lsqBlockedLoads
245        .name(name() + ".blockedLoads")
246        .desc("Number of blocked loads due to partial load-store forwarding");
247
248    lsqRescheduledLoads
249        .name(name() + ".rescheduledLoads")
250        .desc("Number of loads that were rescheduled");
251
252    lsqCacheBlocked
253        .name(name() + ".cacheBlocked")
254        .desc("Number of times an access to memory failed due to the cache being blocked");
255}
256
257template<class Impl>
258void
259LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
260{
261    dcachePort = dcache_port;
262}
263
264template<class Impl>
265void
266LSQUnit<Impl>::clearLQ()
267{
268    loadQueue.clear();
269}
270
271template<class Impl>
272void
273LSQUnit<Impl>::clearSQ()
274{
275    storeQueue.clear();
276}
277
278template<class Impl>
279void
280LSQUnit<Impl>::drainSanityCheck() const
281{
282    for (int i = 0; i < loadQueue.size(); ++i)
283        assert(!loadQueue[i]);
284
285    assert(storesToWB == 0);
286    assert(!retryPkt);
287}
288
289template<class Impl>
290void
291LSQUnit<Impl>::takeOverFrom()
292{
293    resetState();
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300    unsigned size_plus_sentinel = size + 1;
301    assert(size_plus_sentinel >= LQEntries);
302
303    if (size_plus_sentinel > LQEntries) {
304        while (size_plus_sentinel > loadQueue.size()) {
305            DynInstPtr dummy;
306            loadQueue.push_back(dummy);
307            LQEntries++;
308        }
309    } else {
310        LQEntries = size_plus_sentinel;
311    }
312
313    assert(LQEntries <= 256);
314}
315
316template<class Impl>
317void
318LSQUnit<Impl>::resizeSQ(unsigned size)
319{
320    unsigned size_plus_sentinel = size + 1;
321    if (size_plus_sentinel > SQEntries) {
322        while (size_plus_sentinel > storeQueue.size()) {
323            SQEntry dummy;
324            storeQueue.push_back(dummy);
325            SQEntries++;
326        }
327    } else {
328        SQEntries = size_plus_sentinel;
329    }
330
331    assert(SQEntries <= 256);
332}
333
334template <class Impl>
335void
336LSQUnit<Impl>::insert(DynInstPtr &inst)
337{
338    assert(inst->isMemRef());
339
340    assert(inst->isLoad() || inst->isStore());
341
342    if (inst->isLoad()) {
343        insertLoad(inst);
344    } else {
345        insertStore(inst);
346    }
347
348    inst->setInLSQ();
349}
350
351template <class Impl>
352void
353LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
354{
355    assert((loadTail + 1) % LQEntries != loadHead);
356    assert(loads < LQEntries);
357
358    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
359            load_inst->pcState(), loadTail, load_inst->seqNum);
360
361    load_inst->lqIdx = loadTail;
362
363    if (stores == 0) {
364        load_inst->sqIdx = -1;
365    } else {
366        load_inst->sqIdx = storeTail;
367    }
368
369    loadQueue[loadTail] = load_inst;
370
371    incrLdIdx(loadTail);
372
373    ++loads;
374}
375
376template <class Impl>
377void
378LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
379{
380    // Make sure it is not full before inserting an instruction.
381    assert((storeTail + 1) % SQEntries != storeHead);
382    assert(stores < SQEntries);
383
384    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
385            store_inst->pcState(), storeTail, store_inst->seqNum);
386
387    store_inst->sqIdx = storeTail;
388    store_inst->lqIdx = loadTail;
389
390    storeQueue[storeTail] = SQEntry(store_inst);
391
392    incrStIdx(storeTail);
393
394    ++stores;
395}
396
397template <class Impl>
398typename Impl::DynInstPtr
399LSQUnit<Impl>::getMemDepViolator()
400{
401    DynInstPtr temp = memDepViolator;
402
403    memDepViolator = NULL;
404
405    return temp;
406}
407
408template <class Impl>
409unsigned
410LSQUnit<Impl>::numFreeEntries()
411{
412    unsigned free_lq_entries = LQEntries - loads;
413    unsigned free_sq_entries = SQEntries - stores;
414
415    // Both the LQ and SQ entries have an extra dummy entry to differentiate
416    // empty/full conditions.  Subtract 1 from the free entries.
417    if (free_lq_entries < free_sq_entries) {
418        return free_lq_entries - 1;
419    } else {
420        return free_sq_entries - 1;
421    }
422}
423
424template <class Impl>
425void
426LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
427{
428    int load_idx = loadHead;
429
430    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
431    // address. The CPU can speculatively execute a LL operation after a pending
432    // SC operation in the pipeline and that can make the cache monitor the CPU
433    // is connected to valid while it really shouldn't be.
434    for (int x = 0; x < cpu->numActiveThreads(); x++) {
435        ThreadContext *tc = cpu->getContext(x);
436        bool no_squash = cpu->thread[x]->noSquashFromTC;
437        cpu->thread[x]->noSquashFromTC = true;
438        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
439        cpu->thread[x]->noSquashFromTC = no_squash;
440    }
441
442    // If this is the only load in the LSQ we don't care
443    if (load_idx == loadTail)
444        return;
445    incrLdIdx(load_idx);
446
447    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
448    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
449    while (load_idx != loadTail) {
450        DynInstPtr ld_inst = loadQueue[load_idx];
451
452        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
453            incrLdIdx(load_idx);
454            continue;
455        }
456
457        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
458        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
459                    ld_inst->seqNum, load_addr, invalidate_addr);
460
461        if (load_addr == invalidate_addr) {
462            if (ld_inst->possibleLoadViolation()) {
463                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
464                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
465
466                // Mark the load for re-execution
467                ld_inst->fault = new ReExec;
468            } else {
469                // If a older load checks this and it's true
470                // then we might have missed the snoop
471                // in which case we need to invalidate to be sure
472                ld_inst->hitExternalSnoop(true);
473            }
474        }
475        incrLdIdx(load_idx);
476    }
477    return;
478}
479
480template <class Impl>
481Fault
482LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
483{
484    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
485    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
486
487    /** @todo in theory you only need to check an instruction that has executed
488     * however, there isn't a good way in the pipeline at the moment to check
489     * all instructions that will execute before the store writes back. Thus,
490     * like the implementation that came before it, we're overly conservative.
491     */
492    while (load_idx != loadTail) {
493        DynInstPtr ld_inst = loadQueue[load_idx];
494        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
495            incrLdIdx(load_idx);
496            continue;
497        }
498
499        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
500        Addr ld_eff_addr2 =
501            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
502
503        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
504            if (inst->isLoad()) {
505                // If this load is to the same block as an external snoop
506                // invalidate that we've observed then the load needs to be
507                // squashed as it could have newer data
508                if (ld_inst->hitExternalSnoop()) {
509                    if (!memDepViolator ||
510                            ld_inst->seqNum < memDepViolator->seqNum) {
511                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
512                                "and [sn:%lli] at address %#x\n",
513                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
514                        memDepViolator = ld_inst;
515
516                        ++lsqMemOrderViolation;
517
518                        return new GenericISA::M5PanicFault(
519                                "Detected fault with inst [sn:%lli] and "
520                                "[sn:%lli] at address %#x\n",
521                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
522                    }
523                }
524
525                // Otherwise, mark the load has a possible load violation
526                // and if we see a snoop before it's commited, we need to squash
527                ld_inst->possibleLoadViolation(true);
528                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
529                        " between instructions [sn:%lli] and [sn:%lli]\n",
530                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
531            } else {
532                // A load/store incorrectly passed this store.
533                // Check if we already have a violator, or if it's newer
534                // squash and refetch.
535                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
536                    break;
537
538                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
539                        "[sn:%lli] at address %#x\n",
540                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
541                memDepViolator = ld_inst;
542
543                ++lsqMemOrderViolation;
544
545                return new GenericISA::M5PanicFault("Detected fault with "
546                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
547                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
548            }
549        }
550
551        incrLdIdx(load_idx);
552    }
553    return NoFault;
554}
555
556
557
558
559template <class Impl>
560Fault
561LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
562{
563    using namespace TheISA;
564    // Execute a specific load.
565    Fault load_fault = NoFault;
566
567    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
568            inst->pcState(), inst->seqNum);
569
570    assert(!inst->isSquashed());
571
572    load_fault = inst->initiateAcc();
573
574    if (inst->isTranslationDelayed() &&
575        load_fault == NoFault)
576        return load_fault;
577
578    // If the instruction faulted or predicated false, then we need to send it
579    // along to commit without the instruction completing.
580    if (load_fault != NoFault || inst->readPredicate() == false) {
581        // Send this instruction to commit, also make sure iew stage
582        // realizes there is activity.
583        // Mark it as executed unless it is an uncached load that
584        // needs to hit the head of commit.
585        if (inst->readPredicate() == false)
586            inst->forwardOldRegs();
587        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
588                inst->seqNum,
589                (load_fault != NoFault ? "fault" : "predication"));
590        if (!(inst->hasRequest() && inst->uncacheable()) ||
591            inst->isAtCommit()) {
592            inst->setExecuted();
593        }
594        iewStage->instToCommit(inst);
595        iewStage->activityThisCycle();
596    } else if (!loadBlocked()) {
597        assert(inst->effAddrValid());
598        int load_idx = inst->lqIdx;
599        incrLdIdx(load_idx);
600
601        if (checkLoads)
602            return checkViolations(load_idx, inst);
603    }
604
605    return load_fault;
606}
607
608template <class Impl>
609Fault
610LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
611{
612    using namespace TheISA;
613    // Make sure that a store exists.
614    assert(stores != 0);
615
616    int store_idx = store_inst->sqIdx;
617
618    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
619            store_inst->pcState(), store_inst->seqNum);
620
621    assert(!store_inst->isSquashed());
622
623    // Check the recently completed loads to see if any match this store's
624    // address.  If so, then we have a memory ordering violation.
625    int load_idx = store_inst->lqIdx;
626
627    Fault store_fault = store_inst->initiateAcc();
628
629    if (store_inst->isTranslationDelayed() &&
630        store_fault == NoFault)
631        return store_fault;
632
633    if (store_inst->readPredicate() == false)
634        store_inst->forwardOldRegs();
635
636    if (storeQueue[store_idx].size == 0) {
637        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
638                store_inst->pcState(), store_inst->seqNum);
639
640        return store_fault;
641    } else if (store_inst->readPredicate() == false) {
642        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
643                store_inst->seqNum);
644        return store_fault;
645    }
646
647    assert(store_fault == NoFault);
648
649    if (store_inst->isStoreConditional()) {
650        // Store conditionals need to set themselves as able to
651        // writeback if we haven't had a fault by here.
652        storeQueue[store_idx].canWB = true;
653
654        ++storesToWB;
655    }
656
657    return checkViolations(load_idx, store_inst);
658
659}
660
661template <class Impl>
662void
663LSQUnit<Impl>::commitLoad()
664{
665    assert(loadQueue[loadHead]);
666
667    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
668            loadQueue[loadHead]->pcState());
669
670    loadQueue[loadHead] = NULL;
671
672    incrLdIdx(loadHead);
673
674    --loads;
675}
676
677template <class Impl>
678void
679LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
680{
681    assert(loads == 0 || loadQueue[loadHead]);
682
683    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
684        commitLoad();
685    }
686}
687
688template <class Impl>
689void
690LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
691{
692    assert(stores == 0 || storeQueue[storeHead].inst);
693
694    int store_idx = storeHead;
695
696    while (store_idx != storeTail) {
697        assert(storeQueue[store_idx].inst);
698        // Mark any stores that are now committed and have not yet
699        // been marked as able to write back.
700        if (!storeQueue[store_idx].canWB) {
701            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
702                break;
703            }
704            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
705                    "%s [sn:%lli]\n",
706                    storeQueue[store_idx].inst->pcState(),
707                    storeQueue[store_idx].inst->seqNum);
708
709            storeQueue[store_idx].canWB = true;
710
711            ++storesToWB;
712        }
713
714        incrStIdx(store_idx);
715    }
716}
717
718template <class Impl>
719void
720LSQUnit<Impl>::writebackPendingStore()
721{
722    if (hasPendingPkt) {
723        assert(pendingPkt != NULL);
724
725        // If the cache is blocked, this will store the packet for retry.
726        if (sendStore(pendingPkt)) {
727            storePostSend(pendingPkt);
728        }
729        pendingPkt = NULL;
730        hasPendingPkt = false;
731    }
732}
733
734template <class Impl>
735void
736LSQUnit<Impl>::writebackStores()
737{
738    // First writeback the second packet from any split store that didn't
739    // complete last cycle because there weren't enough cache ports available.
740    if (TheISA::HasUnalignedMemAcc) {
741        writebackPendingStore();
742    }
743
744    while (storesToWB > 0 &&
745           storeWBIdx != storeTail &&
746           storeQueue[storeWBIdx].inst &&
747           storeQueue[storeWBIdx].canWB &&
748           ((!needsTSO) || (!storeInFlight)) &&
749           usedPorts < cachePorts) {
750
751        if (isStoreBlocked || lsq->cacheBlocked()) {
752            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
753                    " is blocked!\n");
754            break;
755        }
756
757        // Store didn't write any data so no need to write it back to
758        // memory.
759        if (storeQueue[storeWBIdx].size == 0) {
760            completeStore(storeWBIdx);
761
762            incrStIdx(storeWBIdx);
763
764            continue;
765        }
766
767        ++usedPorts;
768
769        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
770            incrStIdx(storeWBIdx);
771
772            continue;
773        }
774
775        assert(storeQueue[storeWBIdx].req);
776        assert(!storeQueue[storeWBIdx].committed);
777
778        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
779            assert(storeQueue[storeWBIdx].sreqLow);
780            assert(storeQueue[storeWBIdx].sreqHigh);
781        }
782
783        DynInstPtr inst = storeQueue[storeWBIdx].inst;
784
785        Request *req = storeQueue[storeWBIdx].req;
786        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
787        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
788
789        storeQueue[storeWBIdx].committed = true;
790
791        assert(!inst->memData);
792        inst->memData = new uint8_t[64];
793
794        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
795
796        MemCmd command =
797            req->isSwap() ? MemCmd::SwapReq :
798            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
799        PacketPtr data_pkt;
800        PacketPtr snd_data_pkt = NULL;
801
802        LSQSenderState *state = new LSQSenderState;
803        state->isLoad = false;
804        state->idx = storeWBIdx;
805        state->inst = inst;
806
807        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
808
809            // Build a single data packet if the store isn't split.
810            data_pkt = new Packet(req, command);
811            data_pkt->dataStatic(inst->memData);
812            data_pkt->senderState = state;
813        } else {
814            // Create two packets if the store is split in two.
815            data_pkt = new Packet(sreqLow, command);
816            snd_data_pkt = new Packet(sreqHigh, command);
817
818            data_pkt->dataStatic(inst->memData);
819            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
820
821            data_pkt->senderState = state;
822            snd_data_pkt->senderState = state;
823
824            state->isSplit = true;
825            state->outstanding = 2;
826
827            // Can delete the main request now.
828            delete req;
829            req = sreqLow;
830        }
831
832        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
833                "to Addr:%#x, data:%#x [sn:%lli]\n",
834                storeWBIdx, inst->pcState(),
835                req->getPaddr(), (int)*(inst->memData),
836                inst->seqNum);
837
838        // @todo: Remove this SC hack once the memory system handles it.
839        if (inst->isStoreConditional()) {
840            assert(!storeQueue[storeWBIdx].isSplit);
841            // Disable recording the result temporarily.  Writing to
842            // misc regs normally updates the result, but this is not
843            // the desired behavior when handling store conditionals.
844            inst->recordResult(false);
845            bool success = TheISA::handleLockedWrite(inst.get(), req);
846            inst->recordResult(true);
847
848            if (!success) {
849                // Instantly complete this store.
850                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
851                        "Instantly completing it.\n",
852                        inst->seqNum);
853                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
854                cpu->schedule(wb, curTick() + 1);
855                if (cpu->checker) {
856                    // Make sure to set the LLSC data for verification
857                    // if checker is loaded
858                    inst->reqToVerify->setExtraData(0);
859                    inst->completeAcc(data_pkt);
860                }
861                completeStore(storeWBIdx);
862                incrStIdx(storeWBIdx);
863                continue;
864            }
865        } else {
866            // Non-store conditionals do not need a writeback.
867            state->noWB = true;
868        }
869
870        bool split =
871            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
872
873        ThreadContext *thread = cpu->tcBase(lsqID);
874
875        if (req->isMmappedIpr()) {
876            assert(!inst->isStoreConditional());
877            TheISA::handleIprWrite(thread, data_pkt);
878            delete data_pkt;
879            if (split) {
880                assert(snd_data_pkt->req->isMmappedIpr());
881                TheISA::handleIprWrite(thread, snd_data_pkt);
882                delete snd_data_pkt;
883                delete sreqLow;
884                delete sreqHigh;
885            }
886            delete state;
887            delete req;
888            completeStore(storeWBIdx);
889            incrStIdx(storeWBIdx);
890        } else if (!sendStore(data_pkt)) {
891            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
892                    "retry later\n",
893                    inst->seqNum);
894
895            // Need to store the second packet, if split.
896            if (split) {
897                state->pktToSend = true;
898                state->pendingPacket = snd_data_pkt;
899            }
900        } else {
901
902            // If split, try to send the second packet too
903            if (split) {
904                assert(snd_data_pkt);
905
906                // Ensure there are enough ports to use.
907                if (usedPorts < cachePorts) {
908                    ++usedPorts;
909                    if (sendStore(snd_data_pkt)) {
910                        storePostSend(snd_data_pkt);
911                    } else {
912                        DPRINTF(IEW, "D-Cache became blocked when writing"
913                                " [sn:%lli] second packet, will retry later\n",
914                                inst->seqNum);
915                    }
916                } else {
917
918                    // Store the packet for when there's free ports.
919                    assert(pendingPkt == NULL);
920                    pendingPkt = snd_data_pkt;
921                    hasPendingPkt = true;
922                }
923            } else {
924
925                // Not a split store.
926                storePostSend(data_pkt);
927            }
928        }
929    }
930
931    // Not sure this should set it to 0.
932    usedPorts = 0;
933
934    assert(stores >= 0 && storesToWB >= 0);
935}
936
937/*template <class Impl>
938void
939LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
940{
941    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
942                                              mshrSeqNums.end(),
943                                              seqNum);
944
945    if (mshr_it != mshrSeqNums.end()) {
946        mshrSeqNums.erase(mshr_it);
947        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
948    }
949}*/
950
951template <class Impl>
952void
953LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
954{
955    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
956            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
957
958    int load_idx = loadTail;
959    decrLdIdx(load_idx);
960
961    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
962        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
963                "[sn:%lli]\n",
964                loadQueue[load_idx]->pcState(),
965                loadQueue[load_idx]->seqNum);
966
967        if (isStalled() && load_idx == stallingLoadIdx) {
968            stalled = false;
969            stallingStoreIsn = 0;
970            stallingLoadIdx = 0;
971        }
972
973        // Clear the smart pointer to make sure it is decremented.
974        loadQueue[load_idx]->setSquashed();
975        loadQueue[load_idx] = NULL;
976        --loads;
977
978        // Inefficient!
979        loadTail = load_idx;
980
981        decrLdIdx(load_idx);
982        ++lsqSquashedLoads;
983    }
984
985    if (isLoadBlocked) {
986        if (squashed_num < blockedLoadSeqNum) {
987            isLoadBlocked = false;
988            loadBlockedHandled = false;
989            blockedLoadSeqNum = 0;
990        }
991    }
992
993    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
994        memDepViolator = NULL;
995    }
996
997    int store_idx = storeTail;
998    decrStIdx(store_idx);
999
1000    while (stores != 0 &&
1001           storeQueue[store_idx].inst->seqNum > squashed_num) {
1002        // Instructions marked as can WB are already committed.
1003        if (storeQueue[store_idx].canWB) {
1004            break;
1005        }
1006
1007        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1008                "idx:%i [sn:%lli]\n",
1009                storeQueue[store_idx].inst->pcState(),
1010                store_idx, storeQueue[store_idx].inst->seqNum);
1011
1012        // I don't think this can happen.  It should have been cleared
1013        // by the stalling load.
1014        if (isStalled() &&
1015            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1016            panic("Is stalled should have been cleared by stalling load!\n");
1017            stalled = false;
1018            stallingStoreIsn = 0;
1019        }
1020
1021        // Clear the smart pointer to make sure it is decremented.
1022        storeQueue[store_idx].inst->setSquashed();
1023        storeQueue[store_idx].inst = NULL;
1024        storeQueue[store_idx].canWB = 0;
1025
1026        // Must delete request now that it wasn't handed off to
1027        // memory.  This is quite ugly.  @todo: Figure out the proper
1028        // place to really handle request deletes.
1029        delete storeQueue[store_idx].req;
1030        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1031            delete storeQueue[store_idx].sreqLow;
1032            delete storeQueue[store_idx].sreqHigh;
1033
1034            storeQueue[store_idx].sreqLow = NULL;
1035            storeQueue[store_idx].sreqHigh = NULL;
1036        }
1037
1038        storeQueue[store_idx].req = NULL;
1039        --stores;
1040
1041        // Inefficient!
1042        storeTail = store_idx;
1043
1044        decrStIdx(store_idx);
1045        ++lsqSquashedStores;
1046    }
1047}
1048
1049template <class Impl>
1050void
1051LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1052{
1053    if (isStalled() &&
1054        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1055        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1056                "load idx:%i\n",
1057                stallingStoreIsn, stallingLoadIdx);
1058        stalled = false;
1059        stallingStoreIsn = 0;
1060        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1061    }
1062
1063    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1064        // The store is basically completed at this time. This
1065        // only works so long as the checker doesn't try to
1066        // verify the value in memory for stores.
1067        storeQueue[storeWBIdx].inst->setCompleted();
1068
1069        if (cpu->checker) {
1070            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1071        }
1072    }
1073
1074    if (needsTSO) {
1075        storeInFlight = true;
1076    }
1077
1078    incrStIdx(storeWBIdx);
1079}
1080
1081template <class Impl>
1082void
1083LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1084{
1085    iewStage->wakeCPU();
1086
1087    // Squashed instructions do not need to complete their access.
1088    if (inst->isSquashed()) {
1089        iewStage->decrWb(inst->seqNum);
1090        assert(!inst->isStore());
1091        ++lsqIgnoredResponses;
1092        return;
1093    }
1094
1095    if (!inst->isExecuted()) {
1096        inst->setExecuted();
1097
1098        // Complete access to copy data to proper place.
1099        inst->completeAcc(pkt);
1100    }
1101
1102    // Need to insert instruction into queue to commit
1103    iewStage->instToCommit(inst);
1104
1105    iewStage->activityThisCycle();
1106
1107    // see if this load changed the PC
1108    iewStage->checkMisprediction(inst);
1109}
1110
1111template <class Impl>
1112void
1113LSQUnit<Impl>::completeStore(int store_idx)
1114{
1115    assert(storeQueue[store_idx].inst);
1116    storeQueue[store_idx].completed = true;
1117    --storesToWB;
1118    // A bit conservative because a store completion may not free up entries,
1119    // but hopefully avoids two store completions in one cycle from making
1120    // the CPU tick twice.
1121    cpu->wakeCPU();
1122    cpu->activityThisCycle();
1123
1124    if (store_idx == storeHead) {
1125        do {
1126            incrStIdx(storeHead);
1127
1128            --stores;
1129        } while (storeQueue[storeHead].completed &&
1130                 storeHead != storeTail);
1131
1132        iewStage->updateLSQNextCycle = true;
1133    }
1134
1135    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1136            "idx:%i\n",
1137            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1138
1139#if TRACING_ON
1140    if (DTRACE(O3PipeView)) {
1141        storeQueue[store_idx].inst->storeTick =
1142            curTick() - storeQueue[store_idx].inst->fetchTick;
1143    }
1144#endif
1145
1146    if (isStalled() &&
1147        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1148        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1149                "load idx:%i\n",
1150                stallingStoreIsn, stallingLoadIdx);
1151        stalled = false;
1152        stallingStoreIsn = 0;
1153        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1154    }
1155
1156    storeQueue[store_idx].inst->setCompleted();
1157
1158    if (needsTSO) {
1159        storeInFlight = false;
1160    }
1161
1162    // Tell the checker we've completed this instruction.  Some stores
1163    // may get reported twice to the checker, but the checker can
1164    // handle that case.
1165    if (cpu->checker) {
1166        cpu->checker->verify(storeQueue[store_idx].inst);
1167    }
1168}
1169
1170template <class Impl>
1171bool
1172LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1173{
1174    if (!dcachePort->sendTimingReq(data_pkt)) {
1175        // Need to handle becoming blocked on a store.
1176        isStoreBlocked = true;
1177        ++lsqCacheBlocked;
1178        assert(retryPkt == NULL);
1179        retryPkt = data_pkt;
1180        lsq->setRetryTid(lsqID);
1181        return false;
1182    }
1183    return true;
1184}
1185
1186template <class Impl>
1187void
1188LSQUnit<Impl>::recvRetry()
1189{
1190    if (isStoreBlocked) {
1191        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1192        assert(retryPkt != NULL);
1193
1194        LSQSenderState *state =
1195            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1196
1197        if (dcachePort->sendTimingReq(retryPkt)) {
1198            // Don't finish the store unless this is the last packet.
1199            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1200                    state->pendingPacket == retryPkt) {
1201                state->pktToSend = false;
1202                storePostSend(retryPkt);
1203            }
1204            retryPkt = NULL;
1205            isStoreBlocked = false;
1206            lsq->setRetryTid(InvalidThreadID);
1207
1208            // Send any outstanding packet.
1209            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1210                assert(state->pendingPacket);
1211                if (sendStore(state->pendingPacket)) {
1212                    storePostSend(state->pendingPacket);
1213                }
1214            }
1215        } else {
1216            // Still blocked!
1217            ++lsqCacheBlocked;
1218            lsq->setRetryTid(lsqID);
1219        }
1220    } else if (isLoadBlocked) {
1221        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1222                "no need to resend packet.\n");
1223    } else {
1224        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1225    }
1226}
1227
1228template <class Impl>
1229inline void
1230LSQUnit<Impl>::incrStIdx(int &store_idx) const
1231{
1232    if (++store_idx >= SQEntries)
1233        store_idx = 0;
1234}
1235
1236template <class Impl>
1237inline void
1238LSQUnit<Impl>::decrStIdx(int &store_idx) const
1239{
1240    if (--store_idx < 0)
1241        store_idx += SQEntries;
1242}
1243
1244template <class Impl>
1245inline void
1246LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1247{
1248    if (++load_idx >= LQEntries)
1249        load_idx = 0;
1250}
1251
1252template <class Impl>
1253inline void
1254LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1255{
1256    if (--load_idx < 0)
1257        load_idx += LQEntries;
1258}
1259
1260template <class Impl>
1261void
1262LSQUnit<Impl>::dumpInsts() const
1263{
1264    cprintf("Load store queue: Dumping instructions.\n");
1265    cprintf("Load queue size: %i\n", loads);
1266    cprintf("Load queue: ");
1267
1268    int load_idx = loadHead;
1269
1270    while (load_idx != loadTail && loadQueue[load_idx]) {
1271        const DynInstPtr &inst(loadQueue[load_idx]);
1272        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1273
1274        incrLdIdx(load_idx);
1275    }
1276    cprintf("\n");
1277
1278    cprintf("Store queue size: %i\n", stores);
1279    cprintf("Store queue: ");
1280
1281    int store_idx = storeHead;
1282
1283    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1284        const DynInstPtr &inst(storeQueue[store_idx].inst);
1285        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1286
1287        incrStIdx(store_idx);
1288    }
1289
1290    cprintf("\n");
1291}
1292