lsq_unit_impl.hh revision 8733:64a7bf8fa56c
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include "arch/generic/debugfaults.hh"
45#include "arch/locked_mem.hh"
46#include "base/str.hh"
47#include "config/the_isa.hh"
48#include "cpu/o3/lsq.hh"
49#include "cpu/o3/lsq_unit.hh"
50#include "debug/Activity.hh"
51#include "debug/IEW.hh"
52#include "debug/LSQUnit.hh"
53#include "mem/packet.hh"
54#include "mem/request.hh"
55
56#if USE_CHECKER
57#include "cpu/checker/cpu.hh"
58#endif
59
60template<class Impl>
61LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
62                                              LSQUnit *lsq_ptr)
63    : Event(Default_Pri, AutoDelete),
64      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
65{
66}
67
68template<class Impl>
69void
70LSQUnit<Impl>::WritebackEvent::process()
71{
72    if (!lsqPtr->isSwitchedOut()) {
73        lsqPtr->writeback(inst, pkt);
74    }
75
76    if (pkt->senderState)
77        delete pkt->senderState;
78
79    delete pkt->req;
80    delete pkt;
81}
82
83template<class Impl>
84const char *
85LSQUnit<Impl>::WritebackEvent::description() const
86{
87    return "Store writeback";
88}
89
90template<class Impl>
91void
92LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
93{
94    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
95    DynInstPtr inst = state->inst;
96    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
97    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
98
99    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
100
101    assert(!pkt->wasNacked());
102
103    // If this is a split access, wait until all packets are received.
104    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105        delete pkt->req;
106        delete pkt;
107        return;
108    }
109
110    if (isSwitchedOut() || inst->isSquashed()) {
111        iewStage->decrWb(inst->seqNum);
112    } else {
113        if (!state->noWB) {
114            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
115                !state->isLoad) {
116                writeback(inst, pkt);
117            } else {
118                writeback(inst, state->mainPkt);
119            }
120        }
121
122        if (inst->isStore()) {
123            completeStore(state->idx);
124        }
125    }
126
127    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
128        delete state->mainPkt->req;
129        delete state->mainPkt;
130    }
131    delete state;
132    delete pkt->req;
133    delete pkt;
134}
135
136template <class Impl>
137LSQUnit<Impl>::LSQUnit()
138    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
139      isStoreBlocked(false), isLoadBlocked(false),
140      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
141{
142}
143
144template<class Impl>
145void
146LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
147        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
148        unsigned id)
149{
150    cpu = cpu_ptr;
151    iewStage = iew_ptr;
152
153    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
154
155    switchedOut = false;
156
157    cacheBlockMask = 0;
158
159    lsq = lsq_ptr;
160
161    lsqID = id;
162
163    // Add 1 for the sentinel entry (they are circular queues).
164    LQEntries = maxLQEntries + 1;
165    SQEntries = maxSQEntries + 1;
166
167    loadQueue.resize(LQEntries);
168    storeQueue.resize(SQEntries);
169
170    depCheckShift = params->LSQDepCheckShift;
171    checkLoads = params->LSQCheckLoads;
172
173    loadHead = loadTail = 0;
174
175    storeHead = storeWBIdx = storeTail = 0;
176
177    usedPorts = 0;
178    cachePorts = params->cachePorts;
179
180    retryPkt = NULL;
181    memDepViolator = NULL;
182
183    blockedLoadSeqNum = 0;
184    needsTSO = params->needsTSO;
185}
186
187template<class Impl>
188std::string
189LSQUnit<Impl>::name() const
190{
191    if (Impl::MaxThreads == 1) {
192        return iewStage->name() + ".lsq";
193    } else {
194        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
195    }
196}
197
198template<class Impl>
199void
200LSQUnit<Impl>::regStats()
201{
202    lsqForwLoads
203        .name(name() + ".forwLoads")
204        .desc("Number of loads that had data forwarded from stores");
205
206    invAddrLoads
207        .name(name() + ".invAddrLoads")
208        .desc("Number of loads ignored due to an invalid address");
209
210    lsqSquashedLoads
211        .name(name() + ".squashedLoads")
212        .desc("Number of loads squashed");
213
214    lsqIgnoredResponses
215        .name(name() + ".ignoredResponses")
216        .desc("Number of memory responses ignored because the instruction is squashed");
217
218    lsqMemOrderViolation
219        .name(name() + ".memOrderViolation")
220        .desc("Number of memory ordering violations");
221
222    lsqSquashedStores
223        .name(name() + ".squashedStores")
224        .desc("Number of stores squashed");
225
226    invAddrSwpfs
227        .name(name() + ".invAddrSwpfs")
228        .desc("Number of software prefetches ignored due to an invalid address");
229
230    lsqBlockedLoads
231        .name(name() + ".blockedLoads")
232        .desc("Number of blocked loads due to partial load-store forwarding");
233
234    lsqRescheduledLoads
235        .name(name() + ".rescheduledLoads")
236        .desc("Number of loads that were rescheduled");
237
238    lsqCacheBlocked
239        .name(name() + ".cacheBlocked")
240        .desc("Number of times an access to memory failed due to the cache being blocked");
241}
242
243template<class Impl>
244void
245LSQUnit<Impl>::setDcachePort(Port *dcache_port)
246{
247    dcachePort = dcache_port;
248}
249
250template<class Impl>
251void
252LSQUnit<Impl>::clearLQ()
253{
254    loadQueue.clear();
255}
256
257template<class Impl>
258void
259LSQUnit<Impl>::clearSQ()
260{
261    storeQueue.clear();
262}
263
264template<class Impl>
265void
266LSQUnit<Impl>::switchOut()
267{
268    switchedOut = true;
269    for (int i = 0; i < loadQueue.size(); ++i) {
270        assert(!loadQueue[i]);
271        loadQueue[i] = NULL;
272    }
273
274    assert(storesToWB == 0);
275}
276
277template<class Impl>
278void
279LSQUnit<Impl>::takeOverFrom()
280{
281    switchedOut = false;
282    loads = stores = storesToWB = 0;
283
284    loadHead = loadTail = 0;
285
286    storeHead = storeWBIdx = storeTail = 0;
287
288    usedPorts = 0;
289
290    memDepViolator = NULL;
291
292    blockedLoadSeqNum = 0;
293
294    stalled = false;
295    isLoadBlocked = false;
296    loadBlockedHandled = false;
297
298    // Just incase the memory system changed out from under us
299    cacheBlockMask = 0;
300}
301
302template<class Impl>
303void
304LSQUnit<Impl>::resizeLQ(unsigned size)
305{
306    unsigned size_plus_sentinel = size + 1;
307    assert(size_plus_sentinel >= LQEntries);
308
309    if (size_plus_sentinel > LQEntries) {
310        while (size_plus_sentinel > loadQueue.size()) {
311            DynInstPtr dummy;
312            loadQueue.push_back(dummy);
313            LQEntries++;
314        }
315    } else {
316        LQEntries = size_plus_sentinel;
317    }
318
319}
320
321template<class Impl>
322void
323LSQUnit<Impl>::resizeSQ(unsigned size)
324{
325    unsigned size_plus_sentinel = size + 1;
326    if (size_plus_sentinel > SQEntries) {
327        while (size_plus_sentinel > storeQueue.size()) {
328            SQEntry dummy;
329            storeQueue.push_back(dummy);
330            SQEntries++;
331        }
332    } else {
333        SQEntries = size_plus_sentinel;
334    }
335}
336
337template <class Impl>
338void
339LSQUnit<Impl>::insert(DynInstPtr &inst)
340{
341    assert(inst->isMemRef());
342
343    assert(inst->isLoad() || inst->isStore());
344
345    if (inst->isLoad()) {
346        insertLoad(inst);
347    } else {
348        insertStore(inst);
349    }
350
351    inst->setInLSQ();
352}
353
354template <class Impl>
355void
356LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
357{
358    assert((loadTail + 1) % LQEntries != loadHead);
359    assert(loads < LQEntries);
360
361    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
362            load_inst->pcState(), loadTail, load_inst->seqNum);
363
364    load_inst->lqIdx = loadTail;
365
366    if (stores == 0) {
367        load_inst->sqIdx = -1;
368    } else {
369        load_inst->sqIdx = storeTail;
370    }
371
372    loadQueue[loadTail] = load_inst;
373
374    incrLdIdx(loadTail);
375
376    ++loads;
377}
378
379template <class Impl>
380void
381LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
382{
383    // Make sure it is not full before inserting an instruction.
384    assert((storeTail + 1) % SQEntries != storeHead);
385    assert(stores < SQEntries);
386
387    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
388            store_inst->pcState(), storeTail, store_inst->seqNum);
389
390    store_inst->sqIdx = storeTail;
391    store_inst->lqIdx = loadTail;
392
393    storeQueue[storeTail] = SQEntry(store_inst);
394
395    incrStIdx(storeTail);
396
397    ++stores;
398}
399
400template <class Impl>
401typename Impl::DynInstPtr
402LSQUnit<Impl>::getMemDepViolator()
403{
404    DynInstPtr temp = memDepViolator;
405
406    memDepViolator = NULL;
407
408    return temp;
409}
410
411template <class Impl>
412unsigned
413LSQUnit<Impl>::numFreeEntries()
414{
415    unsigned free_lq_entries = LQEntries - loads;
416    unsigned free_sq_entries = SQEntries - stores;
417
418    // Both the LQ and SQ entries have an extra dummy entry to differentiate
419    // empty/full conditions.  Subtract 1 from the free entries.
420    if (free_lq_entries < free_sq_entries) {
421        return free_lq_entries - 1;
422    } else {
423        return free_sq_entries - 1;
424    }
425}
426
427template <class Impl>
428int
429LSQUnit<Impl>::numLoadsReady()
430{
431    int load_idx = loadHead;
432    int retval = 0;
433
434    while (load_idx != loadTail) {
435        assert(loadQueue[load_idx]);
436
437        if (loadQueue[load_idx]->readyToIssue()) {
438            ++retval;
439        }
440    }
441
442    return retval;
443}
444
445template <class Impl>
446void
447LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
448{
449    int load_idx = loadHead;
450
451    if (!cacheBlockMask) {
452        assert(dcachePort);
453        Addr bs = dcachePort->peerBlockSize();
454
455        // Make sure we actually got a size
456        assert(bs != 0);
457
458        cacheBlockMask = ~(bs - 1);
459    }
460
461    // If this is the only load in the LSQ we don't care
462    if (load_idx == loadTail)
463        return;
464    incrLdIdx(load_idx);
465
466    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
467    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
468    while (load_idx != loadTail) {
469        DynInstPtr ld_inst = loadQueue[load_idx];
470
471        if (!ld_inst->effAddrValid || ld_inst->uncacheable()) {
472            incrLdIdx(load_idx);
473            continue;
474        }
475
476        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
477        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
478                    ld_inst->seqNum, load_addr, invalidate_addr);
479
480        if (load_addr == invalidate_addr) {
481            if (ld_inst->possibleLoadViolation) {
482                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
483                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
484
485                // Mark the load for re-execution
486                ld_inst->fault = new ReExec;
487            } else {
488                // If a older load checks this and it's true
489                // then we might have missed the snoop
490                // in which case we need to invalidate to be sure
491                ld_inst->hitExternalSnoop = true;
492            }
493        }
494        incrLdIdx(load_idx);
495    }
496    return;
497}
498
499template <class Impl>
500Fault
501LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
502{
503    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
504    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
505
506    /** @todo in theory you only need to check an instruction that has executed
507     * however, there isn't a good way in the pipeline at the moment to check
508     * all instructions that will execute before the store writes back. Thus,
509     * like the implementation that came before it, we're overly conservative.
510     */
511    while (load_idx != loadTail) {
512        DynInstPtr ld_inst = loadQueue[load_idx];
513        if (!ld_inst->effAddrValid || ld_inst->uncacheable()) {
514            incrLdIdx(load_idx);
515            continue;
516        }
517
518        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
519        Addr ld_eff_addr2 =
520            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
521
522        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
523            if (inst->isLoad()) {
524                // If this load is to the same block as an external snoop
525                // invalidate that we've observed then the load needs to be
526                // squashed as it could have newer data
527                if (ld_inst->hitExternalSnoop) {
528                    if (!memDepViolator ||
529                            ld_inst->seqNum < memDepViolator->seqNum) {
530                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
531                                "and [sn:%lli] at address %#x\n",
532                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
533                        memDepViolator = ld_inst;
534
535                        ++lsqMemOrderViolation;
536
537                        return new GenericISA::M5PanicFault(
538                                "Detected fault with inst [sn:%lli] and "
539                                "[sn:%lli] at address %#x\n",
540                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
541                    }
542                }
543
544                // Otherwise, mark the load has a possible load violation
545                // and if we see a snoop before it's commited, we need to squash
546                ld_inst->possibleLoadViolation = true;
547                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
548                        " between instructions [sn:%lli] and [sn:%lli]\n",
549                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
550            } else {
551                // A load/store incorrectly passed this store.
552                // Check if we already have a violator, or if it's newer
553                // squash and refetch.
554                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
555                    break;
556
557                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
558                        "[sn:%lli] at address %#x\n",
559                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
560                memDepViolator = ld_inst;
561
562                ++lsqMemOrderViolation;
563
564                return new GenericISA::M5PanicFault("Detected fault with "
565                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
566                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
567            }
568        }
569
570        incrLdIdx(load_idx);
571    }
572    return NoFault;
573}
574
575
576
577
578template <class Impl>
579Fault
580LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
581{
582    using namespace TheISA;
583    // Execute a specific load.
584    Fault load_fault = NoFault;
585
586    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
587            inst->pcState(), inst->seqNum);
588
589    assert(!inst->isSquashed());
590
591    load_fault = inst->initiateAcc();
592
593    if (inst->isTranslationDelayed() &&
594        load_fault == NoFault)
595        return load_fault;
596
597    // If the instruction faulted or predicated false, then we need to send it
598    // along to commit without the instruction completing.
599    if (load_fault != NoFault || inst->readPredicate() == false) {
600        // Send this instruction to commit, also make sure iew stage
601        // realizes there is activity.
602        // Mark it as executed unless it is an uncached load that
603        // needs to hit the head of commit.
604        if (inst->readPredicate() == false)
605            inst->forwardOldRegs();
606        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
607                inst->seqNum,
608                (load_fault != NoFault ? "fault" : "predication"));
609        if (!(inst->hasRequest() && inst->uncacheable()) ||
610            inst->isAtCommit()) {
611            inst->setExecuted();
612        }
613        iewStage->instToCommit(inst);
614        iewStage->activityThisCycle();
615    } else if (!loadBlocked()) {
616        assert(inst->effAddrValid);
617        int load_idx = inst->lqIdx;
618        incrLdIdx(load_idx);
619
620        if (checkLoads)
621            return checkViolations(load_idx, inst);
622    }
623
624    return load_fault;
625}
626
627template <class Impl>
628Fault
629LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
630{
631    using namespace TheISA;
632    // Make sure that a store exists.
633    assert(stores != 0);
634
635    int store_idx = store_inst->sqIdx;
636
637    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
638            store_inst->pcState(), store_inst->seqNum);
639
640    assert(!store_inst->isSquashed());
641
642    // Check the recently completed loads to see if any match this store's
643    // address.  If so, then we have a memory ordering violation.
644    int load_idx = store_inst->lqIdx;
645
646    Fault store_fault = store_inst->initiateAcc();
647
648    if (store_inst->isTranslationDelayed() &&
649        store_fault == NoFault)
650        return store_fault;
651
652    if (store_inst->readPredicate() == false)
653        store_inst->forwardOldRegs();
654
655    if (storeQueue[store_idx].size == 0) {
656        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
657                store_inst->pcState(), store_inst->seqNum);
658
659        return store_fault;
660    } else if (store_inst->readPredicate() == false) {
661        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
662                store_inst->seqNum);
663        return store_fault;
664    }
665
666    assert(store_fault == NoFault);
667
668    if (store_inst->isStoreConditional()) {
669        // Store conditionals need to set themselves as able to
670        // writeback if we haven't had a fault by here.
671        storeQueue[store_idx].canWB = true;
672
673        ++storesToWB;
674    }
675
676    return checkViolations(load_idx, store_inst);
677
678}
679
680template <class Impl>
681void
682LSQUnit<Impl>::commitLoad()
683{
684    assert(loadQueue[loadHead]);
685
686    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
687            loadQueue[loadHead]->pcState());
688
689    loadQueue[loadHead] = NULL;
690
691    incrLdIdx(loadHead);
692
693    --loads;
694}
695
696template <class Impl>
697void
698LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
699{
700    assert(loads == 0 || loadQueue[loadHead]);
701
702    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
703        commitLoad();
704    }
705}
706
707template <class Impl>
708void
709LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
710{
711    assert(stores == 0 || storeQueue[storeHead].inst);
712
713    int store_idx = storeHead;
714
715    while (store_idx != storeTail) {
716        assert(storeQueue[store_idx].inst);
717        // Mark any stores that are now committed and have not yet
718        // been marked as able to write back.
719        if (!storeQueue[store_idx].canWB) {
720            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
721                break;
722            }
723            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
724                    "%s [sn:%lli]\n",
725                    storeQueue[store_idx].inst->pcState(),
726                    storeQueue[store_idx].inst->seqNum);
727
728            storeQueue[store_idx].canWB = true;
729
730            ++storesToWB;
731        }
732
733        incrStIdx(store_idx);
734    }
735}
736
737template <class Impl>
738void
739LSQUnit<Impl>::writebackPendingStore()
740{
741    if (hasPendingPkt) {
742        assert(pendingPkt != NULL);
743
744        // If the cache is blocked, this will store the packet for retry.
745        if (sendStore(pendingPkt)) {
746            storePostSend(pendingPkt);
747        }
748        pendingPkt = NULL;
749        hasPendingPkt = false;
750    }
751}
752
753template <class Impl>
754void
755LSQUnit<Impl>::writebackStores()
756{
757    // First writeback the second packet from any split store that didn't
758    // complete last cycle because there weren't enough cache ports available.
759    if (TheISA::HasUnalignedMemAcc) {
760        writebackPendingStore();
761    }
762
763    while (storesToWB > 0 &&
764           storeWBIdx != storeTail &&
765           storeQueue[storeWBIdx].inst &&
766           storeQueue[storeWBIdx].canWB &&
767           ((!needsTSO) || (!storeInFlight)) &&
768           usedPorts < cachePorts) {
769
770        if (isStoreBlocked || lsq->cacheBlocked()) {
771            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
772                    " is blocked!\n");
773            break;
774        }
775
776        // Store didn't write any data so no need to write it back to
777        // memory.
778        if (storeQueue[storeWBIdx].size == 0) {
779            completeStore(storeWBIdx);
780
781            incrStIdx(storeWBIdx);
782
783            continue;
784        }
785
786        ++usedPorts;
787
788        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
789            incrStIdx(storeWBIdx);
790
791            continue;
792        }
793
794        assert(storeQueue[storeWBIdx].req);
795        assert(!storeQueue[storeWBIdx].committed);
796
797        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
798            assert(storeQueue[storeWBIdx].sreqLow);
799            assert(storeQueue[storeWBIdx].sreqHigh);
800        }
801
802        DynInstPtr inst = storeQueue[storeWBIdx].inst;
803
804        Request *req = storeQueue[storeWBIdx].req;
805        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
806        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
807
808        storeQueue[storeWBIdx].committed = true;
809
810        assert(!inst->memData);
811        inst->memData = new uint8_t[64];
812
813        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
814
815        MemCmd command =
816            req->isSwap() ? MemCmd::SwapReq :
817            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
818        PacketPtr data_pkt;
819        PacketPtr snd_data_pkt = NULL;
820
821        LSQSenderState *state = new LSQSenderState;
822        state->isLoad = false;
823        state->idx = storeWBIdx;
824        state->inst = inst;
825
826        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
827
828            // Build a single data packet if the store isn't split.
829            data_pkt = new Packet(req, command, Packet::Broadcast);
830            data_pkt->dataStatic(inst->memData);
831            data_pkt->senderState = state;
832        } else {
833            // Create two packets if the store is split in two.
834            data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
835            snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
836
837            data_pkt->dataStatic(inst->memData);
838            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
839
840            data_pkt->senderState = state;
841            snd_data_pkt->senderState = state;
842
843            state->isSplit = true;
844            state->outstanding = 2;
845
846            // Can delete the main request now.
847            delete req;
848            req = sreqLow;
849        }
850
851        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
852                "to Addr:%#x, data:%#x [sn:%lli]\n",
853                storeWBIdx, inst->pcState(),
854                req->getPaddr(), (int)*(inst->memData),
855                inst->seqNum);
856
857        // @todo: Remove this SC hack once the memory system handles it.
858        if (inst->isStoreConditional()) {
859            assert(!storeQueue[storeWBIdx].isSplit);
860            // Disable recording the result temporarily.  Writing to
861            // misc regs normally updates the result, but this is not
862            // the desired behavior when handling store conditionals.
863            inst->recordResult = false;
864            bool success = TheISA::handleLockedWrite(inst.get(), req);
865            inst->recordResult = true;
866
867            if (!success) {
868                // Instantly complete this store.
869                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
870                        "Instantly completing it.\n",
871                        inst->seqNum);
872                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
873                cpu->schedule(wb, curTick() + 1);
874#if USE_CHECKER
875                // Make sure to set the LLSC data for verification
876                inst->reqToVerify->setExtraData(0);
877                inst->completeAcc(data_pkt);
878#endif
879                completeStore(storeWBIdx);
880                incrStIdx(storeWBIdx);
881                continue;
882            }
883        } else {
884            // Non-store conditionals do not need a writeback.
885            state->noWB = true;
886        }
887
888        bool split =
889            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
890
891        ThreadContext *thread = cpu->tcBase(lsqID);
892
893        if (req->isMmappedIpr()) {
894            assert(!inst->isStoreConditional());
895            TheISA::handleIprWrite(thread, data_pkt);
896            delete data_pkt;
897            if (split) {
898                assert(snd_data_pkt->req->isMmappedIpr());
899                TheISA::handleIprWrite(thread, snd_data_pkt);
900                delete snd_data_pkt;
901                delete sreqLow;
902                delete sreqHigh;
903            }
904            delete state;
905            delete req;
906            completeStore(storeWBIdx);
907            incrStIdx(storeWBIdx);
908        } else if (!sendStore(data_pkt)) {
909            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
910                    "retry later\n",
911                    inst->seqNum);
912
913            // Need to store the second packet, if split.
914            if (split) {
915                state->pktToSend = true;
916                state->pendingPacket = snd_data_pkt;
917            }
918        } else {
919
920            // If split, try to send the second packet too
921            if (split) {
922                assert(snd_data_pkt);
923
924                // Ensure there are enough ports to use.
925                if (usedPorts < cachePorts) {
926                    ++usedPorts;
927                    if (sendStore(snd_data_pkt)) {
928                        storePostSend(snd_data_pkt);
929                    } else {
930                        DPRINTF(IEW, "D-Cache became blocked when writing"
931                                " [sn:%lli] second packet, will retry later\n",
932                                inst->seqNum);
933                    }
934                } else {
935
936                    // Store the packet for when there's free ports.
937                    assert(pendingPkt == NULL);
938                    pendingPkt = snd_data_pkt;
939                    hasPendingPkt = true;
940                }
941            } else {
942
943                // Not a split store.
944                storePostSend(data_pkt);
945            }
946        }
947    }
948
949    // Not sure this should set it to 0.
950    usedPorts = 0;
951
952    assert(stores >= 0 && storesToWB >= 0);
953}
954
955/*template <class Impl>
956void
957LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
958{
959    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
960                                              mshrSeqNums.end(),
961                                              seqNum);
962
963    if (mshr_it != mshrSeqNums.end()) {
964        mshrSeqNums.erase(mshr_it);
965        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
966    }
967}*/
968
969template <class Impl>
970void
971LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
972{
973    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
974            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
975
976    int load_idx = loadTail;
977    decrLdIdx(load_idx);
978
979    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
980        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
981                "[sn:%lli]\n",
982                loadQueue[load_idx]->pcState(),
983                loadQueue[load_idx]->seqNum);
984
985        if (isStalled() && load_idx == stallingLoadIdx) {
986            stalled = false;
987            stallingStoreIsn = 0;
988            stallingLoadIdx = 0;
989        }
990
991        // Clear the smart pointer to make sure it is decremented.
992        loadQueue[load_idx]->setSquashed();
993        loadQueue[load_idx] = NULL;
994        --loads;
995
996        // Inefficient!
997        loadTail = load_idx;
998
999        decrLdIdx(load_idx);
1000        ++lsqSquashedLoads;
1001    }
1002
1003    if (isLoadBlocked) {
1004        if (squashed_num < blockedLoadSeqNum) {
1005            isLoadBlocked = false;
1006            loadBlockedHandled = false;
1007            blockedLoadSeqNum = 0;
1008        }
1009    }
1010
1011    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1012        memDepViolator = NULL;
1013    }
1014
1015    int store_idx = storeTail;
1016    decrStIdx(store_idx);
1017
1018    while (stores != 0 &&
1019           storeQueue[store_idx].inst->seqNum > squashed_num) {
1020        // Instructions marked as can WB are already committed.
1021        if (storeQueue[store_idx].canWB) {
1022            break;
1023        }
1024
1025        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1026                "idx:%i [sn:%lli]\n",
1027                storeQueue[store_idx].inst->pcState(),
1028                store_idx, storeQueue[store_idx].inst->seqNum);
1029
1030        // I don't think this can happen.  It should have been cleared
1031        // by the stalling load.
1032        if (isStalled() &&
1033            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1034            panic("Is stalled should have been cleared by stalling load!\n");
1035            stalled = false;
1036            stallingStoreIsn = 0;
1037        }
1038
1039        // Clear the smart pointer to make sure it is decremented.
1040        storeQueue[store_idx].inst->setSquashed();
1041        storeQueue[store_idx].inst = NULL;
1042        storeQueue[store_idx].canWB = 0;
1043
1044        // Must delete request now that it wasn't handed off to
1045        // memory.  This is quite ugly.  @todo: Figure out the proper
1046        // place to really handle request deletes.
1047        delete storeQueue[store_idx].req;
1048        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1049            delete storeQueue[store_idx].sreqLow;
1050            delete storeQueue[store_idx].sreqHigh;
1051
1052            storeQueue[store_idx].sreqLow = NULL;
1053            storeQueue[store_idx].sreqHigh = NULL;
1054        }
1055
1056        storeQueue[store_idx].req = NULL;
1057        --stores;
1058
1059        // Inefficient!
1060        storeTail = store_idx;
1061
1062        decrStIdx(store_idx);
1063        ++lsqSquashedStores;
1064    }
1065}
1066
1067template <class Impl>
1068void
1069LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1070{
1071    if (isStalled() &&
1072        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1073        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1074                "load idx:%i\n",
1075                stallingStoreIsn, stallingLoadIdx);
1076        stalled = false;
1077        stallingStoreIsn = 0;
1078        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1079    }
1080
1081    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1082        // The store is basically completed at this time. This
1083        // only works so long as the checker doesn't try to
1084        // verify the value in memory for stores.
1085        storeQueue[storeWBIdx].inst->setCompleted();
1086#if USE_CHECKER
1087        if (cpu->checker) {
1088            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1089        }
1090#endif
1091    }
1092
1093    if (needsTSO) {
1094        storeInFlight = true;
1095    }
1096
1097    incrStIdx(storeWBIdx);
1098}
1099
1100template <class Impl>
1101void
1102LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1103{
1104    iewStage->wakeCPU();
1105
1106    // Squashed instructions do not need to complete their access.
1107    if (inst->isSquashed()) {
1108        iewStage->decrWb(inst->seqNum);
1109        assert(!inst->isStore());
1110        ++lsqIgnoredResponses;
1111        return;
1112    }
1113
1114    if (!inst->isExecuted()) {
1115        inst->setExecuted();
1116
1117        // Complete access to copy data to proper place.
1118        inst->completeAcc(pkt);
1119    }
1120
1121    // Need to insert instruction into queue to commit
1122    iewStage->instToCommit(inst);
1123
1124    iewStage->activityThisCycle();
1125
1126    // see if this load changed the PC
1127    iewStage->checkMisprediction(inst);
1128}
1129
1130template <class Impl>
1131void
1132LSQUnit<Impl>::completeStore(int store_idx)
1133{
1134    assert(storeQueue[store_idx].inst);
1135    storeQueue[store_idx].completed = true;
1136    --storesToWB;
1137    // A bit conservative because a store completion may not free up entries,
1138    // but hopefully avoids two store completions in one cycle from making
1139    // the CPU tick twice.
1140    cpu->wakeCPU();
1141    cpu->activityThisCycle();
1142
1143    if (store_idx == storeHead) {
1144        do {
1145            incrStIdx(storeHead);
1146
1147            --stores;
1148        } while (storeQueue[storeHead].completed &&
1149                 storeHead != storeTail);
1150
1151        iewStage->updateLSQNextCycle = true;
1152    }
1153
1154    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1155            "idx:%i\n",
1156            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1157
1158    if (isStalled() &&
1159        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1160        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1161                "load idx:%i\n",
1162                stallingStoreIsn, stallingLoadIdx);
1163        stalled = false;
1164        stallingStoreIsn = 0;
1165        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1166    }
1167
1168    storeQueue[store_idx].inst->setCompleted();
1169
1170    if (needsTSO) {
1171        storeInFlight = false;
1172    }
1173
1174    // Tell the checker we've completed this instruction.  Some stores
1175    // may get reported twice to the checker, but the checker can
1176    // handle that case.
1177#if USE_CHECKER
1178    if (cpu->checker) {
1179        cpu->checker->verify(storeQueue[store_idx].inst);
1180    }
1181#endif
1182}
1183
1184template <class Impl>
1185bool
1186LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1187{
1188    if (!dcachePort->sendTiming(data_pkt)) {
1189        // Need to handle becoming blocked on a store.
1190        isStoreBlocked = true;
1191        ++lsqCacheBlocked;
1192        assert(retryPkt == NULL);
1193        retryPkt = data_pkt;
1194        lsq->setRetryTid(lsqID);
1195        return false;
1196    }
1197    return true;
1198}
1199
1200template <class Impl>
1201void
1202LSQUnit<Impl>::recvRetry()
1203{
1204    if (isStoreBlocked) {
1205        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1206        assert(retryPkt != NULL);
1207
1208        LSQSenderState *state =
1209            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1210
1211        if (dcachePort->sendTiming(retryPkt)) {
1212            // Don't finish the store unless this is the last packet.
1213            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1214                    state->pendingPacket == retryPkt) {
1215                state->pktToSend = false;
1216                storePostSend(retryPkt);
1217            }
1218            retryPkt = NULL;
1219            isStoreBlocked = false;
1220            lsq->setRetryTid(InvalidThreadID);
1221
1222            // Send any outstanding packet.
1223            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1224                assert(state->pendingPacket);
1225                if (sendStore(state->pendingPacket)) {
1226                    storePostSend(state->pendingPacket);
1227                }
1228            }
1229        } else {
1230            // Still blocked!
1231            ++lsqCacheBlocked;
1232            lsq->setRetryTid(lsqID);
1233        }
1234    } else if (isLoadBlocked) {
1235        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1236                "no need to resend packet.\n");
1237    } else {
1238        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1239    }
1240}
1241
1242template <class Impl>
1243inline void
1244LSQUnit<Impl>::incrStIdx(int &store_idx)
1245{
1246    if (++store_idx >= SQEntries)
1247        store_idx = 0;
1248}
1249
1250template <class Impl>
1251inline void
1252LSQUnit<Impl>::decrStIdx(int &store_idx)
1253{
1254    if (--store_idx < 0)
1255        store_idx += SQEntries;
1256}
1257
1258template <class Impl>
1259inline void
1260LSQUnit<Impl>::incrLdIdx(int &load_idx)
1261{
1262    if (++load_idx >= LQEntries)
1263        load_idx = 0;
1264}
1265
1266template <class Impl>
1267inline void
1268LSQUnit<Impl>::decrLdIdx(int &load_idx)
1269{
1270    if (--load_idx < 0)
1271        load_idx += LQEntries;
1272}
1273
1274template <class Impl>
1275void
1276LSQUnit<Impl>::dumpInsts()
1277{
1278    cprintf("Load store queue: Dumping instructions.\n");
1279    cprintf("Load queue size: %i\n", loads);
1280    cprintf("Load queue: ");
1281
1282    int load_idx = loadHead;
1283
1284    while (load_idx != loadTail && loadQueue[load_idx]) {
1285        cprintf("%s ", loadQueue[load_idx]->pcState());
1286
1287        incrLdIdx(load_idx);
1288    }
1289
1290    cprintf("Store queue size: %i\n", stores);
1291    cprintf("Store queue: ");
1292
1293    int store_idx = storeHead;
1294
1295    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1296        cprintf("%s ", storeQueue[store_idx].inst->pcState());
1297
1298        incrStIdx(store_idx);
1299    }
1300
1301    cprintf("\n");
1302}
1303