lsq_unit_impl.hh revision 12749:223c83ed9979
1
2/*
3 * Copyright (c) 2010-2014, 2017 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt;
83}
84
85template<class Impl>
86const char *
87LSQUnit<Impl>::WritebackEvent::description() const
88{
89    return "Store writeback";
90}
91
92template<class Impl>
93void
94LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95{
96    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97    DynInstPtr inst = state->inst;
98    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101    if (state->cacheBlocked) {
102        // This is the first half of a previous split load,
103        // where the 2nd half blocked, ignore this response
104        DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
105                "blocked split load recieved. Ignoring.\n", inst->seqNum);
106        delete state;
107        return;
108    }
109
110    // If this is a split access, wait until all packets are received.
111    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
112        return;
113    }
114
115    assert(!cpu->switchedOut());
116    if (!inst->isSquashed()) {
117        if (!state->noWB) {
118            // Only loads and store conditionals perform the writeback
119            // after receving the response from the memory
120            assert(inst->isLoad() || inst->isStoreConditional());
121            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
122                !state->isLoad) {
123                writeback(inst, pkt);
124            } else {
125                writeback(inst, state->mainPkt);
126            }
127        }
128
129        if (inst->isStore()) {
130            completeStore(state->idx);
131        }
132    }
133
134    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
135        delete state->mainPkt;
136    }
137
138    pkt->req->setAccessLatency();
139    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
140
141    delete state;
142}
143
144template <class Impl>
145LSQUnit<Impl>::LSQUnit()
146    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
147      isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false),
148      pendingPkt(nullptr)
149{
150}
151
152template<class Impl>
153void
154LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
155        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
156        unsigned id)
157{
158    cpu = cpu_ptr;
159    iewStage = iew_ptr;
160
161    lsq = lsq_ptr;
162
163    lsqID = id;
164
165    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
166
167    // Add 1 for the sentinel entry (they are circular queues).
168    LQEntries = maxLQEntries + 1;
169    SQEntries = maxSQEntries + 1;
170
171    //Due to uint8_t index in LSQSenderState
172    assert(LQEntries <= 256);
173    assert(SQEntries <= 256);
174
175    loadQueue.resize(LQEntries);
176    storeQueue.resize(SQEntries);
177
178    depCheckShift = params->LSQDepCheckShift;
179    checkLoads = params->LSQCheckLoads;
180    cacheStorePorts = params->cacheStorePorts;
181    needsTSO = params->needsTSO;
182
183    resetState();
184}
185
186
187template<class Impl>
188void
189LSQUnit<Impl>::resetState()
190{
191    loads = stores = storesToWB = 0;
192
193    loadHead = loadTail = 0;
194
195    storeHead = storeWBIdx = storeTail = 0;
196
197    usedStorePorts = 0;
198
199    retryPkt = NULL;
200    memDepViolator = NULL;
201
202    stalled = false;
203
204    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
205}
206
207template<class Impl>
208std::string
209LSQUnit<Impl>::name() const
210{
211    if (Impl::MaxThreads == 1) {
212        return iewStage->name() + ".lsq";
213    } else {
214        return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
215    }
216}
217
218template<class Impl>
219void
220LSQUnit<Impl>::regStats()
221{
222    lsqForwLoads
223        .name(name() + ".forwLoads")
224        .desc("Number of loads that had data forwarded from stores");
225
226    invAddrLoads
227        .name(name() + ".invAddrLoads")
228        .desc("Number of loads ignored due to an invalid address");
229
230    lsqSquashedLoads
231        .name(name() + ".squashedLoads")
232        .desc("Number of loads squashed");
233
234    lsqIgnoredResponses
235        .name(name() + ".ignoredResponses")
236        .desc("Number of memory responses ignored because the instruction is squashed");
237
238    lsqMemOrderViolation
239        .name(name() + ".memOrderViolation")
240        .desc("Number of memory ordering violations");
241
242    lsqSquashedStores
243        .name(name() + ".squashedStores")
244        .desc("Number of stores squashed");
245
246    invAddrSwpfs
247        .name(name() + ".invAddrSwpfs")
248        .desc("Number of software prefetches ignored due to an invalid address");
249
250    lsqBlockedLoads
251        .name(name() + ".blockedLoads")
252        .desc("Number of blocked loads due to partial load-store forwarding");
253
254    lsqRescheduledLoads
255        .name(name() + ".rescheduledLoads")
256        .desc("Number of loads that were rescheduled");
257
258    lsqCacheBlocked
259        .name(name() + ".cacheBlocked")
260        .desc("Number of times an access to memory failed due to the cache being blocked");
261}
262
263template<class Impl>
264void
265LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
266{
267    dcachePort = dcache_port;
268}
269
270template<class Impl>
271void
272LSQUnit<Impl>::clearLQ()
273{
274    loadQueue.clear();
275}
276
277template<class Impl>
278void
279LSQUnit<Impl>::clearSQ()
280{
281    storeQueue.clear();
282}
283
284template<class Impl>
285void
286LSQUnit<Impl>::drainSanityCheck() const
287{
288    for (int i = 0; i < loadQueue.size(); ++i)
289        assert(!loadQueue[i]);
290
291    assert(storesToWB == 0);
292    assert(!retryPkt);
293}
294
295template<class Impl>
296void
297LSQUnit<Impl>::takeOverFrom()
298{
299    resetState();
300}
301
302template<class Impl>
303void
304LSQUnit<Impl>::resizeLQ(unsigned size)
305{
306    unsigned size_plus_sentinel = size + 1;
307    assert(size_plus_sentinel >= LQEntries);
308
309    if (size_plus_sentinel > LQEntries) {
310        while (size_plus_sentinel > loadQueue.size()) {
311            DynInstPtr dummy;
312            loadQueue.push_back(dummy);
313            LQEntries++;
314        }
315    } else {
316        LQEntries = size_plus_sentinel;
317    }
318
319    assert(LQEntries <= 256);
320}
321
322template<class Impl>
323void
324LSQUnit<Impl>::resizeSQ(unsigned size)
325{
326    unsigned size_plus_sentinel = size + 1;
327    if (size_plus_sentinel > SQEntries) {
328        while (size_plus_sentinel > storeQueue.size()) {
329            SQEntry dummy;
330            storeQueue.push_back(dummy);
331            SQEntries++;
332        }
333    } else {
334        SQEntries = size_plus_sentinel;
335    }
336
337    assert(SQEntries <= 256);
338}
339
340template <class Impl>
341void
342LSQUnit<Impl>::insert(DynInstPtr &inst)
343{
344    assert(inst->isMemRef());
345
346    assert(inst->isLoad() || inst->isStore());
347
348    if (inst->isLoad()) {
349        insertLoad(inst);
350    } else {
351        insertStore(inst);
352    }
353
354    inst->setInLSQ();
355}
356
357template <class Impl>
358void
359LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
360{
361    assert((loadTail + 1) % LQEntries != loadHead);
362    assert(loads < LQEntries);
363
364    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
365            load_inst->pcState(), loadTail, load_inst->seqNum);
366
367    load_inst->lqIdx = loadTail;
368
369    if (stores == 0) {
370        load_inst->sqIdx = -1;
371    } else {
372        load_inst->sqIdx = storeTail;
373    }
374
375    loadQueue[loadTail] = load_inst;
376
377    incrLdIdx(loadTail);
378
379    ++loads;
380}
381
382template <class Impl>
383void
384LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
385{
386    // Make sure it is not full before inserting an instruction.
387    assert((storeTail + 1) % SQEntries != storeHead);
388    assert(stores < SQEntries);
389
390    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
391            store_inst->pcState(), storeTail, store_inst->seqNum);
392
393    store_inst->sqIdx = storeTail;
394    store_inst->lqIdx = loadTail;
395
396    storeQueue[storeTail] = SQEntry(store_inst);
397
398    incrStIdx(storeTail);
399
400    ++stores;
401}
402
403template <class Impl>
404typename Impl::DynInstPtr
405LSQUnit<Impl>::getMemDepViolator()
406{
407    DynInstPtr temp = memDepViolator;
408
409    memDepViolator = NULL;
410
411    return temp;
412}
413
414template <class Impl>
415unsigned
416LSQUnit<Impl>::numFreeLoadEntries()
417{
418        //LQ has an extra dummy entry to differentiate
419        //empty/full conditions. Subtract 1 from the free entries.
420        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
421        return LQEntries - loads - 1;
422}
423
424template <class Impl>
425unsigned
426LSQUnit<Impl>::numFreeStoreEntries()
427{
428        //SQ has an extra dummy entry to differentiate
429        //empty/full conditions. Subtract 1 from the free entries.
430        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
431        return SQEntries - stores - 1;
432
433 }
434
435template <class Impl>
436void
437LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
438{
439    // Should only ever get invalidations in here
440    assert(pkt->isInvalidate());
441
442    int load_idx = loadHead;
443    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
444
445    // Only Invalidate packet calls checkSnoop
446    assert(pkt->isInvalidate());
447    for (int x = 0; x < cpu->numContexts(); x++) {
448        ThreadContext *tc = cpu->getContext(x);
449        bool no_squash = cpu->thread[x]->noSquashFromTC;
450        cpu->thread[x]->noSquashFromTC = true;
451        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
452        cpu->thread[x]->noSquashFromTC = no_squash;
453    }
454
455    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
456
457    DynInstPtr ld_inst = loadQueue[load_idx];
458    if (ld_inst) {
459        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
460        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
461
462        // Check that this snoop didn't just invalidate our lock flag
463        if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
464                                        || load_addr_high == invalidate_addr)
465            && ld_inst->memReqFlags & Request::LLSC)
466            TheISA::handleLockedSnoopHit(ld_inst.get());
467    }
468
469    // If this is the only load in the LSQ we don't care
470    if (load_idx == loadTail)
471        return;
472
473    incrLdIdx(load_idx);
474
475    bool force_squash = false;
476
477    while (load_idx != loadTail) {
478        DynInstPtr ld_inst = loadQueue[load_idx];
479
480        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
481            incrLdIdx(load_idx);
482            continue;
483        }
484
485        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
486        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
487
488        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
489                    ld_inst->seqNum, load_addr_low, invalidate_addr);
490
491        if ((load_addr_low == invalidate_addr
492             || load_addr_high == invalidate_addr) || force_squash) {
493            if (needsTSO) {
494                // If we have a TSO system, as all loads must be ordered with
495                // all other loads, this load as well as *all* subsequent loads
496                // need to be squashed to prevent possible load reordering.
497                force_squash = true;
498            }
499            if (ld_inst->possibleLoadViolation() || force_squash) {
500                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
501                        pkt->getAddr(), ld_inst->seqNum);
502
503                // Mark the load for re-execution
504                ld_inst->fault = std::make_shared<ReExec>();
505            } else {
506                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
507                        pkt->getAddr(), ld_inst->seqNum);
508
509                // Make sure that we don't lose a snoop hitting a LOCKED
510                // address since the LOCK* flags don't get updated until
511                // commit.
512                if (ld_inst->memReqFlags & Request::LLSC)
513                    TheISA::handleLockedSnoopHit(ld_inst.get());
514
515                // If a older load checks this and it's true
516                // then we might have missed the snoop
517                // in which case we need to invalidate to be sure
518                ld_inst->hitExternalSnoop(true);
519            }
520        }
521        incrLdIdx(load_idx);
522    }
523    return;
524}
525
526template <class Impl>
527Fault
528LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
529{
530    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
531    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
532
533    /** @todo in theory you only need to check an instruction that has executed
534     * however, there isn't a good way in the pipeline at the moment to check
535     * all instructions that will execute before the store writes back. Thus,
536     * like the implementation that came before it, we're overly conservative.
537     */
538    while (load_idx != loadTail) {
539        DynInstPtr ld_inst = loadQueue[load_idx];
540        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
541            incrLdIdx(load_idx);
542            continue;
543        }
544
545        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
546        Addr ld_eff_addr2 =
547            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
548
549        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
550            if (inst->isLoad()) {
551                // If this load is to the same block as an external snoop
552                // invalidate that we've observed then the load needs to be
553                // squashed as it could have newer data
554                if (ld_inst->hitExternalSnoop()) {
555                    if (!memDepViolator ||
556                            ld_inst->seqNum < memDepViolator->seqNum) {
557                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
558                                "and [sn:%lli] at address %#x\n",
559                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
560                        memDepViolator = ld_inst;
561
562                        ++lsqMemOrderViolation;
563
564                        return std::make_shared<GenericISA::M5PanicFault>(
565                            "Detected fault with inst [sn:%lli] and "
566                            "[sn:%lli] at address %#x\n",
567                            inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
568                    }
569                }
570
571                // Otherwise, mark the load has a possible load violation
572                // and if we see a snoop before it's commited, we need to squash
573                ld_inst->possibleLoadViolation(true);
574                DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
575                        " between instructions [sn:%lli] and [sn:%lli]\n",
576                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
577            } else {
578                // A load/store incorrectly passed this store.
579                // Check if we already have a violator, or if it's newer
580                // squash and refetch.
581                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
582                    break;
583
584                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
585                        "[sn:%lli] at address %#x\n",
586                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
587                memDepViolator = ld_inst;
588
589                ++lsqMemOrderViolation;
590
591                return std::make_shared<GenericISA::M5PanicFault>(
592                    "Detected fault with "
593                    "inst [sn:%lli] and [sn:%lli] at address %#x\n",
594                    inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
595            }
596        }
597
598        incrLdIdx(load_idx);
599    }
600    return NoFault;
601}
602
603
604
605
606template <class Impl>
607Fault
608LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
609{
610    using namespace TheISA;
611    // Execute a specific load.
612    Fault load_fault = NoFault;
613
614    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
615            inst->pcState(), inst->seqNum);
616
617    assert(!inst->isSquashed());
618
619    load_fault = inst->initiateAcc();
620
621    if (inst->isTranslationDelayed() &&
622        load_fault == NoFault)
623        return load_fault;
624
625    // If the instruction faulted or predicated false, then we need to send it
626    // along to commit without the instruction completing.
627    if (load_fault != NoFault || !inst->readPredicate()) {
628        // Send this instruction to commit, also make sure iew stage
629        // realizes there is activity.  Mark it as executed unless it
630        // is a strictly ordered load that needs to hit the head of
631        // commit.
632        if (!inst->readPredicate())
633            inst->forwardOldRegs();
634        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
635                inst->seqNum,
636                (load_fault != NoFault ? "fault" : "predication"));
637        if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
638            inst->isAtCommit()) {
639            inst->setExecuted();
640        }
641        iewStage->instToCommit(inst);
642        iewStage->activityThisCycle();
643    } else {
644        assert(inst->effAddrValid());
645        int load_idx = inst->lqIdx;
646        incrLdIdx(load_idx);
647
648        if (checkLoads)
649            return checkViolations(load_idx, inst);
650    }
651
652    return load_fault;
653}
654
655template <class Impl>
656Fault
657LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
658{
659    using namespace TheISA;
660    // Make sure that a store exists.
661    assert(stores != 0);
662
663    int store_idx = store_inst->sqIdx;
664
665    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
666            store_inst->pcState(), store_inst->seqNum);
667
668    assert(!store_inst->isSquashed());
669
670    // Check the recently completed loads to see if any match this store's
671    // address.  If so, then we have a memory ordering violation.
672    int load_idx = store_inst->lqIdx;
673
674    Fault store_fault = store_inst->initiateAcc();
675
676    if (store_inst->isTranslationDelayed() &&
677        store_fault == NoFault)
678        return store_fault;
679
680    if (!store_inst->readPredicate()) {
681        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
682                store_inst->seqNum);
683        store_inst->forwardOldRegs();
684        return store_fault;
685    }
686
687    if (storeQueue[store_idx].size == 0) {
688        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
689                store_inst->pcState(), store_inst->seqNum);
690
691        return store_fault;
692    }
693
694    assert(store_fault == NoFault);
695
696    if (store_inst->isStoreConditional()) {
697        // Store conditionals need to set themselves as able to
698        // writeback if we haven't had a fault by here.
699        storeQueue[store_idx].canWB = true;
700
701        ++storesToWB;
702    }
703
704    return checkViolations(load_idx, store_inst);
705
706}
707
708template <class Impl>
709void
710LSQUnit<Impl>::commitLoad()
711{
712    assert(loadQueue[loadHead]);
713
714    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
715            loadQueue[loadHead]->pcState());
716
717    loadQueue[loadHead] = NULL;
718
719    incrLdIdx(loadHead);
720
721    --loads;
722}
723
724template <class Impl>
725void
726LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
727{
728    assert(loads == 0 || loadQueue[loadHead]);
729
730    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
731        commitLoad();
732    }
733}
734
735template <class Impl>
736void
737LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
738{
739    assert(stores == 0 || storeQueue[storeHead].inst);
740
741    int store_idx = storeHead;
742
743    while (store_idx != storeTail) {
744        assert(storeQueue[store_idx].inst);
745        // Mark any stores that are now committed and have not yet
746        // been marked as able to write back.
747        if (!storeQueue[store_idx].canWB) {
748            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
749                break;
750            }
751            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
752                    "%s [sn:%lli]\n",
753                    storeQueue[store_idx].inst->pcState(),
754                    storeQueue[store_idx].inst->seqNum);
755
756            storeQueue[store_idx].canWB = true;
757
758            ++storesToWB;
759        }
760
761        incrStIdx(store_idx);
762    }
763}
764
765template <class Impl>
766void
767LSQUnit<Impl>::writebackPendingStore()
768{
769    if (hasPendingPkt) {
770        assert(pendingPkt != NULL);
771
772        // If the cache is blocked, this will store the packet for retry.
773        if (sendStore(pendingPkt)) {
774            storePostSend(pendingPkt);
775        }
776        pendingPkt = NULL;
777        hasPendingPkt = false;
778    }
779}
780
781template <class Impl>
782void
783LSQUnit<Impl>::writebackStores()
784{
785    // First writeback the second packet from any split store that didn't
786    // complete last cycle because there weren't enough cache ports available.
787    if (TheISA::HasUnalignedMemAcc) {
788        writebackPendingStore();
789    }
790
791    while (storesToWB > 0 &&
792           storeWBIdx != storeTail &&
793           storeQueue[storeWBIdx].inst &&
794           storeQueue[storeWBIdx].canWB &&
795           ((!needsTSO) || (!storeInFlight)) &&
796           usedStorePorts < cacheStorePorts) {
797
798        if (isStoreBlocked) {
799            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
800                    " is blocked!\n");
801            break;
802        }
803
804        // Store didn't write any data so no need to write it back to
805        // memory.
806        if (storeQueue[storeWBIdx].size == 0) {
807            completeStore(storeWBIdx);
808
809            incrStIdx(storeWBIdx);
810
811            continue;
812        }
813
814        ++usedStorePorts;
815
816        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
817            incrStIdx(storeWBIdx);
818
819            continue;
820        }
821
822        assert(storeQueue[storeWBIdx].req);
823        assert(!storeQueue[storeWBIdx].committed);
824
825        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
826            assert(storeQueue[storeWBIdx].sreqLow);
827            assert(storeQueue[storeWBIdx].sreqHigh);
828        }
829
830        DynInstPtr inst = storeQueue[storeWBIdx].inst;
831
832        RequestPtr &req = storeQueue[storeWBIdx].req;
833        const RequestPtr &sreqLow = storeQueue[storeWBIdx].sreqLow;
834        const RequestPtr &sreqHigh = storeQueue[storeWBIdx].sreqHigh;
835
836        storeQueue[storeWBIdx].committed = true;
837
838        assert(!inst->memData);
839        inst->memData = new uint8_t[req->getSize()];
840
841        if (storeQueue[storeWBIdx].isAllZeros)
842            memset(inst->memData, 0, req->getSize());
843        else
844            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
845
846        PacketPtr data_pkt;
847        PacketPtr snd_data_pkt = NULL;
848
849        LSQSenderState *state = new LSQSenderState;
850        state->isLoad = false;
851        state->idx = storeWBIdx;
852        state->inst = inst;
853
854        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
855
856            // Build a single data packet if the store isn't split.
857            data_pkt = Packet::createWrite(req);
858            data_pkt->dataStatic(inst->memData);
859            data_pkt->senderState = state;
860        } else {
861            // Create two packets if the store is split in two.
862            data_pkt = Packet::createWrite(sreqLow);
863            snd_data_pkt = Packet::createWrite(sreqHigh);
864
865            data_pkt->dataStatic(inst->memData);
866            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
867
868            data_pkt->senderState = state;
869            snd_data_pkt->senderState = state;
870
871            state->isSplit = true;
872            state->outstanding = 2;
873
874            // Can delete the main request now.
875            req = sreqLow;
876        }
877
878        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
879                "to Addr:%#x, data:%#x [sn:%lli]\n",
880                storeWBIdx, inst->pcState(),
881                req->getPaddr(), (int)*(inst->memData),
882                inst->seqNum);
883
884        // @todo: Remove this SC hack once the memory system handles it.
885        if (inst->isStoreConditional()) {
886            assert(!storeQueue[storeWBIdx].isSplit);
887            // Disable recording the result temporarily.  Writing to
888            // misc regs normally updates the result, but this is not
889            // the desired behavior when handling store conditionals.
890            inst->recordResult(false);
891            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
892            inst->recordResult(true);
893
894            if (!success) {
895                // Instantly complete this store.
896                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
897                        "Instantly completing it.\n",
898                        inst->seqNum);
899                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
900                cpu->schedule(wb, curTick() + 1);
901                completeStore(storeWBIdx);
902                incrStIdx(storeWBIdx);
903                continue;
904            }
905        } else {
906            // Non-store conditionals do not need a writeback.
907            state->noWB = true;
908        }
909
910        bool split =
911            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
912
913        ThreadContext *thread = cpu->tcBase(lsqID);
914
915        if (req->isMmappedIpr()) {
916            assert(!inst->isStoreConditional());
917            TheISA::handleIprWrite(thread, data_pkt);
918            delete data_pkt;
919            if (split) {
920                assert(snd_data_pkt->req->isMmappedIpr());
921                TheISA::handleIprWrite(thread, snd_data_pkt);
922                delete snd_data_pkt;
923            }
924            delete state;
925            completeStore(storeWBIdx);
926            incrStIdx(storeWBIdx);
927        } else if (!sendStore(data_pkt)) {
928            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
929                    "retry later\n",
930                    inst->seqNum);
931
932            // Need to store the second packet, if split.
933            if (split) {
934                state->pktToSend = true;
935                state->pendingPacket = snd_data_pkt;
936            }
937        } else {
938
939            // If split, try to send the second packet too
940            if (split) {
941                assert(snd_data_pkt);
942
943                // Ensure there are enough ports to use.
944                if (usedStorePorts < cacheStorePorts) {
945                    ++usedStorePorts;
946                    if (sendStore(snd_data_pkt)) {
947                        storePostSend(snd_data_pkt);
948                    } else {
949                        DPRINTF(IEW, "D-Cache became blocked when writing"
950                                " [sn:%lli] second packet, will retry later\n",
951                                inst->seqNum);
952                    }
953                } else {
954
955                    // Store the packet for when there's free ports.
956                    assert(pendingPkt == NULL);
957                    pendingPkt = snd_data_pkt;
958                    hasPendingPkt = true;
959                }
960            } else {
961
962                // Not a split store.
963                storePostSend(data_pkt);
964            }
965        }
966    }
967
968    // Not sure this should set it to 0.
969    usedStorePorts = 0;
970
971    assert(stores >= 0 && storesToWB >= 0);
972}
973
974/*template <class Impl>
975void
976LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
977{
978    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
979                                              mshrSeqNums.end(),
980                                              seqNum);
981
982    if (mshr_it != mshrSeqNums.end()) {
983        mshrSeqNums.erase(mshr_it);
984        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
985    }
986}*/
987
988template <class Impl>
989void
990LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
991{
992    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
993            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
994
995    int load_idx = loadTail;
996    decrLdIdx(load_idx);
997
998    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
999        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1000                "[sn:%lli]\n",
1001                loadQueue[load_idx]->pcState(),
1002                loadQueue[load_idx]->seqNum);
1003
1004        if (isStalled() && load_idx == stallingLoadIdx) {
1005            stalled = false;
1006            stallingStoreIsn = 0;
1007            stallingLoadIdx = 0;
1008        }
1009
1010        // Clear the smart pointer to make sure it is decremented.
1011        loadQueue[load_idx]->setSquashed();
1012        loadQueue[load_idx] = NULL;
1013        --loads;
1014
1015        // Inefficient!
1016        loadTail = load_idx;
1017
1018        decrLdIdx(load_idx);
1019        ++lsqSquashedLoads;
1020    }
1021
1022    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1023        memDepViolator = NULL;
1024    }
1025
1026    int store_idx = storeTail;
1027    decrStIdx(store_idx);
1028
1029    while (stores != 0 &&
1030           storeQueue[store_idx].inst->seqNum > squashed_num) {
1031        // Instructions marked as can WB are already committed.
1032        if (storeQueue[store_idx].canWB) {
1033            break;
1034        }
1035
1036        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1037                "idx:%i [sn:%lli]\n",
1038                storeQueue[store_idx].inst->pcState(),
1039                store_idx, storeQueue[store_idx].inst->seqNum);
1040
1041        // I don't think this can happen.  It should have been cleared
1042        // by the stalling load.
1043        if (isStalled() &&
1044            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1045            panic("Is stalled should have been cleared by stalling load!\n");
1046            stalled = false;
1047            stallingStoreIsn = 0;
1048        }
1049
1050        // Clear the smart pointer to make sure it is decremented.
1051        storeQueue[store_idx].inst->setSquashed();
1052        storeQueue[store_idx].inst = NULL;
1053        storeQueue[store_idx].canWB = 0;
1054
1055        // Must delete request now that it wasn't handed off to
1056        // memory.  This is quite ugly.  @todo: Figure out the proper
1057        // place to really handle request deletes.
1058        storeQueue[store_idx].req.reset();
1059        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1060            storeQueue[store_idx].sreqLow.reset();
1061            storeQueue[store_idx].sreqHigh.reset();
1062        }
1063
1064        --stores;
1065
1066        // Inefficient!
1067        storeTail = store_idx;
1068
1069        decrStIdx(store_idx);
1070        ++lsqSquashedStores;
1071    }
1072}
1073
1074template <class Impl>
1075void
1076LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1077{
1078    if (isStalled() &&
1079        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1080        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1081                "load idx:%i\n",
1082                stallingStoreIsn, stallingLoadIdx);
1083        stalled = false;
1084        stallingStoreIsn = 0;
1085        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1086    }
1087
1088    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1089        // The store is basically completed at this time. This
1090        // only works so long as the checker doesn't try to
1091        // verify the value in memory for stores.
1092        storeQueue[storeWBIdx].inst->setCompleted();
1093
1094        if (cpu->checker) {
1095            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1096        }
1097    }
1098
1099    if (needsTSO) {
1100        storeInFlight = true;
1101    }
1102
1103    incrStIdx(storeWBIdx);
1104}
1105
1106template <class Impl>
1107void
1108LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1109{
1110    iewStage->wakeCPU();
1111
1112    // Squashed instructions do not need to complete their access.
1113    if (inst->isSquashed()) {
1114        assert(!inst->isStore());
1115        ++lsqIgnoredResponses;
1116        return;
1117    }
1118
1119    if (!inst->isExecuted()) {
1120        inst->setExecuted();
1121
1122        if (inst->fault == NoFault) {
1123            // Complete access to copy data to proper place.
1124            inst->completeAcc(pkt);
1125        } else {
1126            // If the instruction has an outstanding fault, we cannot complete
1127            // the access as this discards the current fault.
1128
1129            // If we have an outstanding fault, the fault should only be of
1130            // type ReExec.
1131            assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1132
1133            DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1134                    "due to pending fault.\n", inst->seqNum);
1135        }
1136    }
1137
1138    // Need to insert instruction into queue to commit
1139    iewStage->instToCommit(inst);
1140
1141    iewStage->activityThisCycle();
1142
1143    // see if this load changed the PC
1144    iewStage->checkMisprediction(inst);
1145}
1146
1147template <class Impl>
1148void
1149LSQUnit<Impl>::completeStore(int store_idx)
1150{
1151    assert(storeQueue[store_idx].inst);
1152    storeQueue[store_idx].completed = true;
1153    --storesToWB;
1154    // A bit conservative because a store completion may not free up entries,
1155    // but hopefully avoids two store completions in one cycle from making
1156    // the CPU tick twice.
1157    cpu->wakeCPU();
1158    cpu->activityThisCycle();
1159
1160    if (store_idx == storeHead) {
1161        do {
1162            incrStIdx(storeHead);
1163
1164            --stores;
1165        } while (storeQueue[storeHead].completed &&
1166                 storeHead != storeTail);
1167
1168        iewStage->updateLSQNextCycle = true;
1169    }
1170
1171    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1172            "idx:%i\n",
1173            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1174
1175#if TRACING_ON
1176    if (DTRACE(O3PipeView)) {
1177        storeQueue[store_idx].inst->storeTick =
1178            curTick() - storeQueue[store_idx].inst->fetchTick;
1179    }
1180#endif
1181
1182    if (isStalled() &&
1183        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1184        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1185                "load idx:%i\n",
1186                stallingStoreIsn, stallingLoadIdx);
1187        stalled = false;
1188        stallingStoreIsn = 0;
1189        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1190    }
1191
1192    storeQueue[store_idx].inst->setCompleted();
1193
1194    if (needsTSO) {
1195        storeInFlight = false;
1196    }
1197
1198    // Tell the checker we've completed this instruction.  Some stores
1199    // may get reported twice to the checker, but the checker can
1200    // handle that case.
1201
1202    // Store conditionals cannot be sent to the checker yet, they have
1203    // to update the misc registers first which should take place
1204    // when they commit
1205    if (cpu->checker && !storeQueue[store_idx].inst->isStoreConditional()) {
1206        cpu->checker->verify(storeQueue[store_idx].inst);
1207    }
1208}
1209
1210template <class Impl>
1211bool
1212LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1213{
1214    if (!dcachePort->sendTimingReq(data_pkt)) {
1215        // Need to handle becoming blocked on a store.
1216        isStoreBlocked = true;
1217        ++lsqCacheBlocked;
1218        assert(retryPkt == NULL);
1219        retryPkt = data_pkt;
1220        return false;
1221    }
1222    return true;
1223}
1224
1225template <class Impl>
1226void
1227LSQUnit<Impl>::recvRetry()
1228{
1229    if (isStoreBlocked) {
1230        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1231        assert(retryPkt != NULL);
1232
1233        LSQSenderState *state =
1234            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1235
1236        if (dcachePort->sendTimingReq(retryPkt)) {
1237            // Don't finish the store unless this is the last packet.
1238            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1239                    state->pendingPacket == retryPkt) {
1240                state->pktToSend = false;
1241                storePostSend(retryPkt);
1242            }
1243            retryPkt = NULL;
1244            isStoreBlocked = false;
1245
1246            // Send any outstanding packet.
1247            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1248                assert(state->pendingPacket);
1249                if (sendStore(state->pendingPacket)) {
1250                    storePostSend(state->pendingPacket);
1251                }
1252            }
1253        } else {
1254            // Still blocked!
1255            ++lsqCacheBlocked;
1256        }
1257    }
1258}
1259
1260template <class Impl>
1261inline void
1262LSQUnit<Impl>::incrStIdx(int &store_idx) const
1263{
1264    if (++store_idx >= SQEntries)
1265        store_idx = 0;
1266}
1267
1268template <class Impl>
1269inline void
1270LSQUnit<Impl>::decrStIdx(int &store_idx) const
1271{
1272    if (--store_idx < 0)
1273        store_idx += SQEntries;
1274}
1275
1276template <class Impl>
1277inline void
1278LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1279{
1280    if (++load_idx >= LQEntries)
1281        load_idx = 0;
1282}
1283
1284template <class Impl>
1285inline void
1286LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1287{
1288    if (--load_idx < 0)
1289        load_idx += LQEntries;
1290}
1291
1292template <class Impl>
1293void
1294LSQUnit<Impl>::dumpInsts() const
1295{
1296    cprintf("Load store queue: Dumping instructions.\n");
1297    cprintf("Load queue size: %i\n", loads);
1298    cprintf("Load queue: ");
1299
1300    int load_idx = loadHead;
1301
1302    while (load_idx != loadTail && loadQueue[load_idx]) {
1303        const DynInstPtr &inst(loadQueue[load_idx]);
1304        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1305
1306        incrLdIdx(load_idx);
1307    }
1308    cprintf("\n");
1309
1310    cprintf("Store queue size: %i\n", stores);
1311    cprintf("Store queue: ");
1312
1313    int store_idx = storeHead;
1314
1315    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1316        const DynInstPtr &inst(storeQueue[store_idx].inst);
1317        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1318
1319        incrStIdx(store_idx);
1320    }
1321
1322    cprintf("\n");
1323}
1324
1325#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1326