lsq_unit_impl.hh revision 11357:6668387fa488
1
2/*
3 * Copyright (c) 2010-2014 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt->req;
83    delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90    return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98    DynInstPtr inst = state->inst;
99    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102    if (state->cacheBlocked) {
103        // This is the first half of a previous split load,
104        // where the 2nd half blocked, ignore this response
105        DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106                "blocked split load recieved. Ignoring.\n", inst->seqNum);
107        delete state;
108        return;
109    }
110
111    // If this is a split access, wait until all packets are received.
112    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
113        return;
114    }
115
116    assert(!cpu->switchedOut());
117    if (!inst->isSquashed()) {
118        if (!state->noWB) {
119            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
120                !state->isLoad) {
121                writeback(inst, pkt);
122            } else {
123                writeback(inst, state->mainPkt);
124            }
125        }
126
127        if (inst->isStore()) {
128            completeStore(state->idx);
129        }
130    }
131
132    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
133        delete state->mainPkt->req;
134        delete state->mainPkt;
135    }
136
137    pkt->req->setAccessLatency();
138    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
139
140    delete state;
141}
142
143template <class Impl>
144LSQUnit<Impl>::LSQUnit()
145    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
146      isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false),
147      pendingPkt(nullptr)
148{
149}
150
151template<class Impl>
152void
153LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
154        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
155        unsigned id)
156{
157    cpu = cpu_ptr;
158    iewStage = iew_ptr;
159
160    lsq = lsq_ptr;
161
162    lsqID = id;
163
164    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
165
166    // Add 1 for the sentinel entry (they are circular queues).
167    LQEntries = maxLQEntries + 1;
168    SQEntries = maxSQEntries + 1;
169
170    //Due to uint8_t index in LSQSenderState
171    assert(LQEntries <= 256);
172    assert(SQEntries <= 256);
173
174    loadQueue.resize(LQEntries);
175    storeQueue.resize(SQEntries);
176
177    depCheckShift = params->LSQDepCheckShift;
178    checkLoads = params->LSQCheckLoads;
179    cachePorts = params->cachePorts;
180    needsTSO = params->needsTSO;
181
182    resetState();
183}
184
185
186template<class Impl>
187void
188LSQUnit<Impl>::resetState()
189{
190    loads = stores = storesToWB = 0;
191
192    loadHead = loadTail = 0;
193
194    storeHead = storeWBIdx = storeTail = 0;
195
196    usedPorts = 0;
197
198    retryPkt = NULL;
199    memDepViolator = NULL;
200
201    stalled = false;
202
203    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
204}
205
206template<class Impl>
207std::string
208LSQUnit<Impl>::name() const
209{
210    if (Impl::MaxThreads == 1) {
211        return iewStage->name() + ".lsq";
212    } else {
213        return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
214    }
215}
216
217template<class Impl>
218void
219LSQUnit<Impl>::regStats()
220{
221    lsqForwLoads
222        .name(name() + ".forwLoads")
223        .desc("Number of loads that had data forwarded from stores");
224
225    invAddrLoads
226        .name(name() + ".invAddrLoads")
227        .desc("Number of loads ignored due to an invalid address");
228
229    lsqSquashedLoads
230        .name(name() + ".squashedLoads")
231        .desc("Number of loads squashed");
232
233    lsqIgnoredResponses
234        .name(name() + ".ignoredResponses")
235        .desc("Number of memory responses ignored because the instruction is squashed");
236
237    lsqMemOrderViolation
238        .name(name() + ".memOrderViolation")
239        .desc("Number of memory ordering violations");
240
241    lsqSquashedStores
242        .name(name() + ".squashedStores")
243        .desc("Number of stores squashed");
244
245    invAddrSwpfs
246        .name(name() + ".invAddrSwpfs")
247        .desc("Number of software prefetches ignored due to an invalid address");
248
249    lsqBlockedLoads
250        .name(name() + ".blockedLoads")
251        .desc("Number of blocked loads due to partial load-store forwarding");
252
253    lsqRescheduledLoads
254        .name(name() + ".rescheduledLoads")
255        .desc("Number of loads that were rescheduled");
256
257    lsqCacheBlocked
258        .name(name() + ".cacheBlocked")
259        .desc("Number of times an access to memory failed due to the cache being blocked");
260}
261
262template<class Impl>
263void
264LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
265{
266    dcachePort = dcache_port;
267}
268
269template<class Impl>
270void
271LSQUnit<Impl>::clearLQ()
272{
273    loadQueue.clear();
274}
275
276template<class Impl>
277void
278LSQUnit<Impl>::clearSQ()
279{
280    storeQueue.clear();
281}
282
283template<class Impl>
284void
285LSQUnit<Impl>::drainSanityCheck() const
286{
287    for (int i = 0; i < loadQueue.size(); ++i)
288        assert(!loadQueue[i]);
289
290    assert(storesToWB == 0);
291    assert(!retryPkt);
292}
293
294template<class Impl>
295void
296LSQUnit<Impl>::takeOverFrom()
297{
298    resetState();
299}
300
301template<class Impl>
302void
303LSQUnit<Impl>::resizeLQ(unsigned size)
304{
305    unsigned size_plus_sentinel = size + 1;
306    assert(size_plus_sentinel >= LQEntries);
307
308    if (size_plus_sentinel > LQEntries) {
309        while (size_plus_sentinel > loadQueue.size()) {
310            DynInstPtr dummy;
311            loadQueue.push_back(dummy);
312            LQEntries++;
313        }
314    } else {
315        LQEntries = size_plus_sentinel;
316    }
317
318    assert(LQEntries <= 256);
319}
320
321template<class Impl>
322void
323LSQUnit<Impl>::resizeSQ(unsigned size)
324{
325    unsigned size_plus_sentinel = size + 1;
326    if (size_plus_sentinel > SQEntries) {
327        while (size_plus_sentinel > storeQueue.size()) {
328            SQEntry dummy;
329            storeQueue.push_back(dummy);
330            SQEntries++;
331        }
332    } else {
333        SQEntries = size_plus_sentinel;
334    }
335
336    assert(SQEntries <= 256);
337}
338
339template <class Impl>
340void
341LSQUnit<Impl>::insert(DynInstPtr &inst)
342{
343    assert(inst->isMemRef());
344
345    assert(inst->isLoad() || inst->isStore());
346
347    if (inst->isLoad()) {
348        insertLoad(inst);
349    } else {
350        insertStore(inst);
351    }
352
353    inst->setInLSQ();
354}
355
356template <class Impl>
357void
358LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
359{
360    assert((loadTail + 1) % LQEntries != loadHead);
361    assert(loads < LQEntries);
362
363    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
364            load_inst->pcState(), loadTail, load_inst->seqNum);
365
366    load_inst->lqIdx = loadTail;
367
368    if (stores == 0) {
369        load_inst->sqIdx = -1;
370    } else {
371        load_inst->sqIdx = storeTail;
372    }
373
374    loadQueue[loadTail] = load_inst;
375
376    incrLdIdx(loadTail);
377
378    ++loads;
379}
380
381template <class Impl>
382void
383LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
384{
385    // Make sure it is not full before inserting an instruction.
386    assert((storeTail + 1) % SQEntries != storeHead);
387    assert(stores < SQEntries);
388
389    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
390            store_inst->pcState(), storeTail, store_inst->seqNum);
391
392    store_inst->sqIdx = storeTail;
393    store_inst->lqIdx = loadTail;
394
395    storeQueue[storeTail] = SQEntry(store_inst);
396
397    incrStIdx(storeTail);
398
399    ++stores;
400}
401
402template <class Impl>
403typename Impl::DynInstPtr
404LSQUnit<Impl>::getMemDepViolator()
405{
406    DynInstPtr temp = memDepViolator;
407
408    memDepViolator = NULL;
409
410    return temp;
411}
412
413template <class Impl>
414unsigned
415LSQUnit<Impl>::numFreeLoadEntries()
416{
417        //LQ has an extra dummy entry to differentiate
418        //empty/full conditions. Subtract 1 from the free entries.
419        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
420        return LQEntries - loads - 1;
421}
422
423template <class Impl>
424unsigned
425LSQUnit<Impl>::numFreeStoreEntries()
426{
427        //SQ has an extra dummy entry to differentiate
428        //empty/full conditions. Subtract 1 from the free entries.
429        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
430        return SQEntries - stores - 1;
431
432 }
433
434template <class Impl>
435void
436LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
437{
438    // Should only ever get invalidations in here
439    assert(pkt->isInvalidate());
440
441    int load_idx = loadHead;
442    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
443
444    // Only Invalidate packet calls checkSnoop
445    assert(pkt->isInvalidate());
446    for (int x = 0; x < cpu->numContexts(); x++) {
447        ThreadContext *tc = cpu->getContext(x);
448        bool no_squash = cpu->thread[x]->noSquashFromTC;
449        cpu->thread[x]->noSquashFromTC = true;
450        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
451        cpu->thread[x]->noSquashFromTC = no_squash;
452    }
453
454    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
455
456    DynInstPtr ld_inst = loadQueue[load_idx];
457    if (ld_inst) {
458        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
459        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
460
461        // Check that this snoop didn't just invalidate our lock flag
462        if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
463                                        || load_addr_high == invalidate_addr)
464            && ld_inst->memReqFlags & Request::LLSC)
465            TheISA::handleLockedSnoopHit(ld_inst.get());
466    }
467
468    // If this is the only load in the LSQ we don't care
469    if (load_idx == loadTail)
470        return;
471
472    incrLdIdx(load_idx);
473
474    bool force_squash = false;
475
476    while (load_idx != loadTail) {
477        DynInstPtr ld_inst = loadQueue[load_idx];
478
479        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
480            incrLdIdx(load_idx);
481            continue;
482        }
483
484        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
485        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
486
487        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
488                    ld_inst->seqNum, load_addr_low, invalidate_addr);
489
490        if ((load_addr_low == invalidate_addr
491             || load_addr_high == invalidate_addr) || force_squash) {
492            if (needsTSO) {
493                // If we have a TSO system, as all loads must be ordered with
494                // all other loads, this load as well as *all* subsequent loads
495                // need to be squashed to prevent possible load reordering.
496                force_squash = true;
497            }
498            if (ld_inst->possibleLoadViolation() || force_squash) {
499                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
500                        pkt->getAddr(), ld_inst->seqNum);
501
502                // Mark the load for re-execution
503                ld_inst->fault = std::make_shared<ReExec>();
504            } else {
505                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
506                        pkt->getAddr(), ld_inst->seqNum);
507
508                // Make sure that we don't lose a snoop hitting a LOCKED
509                // address since the LOCK* flags don't get updated until
510                // commit.
511                if (ld_inst->memReqFlags & Request::LLSC)
512                    TheISA::handleLockedSnoopHit(ld_inst.get());
513
514                // If a older load checks this and it's true
515                // then we might have missed the snoop
516                // in which case we need to invalidate to be sure
517                ld_inst->hitExternalSnoop(true);
518            }
519        }
520        incrLdIdx(load_idx);
521    }
522    return;
523}
524
525template <class Impl>
526Fault
527LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
528{
529    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
530    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
531
532    /** @todo in theory you only need to check an instruction that has executed
533     * however, there isn't a good way in the pipeline at the moment to check
534     * all instructions that will execute before the store writes back. Thus,
535     * like the implementation that came before it, we're overly conservative.
536     */
537    while (load_idx != loadTail) {
538        DynInstPtr ld_inst = loadQueue[load_idx];
539        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
540            incrLdIdx(load_idx);
541            continue;
542        }
543
544        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
545        Addr ld_eff_addr2 =
546            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
547
548        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
549            if (inst->isLoad()) {
550                // If this load is to the same block as an external snoop
551                // invalidate that we've observed then the load needs to be
552                // squashed as it could have newer data
553                if (ld_inst->hitExternalSnoop()) {
554                    if (!memDepViolator ||
555                            ld_inst->seqNum < memDepViolator->seqNum) {
556                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
557                                "and [sn:%lli] at address %#x\n",
558                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
559                        memDepViolator = ld_inst;
560
561                        ++lsqMemOrderViolation;
562
563                        return std::make_shared<GenericISA::M5PanicFault>(
564                            "Detected fault with inst [sn:%lli] and "
565                            "[sn:%lli] at address %#x\n",
566                            inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
567                    }
568                }
569
570                // Otherwise, mark the load has a possible load violation
571                // and if we see a snoop before it's commited, we need to squash
572                ld_inst->possibleLoadViolation(true);
573                DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
574                        " between instructions [sn:%lli] and [sn:%lli]\n",
575                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
576            } else {
577                // A load/store incorrectly passed this store.
578                // Check if we already have a violator, or if it's newer
579                // squash and refetch.
580                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
581                    break;
582
583                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
584                        "[sn:%lli] at address %#x\n",
585                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
586                memDepViolator = ld_inst;
587
588                ++lsqMemOrderViolation;
589
590                return std::make_shared<GenericISA::M5PanicFault>(
591                    "Detected fault with "
592                    "inst [sn:%lli] and [sn:%lli] at address %#x\n",
593                    inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
594            }
595        }
596
597        incrLdIdx(load_idx);
598    }
599    return NoFault;
600}
601
602
603
604
605template <class Impl>
606Fault
607LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
608{
609    using namespace TheISA;
610    // Execute a specific load.
611    Fault load_fault = NoFault;
612
613    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
614            inst->pcState(), inst->seqNum);
615
616    assert(!inst->isSquashed());
617
618    load_fault = inst->initiateAcc();
619
620    if (inst->isTranslationDelayed() &&
621        load_fault == NoFault)
622        return load_fault;
623
624    // If the instruction faulted or predicated false, then we need to send it
625    // along to commit without the instruction completing.
626    if (load_fault != NoFault || !inst->readPredicate()) {
627        // Send this instruction to commit, also make sure iew stage
628        // realizes there is activity.  Mark it as executed unless it
629        // is a strictly ordered load that needs to hit the head of
630        // commit.
631        if (!inst->readPredicate())
632            inst->forwardOldRegs();
633        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
634                inst->seqNum,
635                (load_fault != NoFault ? "fault" : "predication"));
636        if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
637            inst->isAtCommit()) {
638            inst->setExecuted();
639        }
640        iewStage->instToCommit(inst);
641        iewStage->activityThisCycle();
642    } else {
643        assert(inst->effAddrValid());
644        int load_idx = inst->lqIdx;
645        incrLdIdx(load_idx);
646
647        if (checkLoads)
648            return checkViolations(load_idx, inst);
649    }
650
651    return load_fault;
652}
653
654template <class Impl>
655Fault
656LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
657{
658    using namespace TheISA;
659    // Make sure that a store exists.
660    assert(stores != 0);
661
662    int store_idx = store_inst->sqIdx;
663
664    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
665            store_inst->pcState(), store_inst->seqNum);
666
667    assert(!store_inst->isSquashed());
668
669    // Check the recently completed loads to see if any match this store's
670    // address.  If so, then we have a memory ordering violation.
671    int load_idx = store_inst->lqIdx;
672
673    Fault store_fault = store_inst->initiateAcc();
674
675    if (store_inst->isTranslationDelayed() &&
676        store_fault == NoFault)
677        return store_fault;
678
679    if (!store_inst->readPredicate())
680        store_inst->forwardOldRegs();
681
682    if (storeQueue[store_idx].size == 0) {
683        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
684                store_inst->pcState(), store_inst->seqNum);
685
686        return store_fault;
687    } else if (!store_inst->readPredicate()) {
688        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
689                store_inst->seqNum);
690        return store_fault;
691    }
692
693    assert(store_fault == NoFault);
694
695    if (store_inst->isStoreConditional()) {
696        // Store conditionals need to set themselves as able to
697        // writeback if we haven't had a fault by here.
698        storeQueue[store_idx].canWB = true;
699
700        ++storesToWB;
701    }
702
703    return checkViolations(load_idx, store_inst);
704
705}
706
707template <class Impl>
708void
709LSQUnit<Impl>::commitLoad()
710{
711    assert(loadQueue[loadHead]);
712
713    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
714            loadQueue[loadHead]->pcState());
715
716    loadQueue[loadHead] = NULL;
717
718    incrLdIdx(loadHead);
719
720    --loads;
721}
722
723template <class Impl>
724void
725LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
726{
727    assert(loads == 0 || loadQueue[loadHead]);
728
729    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
730        commitLoad();
731    }
732}
733
734template <class Impl>
735void
736LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
737{
738    assert(stores == 0 || storeQueue[storeHead].inst);
739
740    int store_idx = storeHead;
741
742    while (store_idx != storeTail) {
743        assert(storeQueue[store_idx].inst);
744        // Mark any stores that are now committed and have not yet
745        // been marked as able to write back.
746        if (!storeQueue[store_idx].canWB) {
747            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
748                break;
749            }
750            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
751                    "%s [sn:%lli]\n",
752                    storeQueue[store_idx].inst->pcState(),
753                    storeQueue[store_idx].inst->seqNum);
754
755            storeQueue[store_idx].canWB = true;
756
757            ++storesToWB;
758        }
759
760        incrStIdx(store_idx);
761    }
762}
763
764template <class Impl>
765void
766LSQUnit<Impl>::writebackPendingStore()
767{
768    if (hasPendingPkt) {
769        assert(pendingPkt != NULL);
770
771        // If the cache is blocked, this will store the packet for retry.
772        if (sendStore(pendingPkt)) {
773            storePostSend(pendingPkt);
774        }
775        pendingPkt = NULL;
776        hasPendingPkt = false;
777    }
778}
779
780template <class Impl>
781void
782LSQUnit<Impl>::writebackStores()
783{
784    // First writeback the second packet from any split store that didn't
785    // complete last cycle because there weren't enough cache ports available.
786    if (TheISA::HasUnalignedMemAcc) {
787        writebackPendingStore();
788    }
789
790    while (storesToWB > 0 &&
791           storeWBIdx != storeTail &&
792           storeQueue[storeWBIdx].inst &&
793           storeQueue[storeWBIdx].canWB &&
794           ((!needsTSO) || (!storeInFlight)) &&
795           usedPorts < cachePorts) {
796
797        if (isStoreBlocked) {
798            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
799                    " is blocked!\n");
800            break;
801        }
802
803        // Store didn't write any data so no need to write it back to
804        // memory.
805        if (storeQueue[storeWBIdx].size == 0) {
806            completeStore(storeWBIdx);
807
808            incrStIdx(storeWBIdx);
809
810            continue;
811        }
812
813        ++usedPorts;
814
815        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
816            incrStIdx(storeWBIdx);
817
818            continue;
819        }
820
821        assert(storeQueue[storeWBIdx].req);
822        assert(!storeQueue[storeWBIdx].committed);
823
824        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
825            assert(storeQueue[storeWBIdx].sreqLow);
826            assert(storeQueue[storeWBIdx].sreqHigh);
827        }
828
829        DynInstPtr inst = storeQueue[storeWBIdx].inst;
830
831        Request *req = storeQueue[storeWBIdx].req;
832        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
833        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
834
835        storeQueue[storeWBIdx].committed = true;
836
837        assert(!inst->memData);
838        inst->memData = new uint8_t[req->getSize()];
839
840        if (storeQueue[storeWBIdx].isAllZeros)
841            memset(inst->memData, 0, req->getSize());
842        else
843            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
844
845        PacketPtr data_pkt;
846        PacketPtr snd_data_pkt = NULL;
847
848        LSQSenderState *state = new LSQSenderState;
849        state->isLoad = false;
850        state->idx = storeWBIdx;
851        state->inst = inst;
852
853        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
854
855            // Build a single data packet if the store isn't split.
856            data_pkt = Packet::createWrite(req);
857            data_pkt->dataStatic(inst->memData);
858            data_pkt->senderState = state;
859        } else {
860            // Create two packets if the store is split in two.
861            data_pkt = Packet::createWrite(sreqLow);
862            snd_data_pkt = Packet::createWrite(sreqHigh);
863
864            data_pkt->dataStatic(inst->memData);
865            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
866
867            data_pkt->senderState = state;
868            snd_data_pkt->senderState = state;
869
870            state->isSplit = true;
871            state->outstanding = 2;
872
873            // Can delete the main request now.
874            delete req;
875            req = sreqLow;
876        }
877
878        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
879                "to Addr:%#x, data:%#x [sn:%lli]\n",
880                storeWBIdx, inst->pcState(),
881                req->getPaddr(), (int)*(inst->memData),
882                inst->seqNum);
883
884        // @todo: Remove this SC hack once the memory system handles it.
885        if (inst->isStoreConditional()) {
886            assert(!storeQueue[storeWBIdx].isSplit);
887            // Disable recording the result temporarily.  Writing to
888            // misc regs normally updates the result, but this is not
889            // the desired behavior when handling store conditionals.
890            inst->recordResult(false);
891            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
892            inst->recordResult(true);
893
894            if (!success) {
895                // Instantly complete this store.
896                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
897                        "Instantly completing it.\n",
898                        inst->seqNum);
899                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
900                cpu->schedule(wb, curTick() + 1);
901                if (cpu->checker) {
902                    // Make sure to set the LLSC data for verification
903                    // if checker is loaded
904                    inst->reqToVerify->setExtraData(0);
905                    inst->completeAcc(data_pkt);
906                }
907                completeStore(storeWBIdx);
908                incrStIdx(storeWBIdx);
909                continue;
910            }
911        } else {
912            // Non-store conditionals do not need a writeback.
913            state->noWB = true;
914        }
915
916        bool split =
917            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
918
919        ThreadContext *thread = cpu->tcBase(lsqID);
920
921        if (req->isMmappedIpr()) {
922            assert(!inst->isStoreConditional());
923            TheISA::handleIprWrite(thread, data_pkt);
924            delete data_pkt;
925            if (split) {
926                assert(snd_data_pkt->req->isMmappedIpr());
927                TheISA::handleIprWrite(thread, snd_data_pkt);
928                delete snd_data_pkt;
929                delete sreqLow;
930                delete sreqHigh;
931            }
932            delete state;
933            delete req;
934            completeStore(storeWBIdx);
935            incrStIdx(storeWBIdx);
936        } else if (!sendStore(data_pkt)) {
937            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
938                    "retry later\n",
939                    inst->seqNum);
940
941            // Need to store the second packet, if split.
942            if (split) {
943                state->pktToSend = true;
944                state->pendingPacket = snd_data_pkt;
945            }
946        } else {
947
948            // If split, try to send the second packet too
949            if (split) {
950                assert(snd_data_pkt);
951
952                // Ensure there are enough ports to use.
953                if (usedPorts < cachePorts) {
954                    ++usedPorts;
955                    if (sendStore(snd_data_pkt)) {
956                        storePostSend(snd_data_pkt);
957                    } else {
958                        DPRINTF(IEW, "D-Cache became blocked when writing"
959                                " [sn:%lli] second packet, will retry later\n",
960                                inst->seqNum);
961                    }
962                } else {
963
964                    // Store the packet for when there's free ports.
965                    assert(pendingPkt == NULL);
966                    pendingPkt = snd_data_pkt;
967                    hasPendingPkt = true;
968                }
969            } else {
970
971                // Not a split store.
972                storePostSend(data_pkt);
973            }
974        }
975    }
976
977    // Not sure this should set it to 0.
978    usedPorts = 0;
979
980    assert(stores >= 0 && storesToWB >= 0);
981}
982
983/*template <class Impl>
984void
985LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
986{
987    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
988                                              mshrSeqNums.end(),
989                                              seqNum);
990
991    if (mshr_it != mshrSeqNums.end()) {
992        mshrSeqNums.erase(mshr_it);
993        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
994    }
995}*/
996
997template <class Impl>
998void
999LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
1000{
1001    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
1002            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1003
1004    int load_idx = loadTail;
1005    decrLdIdx(load_idx);
1006
1007    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1008        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1009                "[sn:%lli]\n",
1010                loadQueue[load_idx]->pcState(),
1011                loadQueue[load_idx]->seqNum);
1012
1013        if (isStalled() && load_idx == stallingLoadIdx) {
1014            stalled = false;
1015            stallingStoreIsn = 0;
1016            stallingLoadIdx = 0;
1017        }
1018
1019        // Clear the smart pointer to make sure it is decremented.
1020        loadQueue[load_idx]->setSquashed();
1021        loadQueue[load_idx] = NULL;
1022        --loads;
1023
1024        // Inefficient!
1025        loadTail = load_idx;
1026
1027        decrLdIdx(load_idx);
1028        ++lsqSquashedLoads;
1029    }
1030
1031    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1032        memDepViolator = NULL;
1033    }
1034
1035    int store_idx = storeTail;
1036    decrStIdx(store_idx);
1037
1038    while (stores != 0 &&
1039           storeQueue[store_idx].inst->seqNum > squashed_num) {
1040        // Instructions marked as can WB are already committed.
1041        if (storeQueue[store_idx].canWB) {
1042            break;
1043        }
1044
1045        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1046                "idx:%i [sn:%lli]\n",
1047                storeQueue[store_idx].inst->pcState(),
1048                store_idx, storeQueue[store_idx].inst->seqNum);
1049
1050        // I don't think this can happen.  It should have been cleared
1051        // by the stalling load.
1052        if (isStalled() &&
1053            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1054            panic("Is stalled should have been cleared by stalling load!\n");
1055            stalled = false;
1056            stallingStoreIsn = 0;
1057        }
1058
1059        // Clear the smart pointer to make sure it is decremented.
1060        storeQueue[store_idx].inst->setSquashed();
1061        storeQueue[store_idx].inst = NULL;
1062        storeQueue[store_idx].canWB = 0;
1063
1064        // Must delete request now that it wasn't handed off to
1065        // memory.  This is quite ugly.  @todo: Figure out the proper
1066        // place to really handle request deletes.
1067        delete storeQueue[store_idx].req;
1068        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1069            delete storeQueue[store_idx].sreqLow;
1070            delete storeQueue[store_idx].sreqHigh;
1071
1072            storeQueue[store_idx].sreqLow = NULL;
1073            storeQueue[store_idx].sreqHigh = NULL;
1074        }
1075
1076        storeQueue[store_idx].req = NULL;
1077        --stores;
1078
1079        // Inefficient!
1080        storeTail = store_idx;
1081
1082        decrStIdx(store_idx);
1083        ++lsqSquashedStores;
1084    }
1085}
1086
1087template <class Impl>
1088void
1089LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1090{
1091    if (isStalled() &&
1092        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1093        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1094                "load idx:%i\n",
1095                stallingStoreIsn, stallingLoadIdx);
1096        stalled = false;
1097        stallingStoreIsn = 0;
1098        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1099    }
1100
1101    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1102        // The store is basically completed at this time. This
1103        // only works so long as the checker doesn't try to
1104        // verify the value in memory for stores.
1105        storeQueue[storeWBIdx].inst->setCompleted();
1106
1107        if (cpu->checker) {
1108            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1109        }
1110    }
1111
1112    if (needsTSO) {
1113        storeInFlight = true;
1114    }
1115
1116    incrStIdx(storeWBIdx);
1117}
1118
1119template <class Impl>
1120void
1121LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1122{
1123    iewStage->wakeCPU();
1124
1125    // Squashed instructions do not need to complete their access.
1126    if (inst->isSquashed()) {
1127        assert(!inst->isStore());
1128        ++lsqIgnoredResponses;
1129        return;
1130    }
1131
1132    if (!inst->isExecuted()) {
1133        inst->setExecuted();
1134
1135        if (inst->fault == NoFault) {
1136            // Complete access to copy data to proper place.
1137            inst->completeAcc(pkt);
1138        } else {
1139            // If the instruction has an outstanding fault, we cannot complete
1140            // the access as this discards the current fault.
1141
1142            // If we have an outstanding fault, the fault should only be of
1143            // type ReExec.
1144            assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1145
1146            DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1147                    "due to pending fault.\n", inst->seqNum);
1148        }
1149    }
1150
1151    // Need to insert instruction into queue to commit
1152    iewStage->instToCommit(inst);
1153
1154    iewStage->activityThisCycle();
1155
1156    // see if this load changed the PC
1157    iewStage->checkMisprediction(inst);
1158}
1159
1160template <class Impl>
1161void
1162LSQUnit<Impl>::completeStore(int store_idx)
1163{
1164    assert(storeQueue[store_idx].inst);
1165    storeQueue[store_idx].completed = true;
1166    --storesToWB;
1167    // A bit conservative because a store completion may not free up entries,
1168    // but hopefully avoids two store completions in one cycle from making
1169    // the CPU tick twice.
1170    cpu->wakeCPU();
1171    cpu->activityThisCycle();
1172
1173    if (store_idx == storeHead) {
1174        do {
1175            incrStIdx(storeHead);
1176
1177            --stores;
1178        } while (storeQueue[storeHead].completed &&
1179                 storeHead != storeTail);
1180
1181        iewStage->updateLSQNextCycle = true;
1182    }
1183
1184    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1185            "idx:%i\n",
1186            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1187
1188#if TRACING_ON
1189    if (DTRACE(O3PipeView)) {
1190        storeQueue[store_idx].inst->storeTick =
1191            curTick() - storeQueue[store_idx].inst->fetchTick;
1192    }
1193#endif
1194
1195    if (isStalled() &&
1196        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1197        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1198                "load idx:%i\n",
1199                stallingStoreIsn, stallingLoadIdx);
1200        stalled = false;
1201        stallingStoreIsn = 0;
1202        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1203    }
1204
1205    storeQueue[store_idx].inst->setCompleted();
1206
1207    if (needsTSO) {
1208        storeInFlight = false;
1209    }
1210
1211    // Tell the checker we've completed this instruction.  Some stores
1212    // may get reported twice to the checker, but the checker can
1213    // handle that case.
1214    if (cpu->checker) {
1215        cpu->checker->verify(storeQueue[store_idx].inst);
1216    }
1217}
1218
1219template <class Impl>
1220bool
1221LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1222{
1223    if (!dcachePort->sendTimingReq(data_pkt)) {
1224        // Need to handle becoming blocked on a store.
1225        isStoreBlocked = true;
1226        ++lsqCacheBlocked;
1227        assert(retryPkt == NULL);
1228        retryPkt = data_pkt;
1229        return false;
1230    }
1231    return true;
1232}
1233
1234template <class Impl>
1235void
1236LSQUnit<Impl>::recvRetry()
1237{
1238    if (isStoreBlocked) {
1239        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1240        assert(retryPkt != NULL);
1241
1242        LSQSenderState *state =
1243            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1244
1245        if (dcachePort->sendTimingReq(retryPkt)) {
1246            // Don't finish the store unless this is the last packet.
1247            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1248                    state->pendingPacket == retryPkt) {
1249                state->pktToSend = false;
1250                storePostSend(retryPkt);
1251            }
1252            retryPkt = NULL;
1253            isStoreBlocked = false;
1254
1255            // Send any outstanding packet.
1256            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1257                assert(state->pendingPacket);
1258                if (sendStore(state->pendingPacket)) {
1259                    storePostSend(state->pendingPacket);
1260                }
1261            }
1262        } else {
1263            // Still blocked!
1264            ++lsqCacheBlocked;
1265        }
1266    }
1267}
1268
1269template <class Impl>
1270inline void
1271LSQUnit<Impl>::incrStIdx(int &store_idx) const
1272{
1273    if (++store_idx >= SQEntries)
1274        store_idx = 0;
1275}
1276
1277template <class Impl>
1278inline void
1279LSQUnit<Impl>::decrStIdx(int &store_idx) const
1280{
1281    if (--store_idx < 0)
1282        store_idx += SQEntries;
1283}
1284
1285template <class Impl>
1286inline void
1287LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1288{
1289    if (++load_idx >= LQEntries)
1290        load_idx = 0;
1291}
1292
1293template <class Impl>
1294inline void
1295LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1296{
1297    if (--load_idx < 0)
1298        load_idx += LQEntries;
1299}
1300
1301template <class Impl>
1302void
1303LSQUnit<Impl>::dumpInsts() const
1304{
1305    cprintf("Load store queue: Dumping instructions.\n");
1306    cprintf("Load queue size: %i\n", loads);
1307    cprintf("Load queue: ");
1308
1309    int load_idx = loadHead;
1310
1311    while (load_idx != loadTail && loadQueue[load_idx]) {
1312        const DynInstPtr &inst(loadQueue[load_idx]);
1313        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1314
1315        incrLdIdx(load_idx);
1316    }
1317    cprintf("\n");
1318
1319    cprintf("Store queue size: %i\n", stores);
1320    cprintf("Store queue: ");
1321
1322    int store_idx = storeHead;
1323
1324    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1325        const DynInstPtr &inst(storeQueue[store_idx].inst);
1326        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1327
1328        incrStIdx(store_idx);
1329    }
1330
1331    cprintf("\n");
1332}
1333
1334#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1335