lsq_unit_impl.hh revision 11243:f876d08c7b21
1
2/*
3 * Copyright (c) 2010-2014 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder.  You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 *          Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65                                              LSQUnit *lsq_ptr)
66    : Event(Default_Pri, AutoDelete),
67      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75    assert(!lsqPtr->cpu->switchedOut());
76
77    lsqPtr->writeback(inst, pkt);
78
79    if (pkt->senderState)
80        delete pkt->senderState;
81
82    delete pkt->req;
83    delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90    return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98    DynInstPtr inst = state->inst;
99    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102    if (state->cacheBlocked) {
103        // This is the first half of a previous split load,
104        // where the 2nd half blocked, ignore this response
105        DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106                "blocked split load recieved. Ignoring.\n", inst->seqNum);
107        delete state;
108        return;
109    }
110
111    // If this is a split access, wait until all packets are received.
112    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
113        return;
114    }
115
116    assert(!cpu->switchedOut());
117    if (!inst->isSquashed()) {
118        if (!state->noWB) {
119            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
120                !state->isLoad) {
121                writeback(inst, pkt);
122            } else {
123                writeback(inst, state->mainPkt);
124            }
125        }
126
127        if (inst->isStore()) {
128            completeStore(state->idx);
129        }
130    }
131
132    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
133        delete state->mainPkt->req;
134        delete state->mainPkt;
135    }
136
137    pkt->req->setAccessLatency();
138    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
139
140    delete state;
141}
142
143template <class Impl>
144LSQUnit<Impl>::LSQUnit()
145    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
146      isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false),
147      pendingPkt(nullptr)
148{
149}
150
151template<class Impl>
152void
153LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
154        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
155        unsigned id)
156{
157    cpu = cpu_ptr;
158    iewStage = iew_ptr;
159
160    lsq = lsq_ptr;
161
162    lsqID = id;
163
164    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
165
166    // Add 1 for the sentinel entry (they are circular queues).
167    LQEntries = maxLQEntries + 1;
168    SQEntries = maxSQEntries + 1;
169
170    //Due to uint8_t index in LSQSenderState
171    assert(LQEntries <= 256);
172    assert(SQEntries <= 256);
173
174    loadQueue.resize(LQEntries);
175    storeQueue.resize(SQEntries);
176
177    depCheckShift = params->LSQDepCheckShift;
178    checkLoads = params->LSQCheckLoads;
179    cachePorts = params->cachePorts;
180    needsTSO = params->needsTSO;
181
182    resetState();
183}
184
185
186template<class Impl>
187void
188LSQUnit<Impl>::resetState()
189{
190    loads = stores = storesToWB = 0;
191
192    loadHead = loadTail = 0;
193
194    storeHead = storeWBIdx = storeTail = 0;
195
196    usedPorts = 0;
197
198    retryPkt = NULL;
199    memDepViolator = NULL;
200
201    stalled = false;
202
203    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
204}
205
206template<class Impl>
207std::string
208LSQUnit<Impl>::name() const
209{
210    if (Impl::MaxThreads == 1) {
211        return iewStage->name() + ".lsq";
212    } else {
213        return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
214    }
215}
216
217template<class Impl>
218void
219LSQUnit<Impl>::regStats()
220{
221    lsqForwLoads
222        .name(name() + ".forwLoads")
223        .desc("Number of loads that had data forwarded from stores");
224
225    invAddrLoads
226        .name(name() + ".invAddrLoads")
227        .desc("Number of loads ignored due to an invalid address");
228
229    lsqSquashedLoads
230        .name(name() + ".squashedLoads")
231        .desc("Number of loads squashed");
232
233    lsqIgnoredResponses
234        .name(name() + ".ignoredResponses")
235        .desc("Number of memory responses ignored because the instruction is squashed");
236
237    lsqMemOrderViolation
238        .name(name() + ".memOrderViolation")
239        .desc("Number of memory ordering violations");
240
241    lsqSquashedStores
242        .name(name() + ".squashedStores")
243        .desc("Number of stores squashed");
244
245    invAddrSwpfs
246        .name(name() + ".invAddrSwpfs")
247        .desc("Number of software prefetches ignored due to an invalid address");
248
249    lsqBlockedLoads
250        .name(name() + ".blockedLoads")
251        .desc("Number of blocked loads due to partial load-store forwarding");
252
253    lsqRescheduledLoads
254        .name(name() + ".rescheduledLoads")
255        .desc("Number of loads that were rescheduled");
256
257    lsqCacheBlocked
258        .name(name() + ".cacheBlocked")
259        .desc("Number of times an access to memory failed due to the cache being blocked");
260}
261
262template<class Impl>
263void
264LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
265{
266    dcachePort = dcache_port;
267}
268
269template<class Impl>
270void
271LSQUnit<Impl>::clearLQ()
272{
273    loadQueue.clear();
274}
275
276template<class Impl>
277void
278LSQUnit<Impl>::clearSQ()
279{
280    storeQueue.clear();
281}
282
283template<class Impl>
284void
285LSQUnit<Impl>::drainSanityCheck() const
286{
287    for (int i = 0; i < loadQueue.size(); ++i)
288        assert(!loadQueue[i]);
289
290    assert(storesToWB == 0);
291    assert(!retryPkt);
292}
293
294template<class Impl>
295void
296LSQUnit<Impl>::takeOverFrom()
297{
298    resetState();
299}
300
301template<class Impl>
302void
303LSQUnit<Impl>::resizeLQ(unsigned size)
304{
305    unsigned size_plus_sentinel = size + 1;
306    assert(size_plus_sentinel >= LQEntries);
307
308    if (size_plus_sentinel > LQEntries) {
309        while (size_plus_sentinel > loadQueue.size()) {
310            DynInstPtr dummy;
311            loadQueue.push_back(dummy);
312            LQEntries++;
313        }
314    } else {
315        LQEntries = size_plus_sentinel;
316    }
317
318    assert(LQEntries <= 256);
319}
320
321template<class Impl>
322void
323LSQUnit<Impl>::resizeSQ(unsigned size)
324{
325    unsigned size_plus_sentinel = size + 1;
326    if (size_plus_sentinel > SQEntries) {
327        while (size_plus_sentinel > storeQueue.size()) {
328            SQEntry dummy;
329            storeQueue.push_back(dummy);
330            SQEntries++;
331        }
332    } else {
333        SQEntries = size_plus_sentinel;
334    }
335
336    assert(SQEntries <= 256);
337}
338
339template <class Impl>
340void
341LSQUnit<Impl>::insert(DynInstPtr &inst)
342{
343    assert(inst->isMemRef());
344
345    assert(inst->isLoad() || inst->isStore());
346
347    if (inst->isLoad()) {
348        insertLoad(inst);
349    } else {
350        insertStore(inst);
351    }
352
353    inst->setInLSQ();
354}
355
356template <class Impl>
357void
358LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
359{
360    assert((loadTail + 1) % LQEntries != loadHead);
361    assert(loads < LQEntries);
362
363    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
364            load_inst->pcState(), loadTail, load_inst->seqNum);
365
366    load_inst->lqIdx = loadTail;
367
368    if (stores == 0) {
369        load_inst->sqIdx = -1;
370    } else {
371        load_inst->sqIdx = storeTail;
372    }
373
374    loadQueue[loadTail] = load_inst;
375
376    incrLdIdx(loadTail);
377
378    ++loads;
379}
380
381template <class Impl>
382void
383LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
384{
385    // Make sure it is not full before inserting an instruction.
386    assert((storeTail + 1) % SQEntries != storeHead);
387    assert(stores < SQEntries);
388
389    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
390            store_inst->pcState(), storeTail, store_inst->seqNum);
391
392    store_inst->sqIdx = storeTail;
393    store_inst->lqIdx = loadTail;
394
395    storeQueue[storeTail] = SQEntry(store_inst);
396
397    incrStIdx(storeTail);
398
399    ++stores;
400}
401
402template <class Impl>
403typename Impl::DynInstPtr
404LSQUnit<Impl>::getMemDepViolator()
405{
406    DynInstPtr temp = memDepViolator;
407
408    memDepViolator = NULL;
409
410    return temp;
411}
412
413template <class Impl>
414unsigned
415LSQUnit<Impl>::numFreeLoadEntries()
416{
417        //LQ has an extra dummy entry to differentiate
418        //empty/full conditions. Subtract 1 from the free entries.
419        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
420        return LQEntries - loads - 1;
421}
422
423template <class Impl>
424unsigned
425LSQUnit<Impl>::numFreeStoreEntries()
426{
427        //SQ has an extra dummy entry to differentiate
428        //empty/full conditions. Subtract 1 from the free entries.
429        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
430        return SQEntries - stores - 1;
431
432 }
433
434template <class Impl>
435void
436LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
437{
438    int load_idx = loadHead;
439    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
440
441    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
442    // address. The CPU can speculatively execute a LL operation after a pending
443    // SC operation in the pipeline and that can make the cache monitor the CPU
444    // is connected to valid while it really shouldn't be.
445    for (int x = 0; x < cpu->numContexts(); x++) {
446        ThreadContext *tc = cpu->getContext(x);
447        bool no_squash = cpu->thread[x]->noSquashFromTC;
448        cpu->thread[x]->noSquashFromTC = true;
449        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
450        cpu->thread[x]->noSquashFromTC = no_squash;
451    }
452
453    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
454
455    DynInstPtr ld_inst = loadQueue[load_idx];
456    if (ld_inst) {
457        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
458        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
459
460        // Check that this snoop didn't just invalidate our lock flag
461        if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
462                                        || load_addr_high == invalidate_addr)
463            && ld_inst->memReqFlags & Request::LLSC)
464            TheISA::handleLockedSnoopHit(ld_inst.get());
465    }
466
467    // If this is the only load in the LSQ we don't care
468    if (load_idx == loadTail)
469        return;
470
471    incrLdIdx(load_idx);
472
473    bool force_squash = false;
474
475    while (load_idx != loadTail) {
476        DynInstPtr ld_inst = loadQueue[load_idx];
477
478        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
479            incrLdIdx(load_idx);
480            continue;
481        }
482
483        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
484        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
485
486        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
487                    ld_inst->seqNum, load_addr_low, invalidate_addr);
488
489        if ((load_addr_low == invalidate_addr
490             || load_addr_high == invalidate_addr) || force_squash) {
491            if (needsTSO) {
492                // If we have a TSO system, as all loads must be ordered with
493                // all other loads, this load as well as *all* subsequent loads
494                // need to be squashed to prevent possible load reordering.
495                force_squash = true;
496            }
497            if (ld_inst->possibleLoadViolation() || force_squash) {
498                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
499                        pkt->getAddr(), ld_inst->seqNum);
500
501                // Mark the load for re-execution
502                ld_inst->fault = std::make_shared<ReExec>();
503            } else {
504                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
505                        pkt->getAddr(), ld_inst->seqNum);
506
507                // Make sure that we don't lose a snoop hitting a LOCKED
508                // address since the LOCK* flags don't get updated until
509                // commit.
510                if (ld_inst->memReqFlags & Request::LLSC)
511                    TheISA::handleLockedSnoopHit(ld_inst.get());
512
513                // If a older load checks this and it's true
514                // then we might have missed the snoop
515                // in which case we need to invalidate to be sure
516                ld_inst->hitExternalSnoop(true);
517            }
518        }
519        incrLdIdx(load_idx);
520    }
521    return;
522}
523
524template <class Impl>
525Fault
526LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
527{
528    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
529    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
530
531    /** @todo in theory you only need to check an instruction that has executed
532     * however, there isn't a good way in the pipeline at the moment to check
533     * all instructions that will execute before the store writes back. Thus,
534     * like the implementation that came before it, we're overly conservative.
535     */
536    while (load_idx != loadTail) {
537        DynInstPtr ld_inst = loadQueue[load_idx];
538        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
539            incrLdIdx(load_idx);
540            continue;
541        }
542
543        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
544        Addr ld_eff_addr2 =
545            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
546
547        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
548            if (inst->isLoad()) {
549                // If this load is to the same block as an external snoop
550                // invalidate that we've observed then the load needs to be
551                // squashed as it could have newer data
552                if (ld_inst->hitExternalSnoop()) {
553                    if (!memDepViolator ||
554                            ld_inst->seqNum < memDepViolator->seqNum) {
555                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
556                                "and [sn:%lli] at address %#x\n",
557                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
558                        memDepViolator = ld_inst;
559
560                        ++lsqMemOrderViolation;
561
562                        return std::make_shared<GenericISA::M5PanicFault>(
563                            "Detected fault with inst [sn:%lli] and "
564                            "[sn:%lli] at address %#x\n",
565                            inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
566                    }
567                }
568
569                // Otherwise, mark the load has a possible load violation
570                // and if we see a snoop before it's commited, we need to squash
571                ld_inst->possibleLoadViolation(true);
572                DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
573                        " between instructions [sn:%lli] and [sn:%lli]\n",
574                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
575            } else {
576                // A load/store incorrectly passed this store.
577                // Check if we already have a violator, or if it's newer
578                // squash and refetch.
579                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
580                    break;
581
582                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
583                        "[sn:%lli] at address %#x\n",
584                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
585                memDepViolator = ld_inst;
586
587                ++lsqMemOrderViolation;
588
589                return std::make_shared<GenericISA::M5PanicFault>(
590                    "Detected fault with "
591                    "inst [sn:%lli] and [sn:%lli] at address %#x\n",
592                    inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
593            }
594        }
595
596        incrLdIdx(load_idx);
597    }
598    return NoFault;
599}
600
601
602
603
604template <class Impl>
605Fault
606LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
607{
608    using namespace TheISA;
609    // Execute a specific load.
610    Fault load_fault = NoFault;
611
612    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
613            inst->pcState(), inst->seqNum);
614
615    assert(!inst->isSquashed());
616
617    load_fault = inst->initiateAcc();
618
619    if (inst->isTranslationDelayed() &&
620        load_fault == NoFault)
621        return load_fault;
622
623    // If the instruction faulted or predicated false, then we need to send it
624    // along to commit without the instruction completing.
625    if (load_fault != NoFault || !inst->readPredicate()) {
626        // Send this instruction to commit, also make sure iew stage
627        // realizes there is activity.  Mark it as executed unless it
628        // is a strictly ordered load that needs to hit the head of
629        // commit.
630        if (!inst->readPredicate())
631            inst->forwardOldRegs();
632        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
633                inst->seqNum,
634                (load_fault != NoFault ? "fault" : "predication"));
635        if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
636            inst->isAtCommit()) {
637            inst->setExecuted();
638        }
639        iewStage->instToCommit(inst);
640        iewStage->activityThisCycle();
641    } else {
642        assert(inst->effAddrValid());
643        int load_idx = inst->lqIdx;
644        incrLdIdx(load_idx);
645
646        if (checkLoads)
647            return checkViolations(load_idx, inst);
648    }
649
650    return load_fault;
651}
652
653template <class Impl>
654Fault
655LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
656{
657    using namespace TheISA;
658    // Make sure that a store exists.
659    assert(stores != 0);
660
661    int store_idx = store_inst->sqIdx;
662
663    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
664            store_inst->pcState(), store_inst->seqNum);
665
666    assert(!store_inst->isSquashed());
667
668    // Check the recently completed loads to see if any match this store's
669    // address.  If so, then we have a memory ordering violation.
670    int load_idx = store_inst->lqIdx;
671
672    Fault store_fault = store_inst->initiateAcc();
673
674    if (store_inst->isTranslationDelayed() &&
675        store_fault == NoFault)
676        return store_fault;
677
678    if (!store_inst->readPredicate())
679        store_inst->forwardOldRegs();
680
681    if (storeQueue[store_idx].size == 0) {
682        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
683                store_inst->pcState(), store_inst->seqNum);
684
685        return store_fault;
686    } else if (!store_inst->readPredicate()) {
687        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
688                store_inst->seqNum);
689        return store_fault;
690    }
691
692    assert(store_fault == NoFault);
693
694    if (store_inst->isStoreConditional()) {
695        // Store conditionals need to set themselves as able to
696        // writeback if we haven't had a fault by here.
697        storeQueue[store_idx].canWB = true;
698
699        ++storesToWB;
700    }
701
702    return checkViolations(load_idx, store_inst);
703
704}
705
706template <class Impl>
707void
708LSQUnit<Impl>::commitLoad()
709{
710    assert(loadQueue[loadHead]);
711
712    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
713            loadQueue[loadHead]->pcState());
714
715    loadQueue[loadHead] = NULL;
716
717    incrLdIdx(loadHead);
718
719    --loads;
720}
721
722template <class Impl>
723void
724LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
725{
726    assert(loads == 0 || loadQueue[loadHead]);
727
728    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
729        commitLoad();
730    }
731}
732
733template <class Impl>
734void
735LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
736{
737    assert(stores == 0 || storeQueue[storeHead].inst);
738
739    int store_idx = storeHead;
740
741    while (store_idx != storeTail) {
742        assert(storeQueue[store_idx].inst);
743        // Mark any stores that are now committed and have not yet
744        // been marked as able to write back.
745        if (!storeQueue[store_idx].canWB) {
746            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
747                break;
748            }
749            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
750                    "%s [sn:%lli]\n",
751                    storeQueue[store_idx].inst->pcState(),
752                    storeQueue[store_idx].inst->seqNum);
753
754            storeQueue[store_idx].canWB = true;
755
756            ++storesToWB;
757        }
758
759        incrStIdx(store_idx);
760    }
761}
762
763template <class Impl>
764void
765LSQUnit<Impl>::writebackPendingStore()
766{
767    if (hasPendingPkt) {
768        assert(pendingPkt != NULL);
769
770        // If the cache is blocked, this will store the packet for retry.
771        if (sendStore(pendingPkt)) {
772            storePostSend(pendingPkt);
773        }
774        pendingPkt = NULL;
775        hasPendingPkt = false;
776    }
777}
778
779template <class Impl>
780void
781LSQUnit<Impl>::writebackStores()
782{
783    // First writeback the second packet from any split store that didn't
784    // complete last cycle because there weren't enough cache ports available.
785    if (TheISA::HasUnalignedMemAcc) {
786        writebackPendingStore();
787    }
788
789    while (storesToWB > 0 &&
790           storeWBIdx != storeTail &&
791           storeQueue[storeWBIdx].inst &&
792           storeQueue[storeWBIdx].canWB &&
793           ((!needsTSO) || (!storeInFlight)) &&
794           usedPorts < cachePorts) {
795
796        if (isStoreBlocked) {
797            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
798                    " is blocked!\n");
799            break;
800        }
801
802        // Store didn't write any data so no need to write it back to
803        // memory.
804        if (storeQueue[storeWBIdx].size == 0) {
805            completeStore(storeWBIdx);
806
807            incrStIdx(storeWBIdx);
808
809            continue;
810        }
811
812        ++usedPorts;
813
814        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
815            incrStIdx(storeWBIdx);
816
817            continue;
818        }
819
820        assert(storeQueue[storeWBIdx].req);
821        assert(!storeQueue[storeWBIdx].committed);
822
823        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
824            assert(storeQueue[storeWBIdx].sreqLow);
825            assert(storeQueue[storeWBIdx].sreqHigh);
826        }
827
828        DynInstPtr inst = storeQueue[storeWBIdx].inst;
829
830        Request *req = storeQueue[storeWBIdx].req;
831        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
832        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
833
834        storeQueue[storeWBIdx].committed = true;
835
836        assert(!inst->memData);
837        inst->memData = new uint8_t[req->getSize()];
838
839        if (storeQueue[storeWBIdx].isAllZeros)
840            memset(inst->memData, 0, req->getSize());
841        else
842            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
843
844        PacketPtr data_pkt;
845        PacketPtr snd_data_pkt = NULL;
846
847        LSQSenderState *state = new LSQSenderState;
848        state->isLoad = false;
849        state->idx = storeWBIdx;
850        state->inst = inst;
851
852        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
853
854            // Build a single data packet if the store isn't split.
855            data_pkt = Packet::createWrite(req);
856            data_pkt->dataStatic(inst->memData);
857            data_pkt->senderState = state;
858        } else {
859            // Create two packets if the store is split in two.
860            data_pkt = Packet::createWrite(sreqLow);
861            snd_data_pkt = Packet::createWrite(sreqHigh);
862
863            data_pkt->dataStatic(inst->memData);
864            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
865
866            data_pkt->senderState = state;
867            snd_data_pkt->senderState = state;
868
869            state->isSplit = true;
870            state->outstanding = 2;
871
872            // Can delete the main request now.
873            delete req;
874            req = sreqLow;
875        }
876
877        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
878                "to Addr:%#x, data:%#x [sn:%lli]\n",
879                storeWBIdx, inst->pcState(),
880                req->getPaddr(), (int)*(inst->memData),
881                inst->seqNum);
882
883        // @todo: Remove this SC hack once the memory system handles it.
884        if (inst->isStoreConditional()) {
885            assert(!storeQueue[storeWBIdx].isSplit);
886            // Disable recording the result temporarily.  Writing to
887            // misc regs normally updates the result, but this is not
888            // the desired behavior when handling store conditionals.
889            inst->recordResult(false);
890            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
891            inst->recordResult(true);
892
893            if (!success) {
894                // Instantly complete this store.
895                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
896                        "Instantly completing it.\n",
897                        inst->seqNum);
898                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
899                cpu->schedule(wb, curTick() + 1);
900                if (cpu->checker) {
901                    // Make sure to set the LLSC data for verification
902                    // if checker is loaded
903                    inst->reqToVerify->setExtraData(0);
904                    inst->completeAcc(data_pkt);
905                }
906                completeStore(storeWBIdx);
907                incrStIdx(storeWBIdx);
908                continue;
909            }
910        } else {
911            // Non-store conditionals do not need a writeback.
912            state->noWB = true;
913        }
914
915        bool split =
916            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
917
918        ThreadContext *thread = cpu->tcBase(lsqID);
919
920        if (req->isMmappedIpr()) {
921            assert(!inst->isStoreConditional());
922            TheISA::handleIprWrite(thread, data_pkt);
923            delete data_pkt;
924            if (split) {
925                assert(snd_data_pkt->req->isMmappedIpr());
926                TheISA::handleIprWrite(thread, snd_data_pkt);
927                delete snd_data_pkt;
928                delete sreqLow;
929                delete sreqHigh;
930            }
931            delete state;
932            delete req;
933            completeStore(storeWBIdx);
934            incrStIdx(storeWBIdx);
935        } else if (!sendStore(data_pkt)) {
936            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
937                    "retry later\n",
938                    inst->seqNum);
939
940            // Need to store the second packet, if split.
941            if (split) {
942                state->pktToSend = true;
943                state->pendingPacket = snd_data_pkt;
944            }
945        } else {
946
947            // If split, try to send the second packet too
948            if (split) {
949                assert(snd_data_pkt);
950
951                // Ensure there are enough ports to use.
952                if (usedPorts < cachePorts) {
953                    ++usedPorts;
954                    if (sendStore(snd_data_pkt)) {
955                        storePostSend(snd_data_pkt);
956                    } else {
957                        DPRINTF(IEW, "D-Cache became blocked when writing"
958                                " [sn:%lli] second packet, will retry later\n",
959                                inst->seqNum);
960                    }
961                } else {
962
963                    // Store the packet for when there's free ports.
964                    assert(pendingPkt == NULL);
965                    pendingPkt = snd_data_pkt;
966                    hasPendingPkt = true;
967                }
968            } else {
969
970                // Not a split store.
971                storePostSend(data_pkt);
972            }
973        }
974    }
975
976    // Not sure this should set it to 0.
977    usedPorts = 0;
978
979    assert(stores >= 0 && storesToWB >= 0);
980}
981
982/*template <class Impl>
983void
984LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
985{
986    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
987                                              mshrSeqNums.end(),
988                                              seqNum);
989
990    if (mshr_it != mshrSeqNums.end()) {
991        mshrSeqNums.erase(mshr_it);
992        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
993    }
994}*/
995
996template <class Impl>
997void
998LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
999{
1000    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
1001            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1002
1003    int load_idx = loadTail;
1004    decrLdIdx(load_idx);
1005
1006    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1007        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1008                "[sn:%lli]\n",
1009                loadQueue[load_idx]->pcState(),
1010                loadQueue[load_idx]->seqNum);
1011
1012        if (isStalled() && load_idx == stallingLoadIdx) {
1013            stalled = false;
1014            stallingStoreIsn = 0;
1015            stallingLoadIdx = 0;
1016        }
1017
1018        // Clear the smart pointer to make sure it is decremented.
1019        loadQueue[load_idx]->setSquashed();
1020        loadQueue[load_idx] = NULL;
1021        --loads;
1022
1023        // Inefficient!
1024        loadTail = load_idx;
1025
1026        decrLdIdx(load_idx);
1027        ++lsqSquashedLoads;
1028    }
1029
1030    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1031        memDepViolator = NULL;
1032    }
1033
1034    int store_idx = storeTail;
1035    decrStIdx(store_idx);
1036
1037    while (stores != 0 &&
1038           storeQueue[store_idx].inst->seqNum > squashed_num) {
1039        // Instructions marked as can WB are already committed.
1040        if (storeQueue[store_idx].canWB) {
1041            break;
1042        }
1043
1044        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1045                "idx:%i [sn:%lli]\n",
1046                storeQueue[store_idx].inst->pcState(),
1047                store_idx, storeQueue[store_idx].inst->seqNum);
1048
1049        // I don't think this can happen.  It should have been cleared
1050        // by the stalling load.
1051        if (isStalled() &&
1052            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1053            panic("Is stalled should have been cleared by stalling load!\n");
1054            stalled = false;
1055            stallingStoreIsn = 0;
1056        }
1057
1058        // Clear the smart pointer to make sure it is decremented.
1059        storeQueue[store_idx].inst->setSquashed();
1060        storeQueue[store_idx].inst = NULL;
1061        storeQueue[store_idx].canWB = 0;
1062
1063        // Must delete request now that it wasn't handed off to
1064        // memory.  This is quite ugly.  @todo: Figure out the proper
1065        // place to really handle request deletes.
1066        delete storeQueue[store_idx].req;
1067        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1068            delete storeQueue[store_idx].sreqLow;
1069            delete storeQueue[store_idx].sreqHigh;
1070
1071            storeQueue[store_idx].sreqLow = NULL;
1072            storeQueue[store_idx].sreqHigh = NULL;
1073        }
1074
1075        storeQueue[store_idx].req = NULL;
1076        --stores;
1077
1078        // Inefficient!
1079        storeTail = store_idx;
1080
1081        decrStIdx(store_idx);
1082        ++lsqSquashedStores;
1083    }
1084}
1085
1086template <class Impl>
1087void
1088LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1089{
1090    if (isStalled() &&
1091        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1092        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1093                "load idx:%i\n",
1094                stallingStoreIsn, stallingLoadIdx);
1095        stalled = false;
1096        stallingStoreIsn = 0;
1097        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1098    }
1099
1100    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1101        // The store is basically completed at this time. This
1102        // only works so long as the checker doesn't try to
1103        // verify the value in memory for stores.
1104        storeQueue[storeWBIdx].inst->setCompleted();
1105
1106        if (cpu->checker) {
1107            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1108        }
1109    }
1110
1111    if (needsTSO) {
1112        storeInFlight = true;
1113    }
1114
1115    incrStIdx(storeWBIdx);
1116}
1117
1118template <class Impl>
1119void
1120LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1121{
1122    iewStage->wakeCPU();
1123
1124    // Squashed instructions do not need to complete their access.
1125    if (inst->isSquashed()) {
1126        assert(!inst->isStore());
1127        ++lsqIgnoredResponses;
1128        return;
1129    }
1130
1131    if (!inst->isExecuted()) {
1132        inst->setExecuted();
1133
1134        if (inst->fault == NoFault) {
1135            // Complete access to copy data to proper place.
1136            inst->completeAcc(pkt);
1137        } else {
1138            // If the instruction has an outstanding fault, we cannot complete
1139            // the access as this discards the current fault.
1140
1141            // If we have an outstanding fault, the fault should only be of
1142            // type ReExec.
1143            assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1144
1145            DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1146                    "due to pending fault.\n", inst->seqNum);
1147        }
1148    }
1149
1150    // Need to insert instruction into queue to commit
1151    iewStage->instToCommit(inst);
1152
1153    iewStage->activityThisCycle();
1154
1155    // see if this load changed the PC
1156    iewStage->checkMisprediction(inst);
1157}
1158
1159template <class Impl>
1160void
1161LSQUnit<Impl>::completeStore(int store_idx)
1162{
1163    assert(storeQueue[store_idx].inst);
1164    storeQueue[store_idx].completed = true;
1165    --storesToWB;
1166    // A bit conservative because a store completion may not free up entries,
1167    // but hopefully avoids two store completions in one cycle from making
1168    // the CPU tick twice.
1169    cpu->wakeCPU();
1170    cpu->activityThisCycle();
1171
1172    if (store_idx == storeHead) {
1173        do {
1174            incrStIdx(storeHead);
1175
1176            --stores;
1177        } while (storeQueue[storeHead].completed &&
1178                 storeHead != storeTail);
1179
1180        iewStage->updateLSQNextCycle = true;
1181    }
1182
1183    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1184            "idx:%i\n",
1185            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1186
1187#if TRACING_ON
1188    if (DTRACE(O3PipeView)) {
1189        storeQueue[store_idx].inst->storeTick =
1190            curTick() - storeQueue[store_idx].inst->fetchTick;
1191    }
1192#endif
1193
1194    if (isStalled() &&
1195        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1196        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1197                "load idx:%i\n",
1198                stallingStoreIsn, stallingLoadIdx);
1199        stalled = false;
1200        stallingStoreIsn = 0;
1201        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1202    }
1203
1204    storeQueue[store_idx].inst->setCompleted();
1205
1206    if (needsTSO) {
1207        storeInFlight = false;
1208    }
1209
1210    // Tell the checker we've completed this instruction.  Some stores
1211    // may get reported twice to the checker, but the checker can
1212    // handle that case.
1213    if (cpu->checker) {
1214        cpu->checker->verify(storeQueue[store_idx].inst);
1215    }
1216}
1217
1218template <class Impl>
1219bool
1220LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1221{
1222    if (!dcachePort->sendTimingReq(data_pkt)) {
1223        // Need to handle becoming blocked on a store.
1224        isStoreBlocked = true;
1225        ++lsqCacheBlocked;
1226        assert(retryPkt == NULL);
1227        retryPkt = data_pkt;
1228        return false;
1229    }
1230    return true;
1231}
1232
1233template <class Impl>
1234void
1235LSQUnit<Impl>::recvRetry()
1236{
1237    if (isStoreBlocked) {
1238        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1239        assert(retryPkt != NULL);
1240
1241        LSQSenderState *state =
1242            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1243
1244        if (dcachePort->sendTimingReq(retryPkt)) {
1245            // Don't finish the store unless this is the last packet.
1246            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1247                    state->pendingPacket == retryPkt) {
1248                state->pktToSend = false;
1249                storePostSend(retryPkt);
1250            }
1251            retryPkt = NULL;
1252            isStoreBlocked = false;
1253
1254            // Send any outstanding packet.
1255            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1256                assert(state->pendingPacket);
1257                if (sendStore(state->pendingPacket)) {
1258                    storePostSend(state->pendingPacket);
1259                }
1260            }
1261        } else {
1262            // Still blocked!
1263            ++lsqCacheBlocked;
1264        }
1265    }
1266}
1267
1268template <class Impl>
1269inline void
1270LSQUnit<Impl>::incrStIdx(int &store_idx) const
1271{
1272    if (++store_idx >= SQEntries)
1273        store_idx = 0;
1274}
1275
1276template <class Impl>
1277inline void
1278LSQUnit<Impl>::decrStIdx(int &store_idx) const
1279{
1280    if (--store_idx < 0)
1281        store_idx += SQEntries;
1282}
1283
1284template <class Impl>
1285inline void
1286LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1287{
1288    if (++load_idx >= LQEntries)
1289        load_idx = 0;
1290}
1291
1292template <class Impl>
1293inline void
1294LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1295{
1296    if (--load_idx < 0)
1297        load_idx += LQEntries;
1298}
1299
1300template <class Impl>
1301void
1302LSQUnit<Impl>::dumpInsts() const
1303{
1304    cprintf("Load store queue: Dumping instructions.\n");
1305    cprintf("Load queue size: %i\n", loads);
1306    cprintf("Load queue: ");
1307
1308    int load_idx = loadHead;
1309
1310    while (load_idx != loadTail && loadQueue[load_idx]) {
1311        const DynInstPtr &inst(loadQueue[load_idx]);
1312        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1313
1314        incrLdIdx(load_idx);
1315    }
1316    cprintf("\n");
1317
1318    cprintf("Store queue size: %i\n", stores);
1319    cprintf("Store queue: ");
1320
1321    int store_idx = storeHead;
1322
1323    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1324        const DynInstPtr &inst(storeQueue[store_idx].inst);
1325        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1326
1327        incrStIdx(store_idx);
1328    }
1329
1330    cprintf("\n");
1331}
1332
1333#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1334