lsq_unit_impl.hh revision 10023:91faf6649de0
1
2/*
3 * Copyright (c) 2010-2012 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
46#define __CPU_O3_LSQ_UNIT_IMPL_HH__
47
48#include "arch/generic/debugfaults.hh"
49#include "arch/locked_mem.hh"
50#include "base/str.hh"
51#include "config/the_isa.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/o3/lsq.hh"
54#include "cpu/o3/lsq_unit.hh"
55#include "debug/Activity.hh"
56#include "debug/IEW.hh"
57#include "debug/LSQUnit.hh"
58#include "debug/O3PipeView.hh"
59#include "mem/packet.hh"
60#include "mem/request.hh"
61
62template<class Impl>
63LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
64                                              LSQUnit *lsq_ptr)
65    : Event(Default_Pri, AutoDelete),
66      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
67{
68}
69
70template<class Impl>
71void
72LSQUnit<Impl>::WritebackEvent::process()
73{
74    assert(!lsqPtr->cpu->switchedOut());
75
76    lsqPtr->writeback(inst, pkt);
77
78    if (pkt->senderState)
79        delete pkt->senderState;
80
81    delete pkt->req;
82    delete pkt;
83}
84
85template<class Impl>
86const char *
87LSQUnit<Impl>::WritebackEvent::description() const
88{
89    return "Store writeback";
90}
91
92template<class Impl>
93void
94LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95{
96    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97    DynInstPtr inst = state->inst;
98    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
102
103    // If this is a split access, wait until all packets are received.
104    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105        delete pkt->req;
106        delete pkt;
107        return;
108    }
109
110    assert(!cpu->switchedOut());
111    if (inst->isSquashed()) {
112        iewStage->decrWb(inst->seqNum);
113    } else {
114        if (!state->noWB) {
115            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
116                !state->isLoad) {
117                writeback(inst, pkt);
118            } else {
119                writeback(inst, state->mainPkt);
120            }
121        }
122
123        if (inst->isStore()) {
124            completeStore(state->idx);
125        }
126    }
127
128    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
129        delete state->mainPkt->req;
130        delete state->mainPkt;
131    }
132
133    pkt->req->setAccessLatency();
134    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
135
136    delete state;
137    delete pkt->req;
138    delete pkt;
139}
140
141template <class Impl>
142LSQUnit<Impl>::LSQUnit()
143    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
144      isStoreBlocked(false), isLoadBlocked(false),
145      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
146{
147}
148
149template<class Impl>
150void
151LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
152        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
153        unsigned id)
154{
155    cpu = cpu_ptr;
156    iewStage = iew_ptr;
157
158    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
159
160    lsq = lsq_ptr;
161
162    lsqID = id;
163
164    // Add 1 for the sentinel entry (they are circular queues).
165    LQEntries = maxLQEntries + 1;
166    SQEntries = maxSQEntries + 1;
167
168    //Due to uint8_t index in LSQSenderState
169    assert(LQEntries <= 256);
170    assert(SQEntries <= 256);
171
172    loadQueue.resize(LQEntries);
173    storeQueue.resize(SQEntries);
174
175    depCheckShift = params->LSQDepCheckShift;
176    checkLoads = params->LSQCheckLoads;
177    cachePorts = params->cachePorts;
178    needsTSO = params->needsTSO;
179
180    resetState();
181}
182
183
184template<class Impl>
185void
186LSQUnit<Impl>::resetState()
187{
188    loads = stores = storesToWB = 0;
189
190    loadHead = loadTail = 0;
191
192    storeHead = storeWBIdx = storeTail = 0;
193
194    usedPorts = 0;
195
196    retryPkt = NULL;
197    memDepViolator = NULL;
198
199    blockedLoadSeqNum = 0;
200
201    stalled = false;
202    isLoadBlocked = false;
203    loadBlockedHandled = false;
204
205    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
206}
207
208template<class Impl>
209std::string
210LSQUnit<Impl>::name() const
211{
212    if (Impl::MaxThreads == 1) {
213        return iewStage->name() + ".lsq";
214    } else {
215        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
216    }
217}
218
219template<class Impl>
220void
221LSQUnit<Impl>::regStats()
222{
223    lsqForwLoads
224        .name(name() + ".forwLoads")
225        .desc("Number of loads that had data forwarded from stores");
226
227    invAddrLoads
228        .name(name() + ".invAddrLoads")
229        .desc("Number of loads ignored due to an invalid address");
230
231    lsqSquashedLoads
232        .name(name() + ".squashedLoads")
233        .desc("Number of loads squashed");
234
235    lsqIgnoredResponses
236        .name(name() + ".ignoredResponses")
237        .desc("Number of memory responses ignored because the instruction is squashed");
238
239    lsqMemOrderViolation
240        .name(name() + ".memOrderViolation")
241        .desc("Number of memory ordering violations");
242
243    lsqSquashedStores
244        .name(name() + ".squashedStores")
245        .desc("Number of stores squashed");
246
247    invAddrSwpfs
248        .name(name() + ".invAddrSwpfs")
249        .desc("Number of software prefetches ignored due to an invalid address");
250
251    lsqBlockedLoads
252        .name(name() + ".blockedLoads")
253        .desc("Number of blocked loads due to partial load-store forwarding");
254
255    lsqRescheduledLoads
256        .name(name() + ".rescheduledLoads")
257        .desc("Number of loads that were rescheduled");
258
259    lsqCacheBlocked
260        .name(name() + ".cacheBlocked")
261        .desc("Number of times an access to memory failed due to the cache being blocked");
262}
263
264template<class Impl>
265void
266LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
267{
268    dcachePort = dcache_port;
269}
270
271template<class Impl>
272void
273LSQUnit<Impl>::clearLQ()
274{
275    loadQueue.clear();
276}
277
278template<class Impl>
279void
280LSQUnit<Impl>::clearSQ()
281{
282    storeQueue.clear();
283}
284
285template<class Impl>
286void
287LSQUnit<Impl>::drainSanityCheck() const
288{
289    for (int i = 0; i < loadQueue.size(); ++i)
290        assert(!loadQueue[i]);
291
292    assert(storesToWB == 0);
293    assert(!retryPkt);
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::takeOverFrom()
299{
300    resetState();
301}
302
303template<class Impl>
304void
305LSQUnit<Impl>::resizeLQ(unsigned size)
306{
307    unsigned size_plus_sentinel = size + 1;
308    assert(size_plus_sentinel >= LQEntries);
309
310    if (size_plus_sentinel > LQEntries) {
311        while (size_plus_sentinel > loadQueue.size()) {
312            DynInstPtr dummy;
313            loadQueue.push_back(dummy);
314            LQEntries++;
315        }
316    } else {
317        LQEntries = size_plus_sentinel;
318    }
319
320    assert(LQEntries <= 256);
321}
322
323template<class Impl>
324void
325LSQUnit<Impl>::resizeSQ(unsigned size)
326{
327    unsigned size_plus_sentinel = size + 1;
328    if (size_plus_sentinel > SQEntries) {
329        while (size_plus_sentinel > storeQueue.size()) {
330            SQEntry dummy;
331            storeQueue.push_back(dummy);
332            SQEntries++;
333        }
334    } else {
335        SQEntries = size_plus_sentinel;
336    }
337
338    assert(SQEntries <= 256);
339}
340
341template <class Impl>
342void
343LSQUnit<Impl>::insert(DynInstPtr &inst)
344{
345    assert(inst->isMemRef());
346
347    assert(inst->isLoad() || inst->isStore());
348
349    if (inst->isLoad()) {
350        insertLoad(inst);
351    } else {
352        insertStore(inst);
353    }
354
355    inst->setInLSQ();
356}
357
358template <class Impl>
359void
360LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
361{
362    assert((loadTail + 1) % LQEntries != loadHead);
363    assert(loads < LQEntries);
364
365    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
366            load_inst->pcState(), loadTail, load_inst->seqNum);
367
368    load_inst->lqIdx = loadTail;
369
370    if (stores == 0) {
371        load_inst->sqIdx = -1;
372    } else {
373        load_inst->sqIdx = storeTail;
374    }
375
376    loadQueue[loadTail] = load_inst;
377
378    incrLdIdx(loadTail);
379
380    ++loads;
381}
382
383template <class Impl>
384void
385LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
386{
387    // Make sure it is not full before inserting an instruction.
388    assert((storeTail + 1) % SQEntries != storeHead);
389    assert(stores < SQEntries);
390
391    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
392            store_inst->pcState(), storeTail, store_inst->seqNum);
393
394    store_inst->sqIdx = storeTail;
395    store_inst->lqIdx = loadTail;
396
397    storeQueue[storeTail] = SQEntry(store_inst);
398
399    incrStIdx(storeTail);
400
401    ++stores;
402}
403
404template <class Impl>
405typename Impl::DynInstPtr
406LSQUnit<Impl>::getMemDepViolator()
407{
408    DynInstPtr temp = memDepViolator;
409
410    memDepViolator = NULL;
411
412    return temp;
413}
414
415template <class Impl>
416unsigned
417LSQUnit<Impl>::numFreeEntries()
418{
419    unsigned free_lq_entries = LQEntries - loads;
420    unsigned free_sq_entries = SQEntries - stores;
421
422    // Both the LQ and SQ entries have an extra dummy entry to differentiate
423    // empty/full conditions.  Subtract 1 from the free entries.
424    if (free_lq_entries < free_sq_entries) {
425        return free_lq_entries - 1;
426    } else {
427        return free_sq_entries - 1;
428    }
429}
430
431template <class Impl>
432void
433LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
434{
435    int load_idx = loadHead;
436
437    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
438    // address. The CPU can speculatively execute a LL operation after a pending
439    // SC operation in the pipeline and that can make the cache monitor the CPU
440    // is connected to valid while it really shouldn't be.
441    for (int x = 0; x < cpu->numActiveThreads(); x++) {
442        ThreadContext *tc = cpu->getContext(x);
443        bool no_squash = cpu->thread[x]->noSquashFromTC;
444        cpu->thread[x]->noSquashFromTC = true;
445        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
446        cpu->thread[x]->noSquashFromTC = no_squash;
447    }
448
449    // If this is the only load in the LSQ we don't care
450    if (load_idx == loadTail)
451        return;
452    incrLdIdx(load_idx);
453
454    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
455    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
456    while (load_idx != loadTail) {
457        DynInstPtr ld_inst = loadQueue[load_idx];
458
459        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
460            incrLdIdx(load_idx);
461            continue;
462        }
463
464        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
465        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
466                    ld_inst->seqNum, load_addr, invalidate_addr);
467
468        if (load_addr == invalidate_addr) {
469            if (ld_inst->possibleLoadViolation()) {
470                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
471                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
472
473                // Mark the load for re-execution
474                ld_inst->fault = new ReExec;
475            } else {
476                // If a older load checks this and it's true
477                // then we might have missed the snoop
478                // in which case we need to invalidate to be sure
479                ld_inst->hitExternalSnoop(true);
480            }
481        }
482        incrLdIdx(load_idx);
483    }
484    return;
485}
486
487template <class Impl>
488Fault
489LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
490{
491    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
492    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
493
494    /** @todo in theory you only need to check an instruction that has executed
495     * however, there isn't a good way in the pipeline at the moment to check
496     * all instructions that will execute before the store writes back. Thus,
497     * like the implementation that came before it, we're overly conservative.
498     */
499    while (load_idx != loadTail) {
500        DynInstPtr ld_inst = loadQueue[load_idx];
501        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
502            incrLdIdx(load_idx);
503            continue;
504        }
505
506        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
507        Addr ld_eff_addr2 =
508            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
509
510        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
511            if (inst->isLoad()) {
512                // If this load is to the same block as an external snoop
513                // invalidate that we've observed then the load needs to be
514                // squashed as it could have newer data
515                if (ld_inst->hitExternalSnoop()) {
516                    if (!memDepViolator ||
517                            ld_inst->seqNum < memDepViolator->seqNum) {
518                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
519                                "and [sn:%lli] at address %#x\n",
520                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
521                        memDepViolator = ld_inst;
522
523                        ++lsqMemOrderViolation;
524
525                        return new GenericISA::M5PanicFault(
526                                "Detected fault with inst [sn:%lli] and "
527                                "[sn:%lli] at address %#x\n",
528                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
529                    }
530                }
531
532                // Otherwise, mark the load has a possible load violation
533                // and if we see a snoop before it's commited, we need to squash
534                ld_inst->possibleLoadViolation(true);
535                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
536                        " between instructions [sn:%lli] and [sn:%lli]\n",
537                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
538            } else {
539                // A load/store incorrectly passed this store.
540                // Check if we already have a violator, or if it's newer
541                // squash and refetch.
542                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
543                    break;
544
545                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
546                        "[sn:%lli] at address %#x\n",
547                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
548                memDepViolator = ld_inst;
549
550                ++lsqMemOrderViolation;
551
552                return new GenericISA::M5PanicFault("Detected fault with "
553                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
554                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
555            }
556        }
557
558        incrLdIdx(load_idx);
559    }
560    return NoFault;
561}
562
563
564
565
566template <class Impl>
567Fault
568LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
569{
570    using namespace TheISA;
571    // Execute a specific load.
572    Fault load_fault = NoFault;
573
574    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
575            inst->pcState(), inst->seqNum);
576
577    assert(!inst->isSquashed());
578
579    load_fault = inst->initiateAcc();
580
581    if (inst->isTranslationDelayed() &&
582        load_fault == NoFault)
583        return load_fault;
584
585    // If the instruction faulted or predicated false, then we need to send it
586    // along to commit without the instruction completing.
587    if (load_fault != NoFault || inst->readPredicate() == false) {
588        // Send this instruction to commit, also make sure iew stage
589        // realizes there is activity.
590        // Mark it as executed unless it is an uncached load that
591        // needs to hit the head of commit.
592        if (inst->readPredicate() == false)
593            inst->forwardOldRegs();
594        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
595                inst->seqNum,
596                (load_fault != NoFault ? "fault" : "predication"));
597        if (!(inst->hasRequest() && inst->uncacheable()) ||
598            inst->isAtCommit()) {
599            inst->setExecuted();
600        }
601        iewStage->instToCommit(inst);
602        iewStage->activityThisCycle();
603    } else if (!loadBlocked()) {
604        assert(inst->effAddrValid());
605        int load_idx = inst->lqIdx;
606        incrLdIdx(load_idx);
607
608        if (checkLoads)
609            return checkViolations(load_idx, inst);
610    }
611
612    return load_fault;
613}
614
615template <class Impl>
616Fault
617LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
618{
619    using namespace TheISA;
620    // Make sure that a store exists.
621    assert(stores != 0);
622
623    int store_idx = store_inst->sqIdx;
624
625    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
626            store_inst->pcState(), store_inst->seqNum);
627
628    assert(!store_inst->isSquashed());
629
630    // Check the recently completed loads to see if any match this store's
631    // address.  If so, then we have a memory ordering violation.
632    int load_idx = store_inst->lqIdx;
633
634    Fault store_fault = store_inst->initiateAcc();
635
636    if (store_inst->isTranslationDelayed() &&
637        store_fault == NoFault)
638        return store_fault;
639
640    if (store_inst->readPredicate() == false)
641        store_inst->forwardOldRegs();
642
643    if (storeQueue[store_idx].size == 0) {
644        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
645                store_inst->pcState(), store_inst->seqNum);
646
647        return store_fault;
648    } else if (store_inst->readPredicate() == false) {
649        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
650                store_inst->seqNum);
651        return store_fault;
652    }
653
654    assert(store_fault == NoFault);
655
656    if (store_inst->isStoreConditional()) {
657        // Store conditionals need to set themselves as able to
658        // writeback if we haven't had a fault by here.
659        storeQueue[store_idx].canWB = true;
660
661        ++storesToWB;
662    }
663
664    return checkViolations(load_idx, store_inst);
665
666}
667
668template <class Impl>
669void
670LSQUnit<Impl>::commitLoad()
671{
672    assert(loadQueue[loadHead]);
673
674    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
675            loadQueue[loadHead]->pcState());
676
677    loadQueue[loadHead] = NULL;
678
679    incrLdIdx(loadHead);
680
681    --loads;
682}
683
684template <class Impl>
685void
686LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
687{
688    assert(loads == 0 || loadQueue[loadHead]);
689
690    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
691        commitLoad();
692    }
693}
694
695template <class Impl>
696void
697LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
698{
699    assert(stores == 0 || storeQueue[storeHead].inst);
700
701    int store_idx = storeHead;
702
703    while (store_idx != storeTail) {
704        assert(storeQueue[store_idx].inst);
705        // Mark any stores that are now committed and have not yet
706        // been marked as able to write back.
707        if (!storeQueue[store_idx].canWB) {
708            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
709                break;
710            }
711            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
712                    "%s [sn:%lli]\n",
713                    storeQueue[store_idx].inst->pcState(),
714                    storeQueue[store_idx].inst->seqNum);
715
716            storeQueue[store_idx].canWB = true;
717
718            ++storesToWB;
719        }
720
721        incrStIdx(store_idx);
722    }
723}
724
725template <class Impl>
726void
727LSQUnit<Impl>::writebackPendingStore()
728{
729    if (hasPendingPkt) {
730        assert(pendingPkt != NULL);
731
732        // If the cache is blocked, this will store the packet for retry.
733        if (sendStore(pendingPkt)) {
734            storePostSend(pendingPkt);
735        }
736        pendingPkt = NULL;
737        hasPendingPkt = false;
738    }
739}
740
741template <class Impl>
742void
743LSQUnit<Impl>::writebackStores()
744{
745    // First writeback the second packet from any split store that didn't
746    // complete last cycle because there weren't enough cache ports available.
747    if (TheISA::HasUnalignedMemAcc) {
748        writebackPendingStore();
749    }
750
751    while (storesToWB > 0 &&
752           storeWBIdx != storeTail &&
753           storeQueue[storeWBIdx].inst &&
754           storeQueue[storeWBIdx].canWB &&
755           ((!needsTSO) || (!storeInFlight)) &&
756           usedPorts < cachePorts) {
757
758        if (isStoreBlocked || lsq->cacheBlocked()) {
759            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
760                    " is blocked!\n");
761            break;
762        }
763
764        // Store didn't write any data so no need to write it back to
765        // memory.
766        if (storeQueue[storeWBIdx].size == 0) {
767            completeStore(storeWBIdx);
768
769            incrStIdx(storeWBIdx);
770
771            continue;
772        }
773
774        ++usedPorts;
775
776        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
777            incrStIdx(storeWBIdx);
778
779            continue;
780        }
781
782        assert(storeQueue[storeWBIdx].req);
783        assert(!storeQueue[storeWBIdx].committed);
784
785        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
786            assert(storeQueue[storeWBIdx].sreqLow);
787            assert(storeQueue[storeWBIdx].sreqHigh);
788        }
789
790        DynInstPtr inst = storeQueue[storeWBIdx].inst;
791
792        Request *req = storeQueue[storeWBIdx].req;
793        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
794        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
795
796        storeQueue[storeWBIdx].committed = true;
797
798        assert(!inst->memData);
799        inst->memData = new uint8_t[64];
800
801        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
802
803        MemCmd command =
804            req->isSwap() ? MemCmd::SwapReq :
805            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
806        PacketPtr data_pkt;
807        PacketPtr snd_data_pkt = NULL;
808
809        LSQSenderState *state = new LSQSenderState;
810        state->isLoad = false;
811        state->idx = storeWBIdx;
812        state->inst = inst;
813
814        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
815
816            // Build a single data packet if the store isn't split.
817            data_pkt = new Packet(req, command);
818            data_pkt->dataStatic(inst->memData);
819            data_pkt->senderState = state;
820        } else {
821            // Create two packets if the store is split in two.
822            data_pkt = new Packet(sreqLow, command);
823            snd_data_pkt = new Packet(sreqHigh, command);
824
825            data_pkt->dataStatic(inst->memData);
826            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
827
828            data_pkt->senderState = state;
829            snd_data_pkt->senderState = state;
830
831            state->isSplit = true;
832            state->outstanding = 2;
833
834            // Can delete the main request now.
835            delete req;
836            req = sreqLow;
837        }
838
839        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
840                "to Addr:%#x, data:%#x [sn:%lli]\n",
841                storeWBIdx, inst->pcState(),
842                req->getPaddr(), (int)*(inst->memData),
843                inst->seqNum);
844
845        // @todo: Remove this SC hack once the memory system handles it.
846        if (inst->isStoreConditional()) {
847            assert(!storeQueue[storeWBIdx].isSplit);
848            // Disable recording the result temporarily.  Writing to
849            // misc regs normally updates the result, but this is not
850            // the desired behavior when handling store conditionals.
851            inst->recordResult(false);
852            bool success = TheISA::handleLockedWrite(inst.get(), req);
853            inst->recordResult(true);
854
855            if (!success) {
856                // Instantly complete this store.
857                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
858                        "Instantly completing it.\n",
859                        inst->seqNum);
860                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
861                cpu->schedule(wb, curTick() + 1);
862                if (cpu->checker) {
863                    // Make sure to set the LLSC data for verification
864                    // if checker is loaded
865                    inst->reqToVerify->setExtraData(0);
866                    inst->completeAcc(data_pkt);
867                }
868                completeStore(storeWBIdx);
869                incrStIdx(storeWBIdx);
870                continue;
871            }
872        } else {
873            // Non-store conditionals do not need a writeback.
874            state->noWB = true;
875        }
876
877        bool split =
878            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
879
880        ThreadContext *thread = cpu->tcBase(lsqID);
881
882        if (req->isMmappedIpr()) {
883            assert(!inst->isStoreConditional());
884            TheISA::handleIprWrite(thread, data_pkt);
885            delete data_pkt;
886            if (split) {
887                assert(snd_data_pkt->req->isMmappedIpr());
888                TheISA::handleIprWrite(thread, snd_data_pkt);
889                delete snd_data_pkt;
890                delete sreqLow;
891                delete sreqHigh;
892            }
893            delete state;
894            delete req;
895            completeStore(storeWBIdx);
896            incrStIdx(storeWBIdx);
897        } else if (!sendStore(data_pkt)) {
898            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
899                    "retry later\n",
900                    inst->seqNum);
901
902            // Need to store the second packet, if split.
903            if (split) {
904                state->pktToSend = true;
905                state->pendingPacket = snd_data_pkt;
906            }
907        } else {
908
909            // If split, try to send the second packet too
910            if (split) {
911                assert(snd_data_pkt);
912
913                // Ensure there are enough ports to use.
914                if (usedPorts < cachePorts) {
915                    ++usedPorts;
916                    if (sendStore(snd_data_pkt)) {
917                        storePostSend(snd_data_pkt);
918                    } else {
919                        DPRINTF(IEW, "D-Cache became blocked when writing"
920                                " [sn:%lli] second packet, will retry later\n",
921                                inst->seqNum);
922                    }
923                } else {
924
925                    // Store the packet for when there's free ports.
926                    assert(pendingPkt == NULL);
927                    pendingPkt = snd_data_pkt;
928                    hasPendingPkt = true;
929                }
930            } else {
931
932                // Not a split store.
933                storePostSend(data_pkt);
934            }
935        }
936    }
937
938    // Not sure this should set it to 0.
939    usedPorts = 0;
940
941    assert(stores >= 0 && storesToWB >= 0);
942}
943
944/*template <class Impl>
945void
946LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
947{
948    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
949                                              mshrSeqNums.end(),
950                                              seqNum);
951
952    if (mshr_it != mshrSeqNums.end()) {
953        mshrSeqNums.erase(mshr_it);
954        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
955    }
956}*/
957
958template <class Impl>
959void
960LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
961{
962    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
963            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
964
965    int load_idx = loadTail;
966    decrLdIdx(load_idx);
967
968    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
969        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
970                "[sn:%lli]\n",
971                loadQueue[load_idx]->pcState(),
972                loadQueue[load_idx]->seqNum);
973
974        if (isStalled() && load_idx == stallingLoadIdx) {
975            stalled = false;
976            stallingStoreIsn = 0;
977            stallingLoadIdx = 0;
978        }
979
980        // Clear the smart pointer to make sure it is decremented.
981        loadQueue[load_idx]->setSquashed();
982        loadQueue[load_idx] = NULL;
983        --loads;
984
985        // Inefficient!
986        loadTail = load_idx;
987
988        decrLdIdx(load_idx);
989        ++lsqSquashedLoads;
990    }
991
992    if (isLoadBlocked) {
993        if (squashed_num < blockedLoadSeqNum) {
994            isLoadBlocked = false;
995            loadBlockedHandled = false;
996            blockedLoadSeqNum = 0;
997        }
998    }
999
1000    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1001        memDepViolator = NULL;
1002    }
1003
1004    int store_idx = storeTail;
1005    decrStIdx(store_idx);
1006
1007    while (stores != 0 &&
1008           storeQueue[store_idx].inst->seqNum > squashed_num) {
1009        // Instructions marked as can WB are already committed.
1010        if (storeQueue[store_idx].canWB) {
1011            break;
1012        }
1013
1014        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1015                "idx:%i [sn:%lli]\n",
1016                storeQueue[store_idx].inst->pcState(),
1017                store_idx, storeQueue[store_idx].inst->seqNum);
1018
1019        // I don't think this can happen.  It should have been cleared
1020        // by the stalling load.
1021        if (isStalled() &&
1022            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1023            panic("Is stalled should have been cleared by stalling load!\n");
1024            stalled = false;
1025            stallingStoreIsn = 0;
1026        }
1027
1028        // Clear the smart pointer to make sure it is decremented.
1029        storeQueue[store_idx].inst->setSquashed();
1030        storeQueue[store_idx].inst = NULL;
1031        storeQueue[store_idx].canWB = 0;
1032
1033        // Must delete request now that it wasn't handed off to
1034        // memory.  This is quite ugly.  @todo: Figure out the proper
1035        // place to really handle request deletes.
1036        delete storeQueue[store_idx].req;
1037        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1038            delete storeQueue[store_idx].sreqLow;
1039            delete storeQueue[store_idx].sreqHigh;
1040
1041            storeQueue[store_idx].sreqLow = NULL;
1042            storeQueue[store_idx].sreqHigh = NULL;
1043        }
1044
1045        storeQueue[store_idx].req = NULL;
1046        --stores;
1047
1048        // Inefficient!
1049        storeTail = store_idx;
1050
1051        decrStIdx(store_idx);
1052        ++lsqSquashedStores;
1053    }
1054}
1055
1056template <class Impl>
1057void
1058LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1059{
1060    if (isStalled() &&
1061        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1062        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1063                "load idx:%i\n",
1064                stallingStoreIsn, stallingLoadIdx);
1065        stalled = false;
1066        stallingStoreIsn = 0;
1067        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1068    }
1069
1070    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1071        // The store is basically completed at this time. This
1072        // only works so long as the checker doesn't try to
1073        // verify the value in memory for stores.
1074        storeQueue[storeWBIdx].inst->setCompleted();
1075
1076        if (cpu->checker) {
1077            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1078        }
1079    }
1080
1081    if (needsTSO) {
1082        storeInFlight = true;
1083    }
1084
1085    incrStIdx(storeWBIdx);
1086}
1087
1088template <class Impl>
1089void
1090LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1091{
1092    iewStage->wakeCPU();
1093
1094    // Squashed instructions do not need to complete their access.
1095    if (inst->isSquashed()) {
1096        iewStage->decrWb(inst->seqNum);
1097        assert(!inst->isStore());
1098        ++lsqIgnoredResponses;
1099        return;
1100    }
1101
1102    if (!inst->isExecuted()) {
1103        inst->setExecuted();
1104
1105        // Complete access to copy data to proper place.
1106        inst->completeAcc(pkt);
1107    }
1108
1109    // Need to insert instruction into queue to commit
1110    iewStage->instToCommit(inst);
1111
1112    iewStage->activityThisCycle();
1113
1114    // see if this load changed the PC
1115    iewStage->checkMisprediction(inst);
1116}
1117
1118template <class Impl>
1119void
1120LSQUnit<Impl>::completeStore(int store_idx)
1121{
1122    assert(storeQueue[store_idx].inst);
1123    storeQueue[store_idx].completed = true;
1124    --storesToWB;
1125    // A bit conservative because a store completion may not free up entries,
1126    // but hopefully avoids two store completions in one cycle from making
1127    // the CPU tick twice.
1128    cpu->wakeCPU();
1129    cpu->activityThisCycle();
1130
1131    if (store_idx == storeHead) {
1132        do {
1133            incrStIdx(storeHead);
1134
1135            --stores;
1136        } while (storeQueue[storeHead].completed &&
1137                 storeHead != storeTail);
1138
1139        iewStage->updateLSQNextCycle = true;
1140    }
1141
1142    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1143            "idx:%i\n",
1144            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1145
1146#if TRACING_ON
1147    if (DTRACE(O3PipeView)) {
1148        storeQueue[store_idx].inst->storeTick =
1149            curTick() - storeQueue[store_idx].inst->fetchTick;
1150    }
1151#endif
1152
1153    if (isStalled() &&
1154        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1155        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1156                "load idx:%i\n",
1157                stallingStoreIsn, stallingLoadIdx);
1158        stalled = false;
1159        stallingStoreIsn = 0;
1160        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1161    }
1162
1163    storeQueue[store_idx].inst->setCompleted();
1164
1165    if (needsTSO) {
1166        storeInFlight = false;
1167    }
1168
1169    // Tell the checker we've completed this instruction.  Some stores
1170    // may get reported twice to the checker, but the checker can
1171    // handle that case.
1172    if (cpu->checker) {
1173        cpu->checker->verify(storeQueue[store_idx].inst);
1174    }
1175}
1176
1177template <class Impl>
1178bool
1179LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1180{
1181    if (!dcachePort->sendTimingReq(data_pkt)) {
1182        // Need to handle becoming blocked on a store.
1183        isStoreBlocked = true;
1184        ++lsqCacheBlocked;
1185        assert(retryPkt == NULL);
1186        retryPkt = data_pkt;
1187        lsq->setRetryTid(lsqID);
1188        return false;
1189    }
1190    return true;
1191}
1192
1193template <class Impl>
1194void
1195LSQUnit<Impl>::recvRetry()
1196{
1197    if (isStoreBlocked) {
1198        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1199        assert(retryPkt != NULL);
1200
1201        LSQSenderState *state =
1202            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1203
1204        if (dcachePort->sendTimingReq(retryPkt)) {
1205            // Don't finish the store unless this is the last packet.
1206            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1207                    state->pendingPacket == retryPkt) {
1208                state->pktToSend = false;
1209                storePostSend(retryPkt);
1210            }
1211            retryPkt = NULL;
1212            isStoreBlocked = false;
1213            lsq->setRetryTid(InvalidThreadID);
1214
1215            // Send any outstanding packet.
1216            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1217                assert(state->pendingPacket);
1218                if (sendStore(state->pendingPacket)) {
1219                    storePostSend(state->pendingPacket);
1220                }
1221            }
1222        } else {
1223            // Still blocked!
1224            ++lsqCacheBlocked;
1225            lsq->setRetryTid(lsqID);
1226        }
1227    } else if (isLoadBlocked) {
1228        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1229                "no need to resend packet.\n");
1230    } else {
1231        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1232    }
1233}
1234
1235template <class Impl>
1236inline void
1237LSQUnit<Impl>::incrStIdx(int &store_idx) const
1238{
1239    if (++store_idx >= SQEntries)
1240        store_idx = 0;
1241}
1242
1243template <class Impl>
1244inline void
1245LSQUnit<Impl>::decrStIdx(int &store_idx) const
1246{
1247    if (--store_idx < 0)
1248        store_idx += SQEntries;
1249}
1250
1251template <class Impl>
1252inline void
1253LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1254{
1255    if (++load_idx >= LQEntries)
1256        load_idx = 0;
1257}
1258
1259template <class Impl>
1260inline void
1261LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1262{
1263    if (--load_idx < 0)
1264        load_idx += LQEntries;
1265}
1266
1267template <class Impl>
1268void
1269LSQUnit<Impl>::dumpInsts() const
1270{
1271    cprintf("Load store queue: Dumping instructions.\n");
1272    cprintf("Load queue size: %i\n", loads);
1273    cprintf("Load queue: ");
1274
1275    int load_idx = loadHead;
1276
1277    while (load_idx != loadTail && loadQueue[load_idx]) {
1278        const DynInstPtr &inst(loadQueue[load_idx]);
1279        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1280
1281        incrLdIdx(load_idx);
1282    }
1283    cprintf("\n");
1284
1285    cprintf("Store queue size: %i\n", stores);
1286    cprintf("Store queue: ");
1287
1288    int store_idx = storeHead;
1289
1290    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1291        const DynInstPtr &inst(storeQueue[store_idx].inst);
1292        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1293
1294        incrStIdx(store_idx);
1295    }
1296
1297    cprintf("\n");
1298}
1299
1300#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1301