lsq_unit_impl.hh revision 10020:2f33cb012383
1
2/*
3 * Copyright (c) 2010-2012 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
46#define __CPU_O3_LSQ_UNIT_IMPL_HH__
47
48#include "arch/generic/debugfaults.hh"
49#include "arch/locked_mem.hh"
50#include "base/str.hh"
51#include "config/the_isa.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/o3/lsq.hh"
54#include "cpu/o3/lsq_unit.hh"
55#include "debug/Activity.hh"
56#include "debug/IEW.hh"
57#include "debug/LSQUnit.hh"
58#include "debug/O3PipeView.hh"
59#include "mem/packet.hh"
60#include "mem/request.hh"
61
62template<class Impl>
63LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
64                                              LSQUnit *lsq_ptr)
65    : Event(Default_Pri, AutoDelete),
66      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
67{
68}
69
70template<class Impl>
71void
72LSQUnit<Impl>::WritebackEvent::process()
73{
74    assert(!lsqPtr->cpu->switchedOut());
75
76    lsqPtr->writeback(inst, pkt);
77
78    if (pkt->senderState)
79        delete pkt->senderState;
80
81    delete pkt->req;
82    delete pkt;
83}
84
85template<class Impl>
86const char *
87LSQUnit<Impl>::WritebackEvent::description() const
88{
89    return "Store writeback";
90}
91
92template<class Impl>
93void
94LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95{
96    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97    DynInstPtr inst = state->inst;
98    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
102
103    // If this is a split access, wait until all packets are received.
104    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105        delete pkt->req;
106        delete pkt;
107        return;
108    }
109
110    assert(!cpu->switchedOut());
111    if (inst->isSquashed()) {
112        iewStage->decrWb(inst->seqNum);
113    } else {
114        if (!state->noWB) {
115            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
116                !state->isLoad) {
117                writeback(inst, pkt);
118            } else {
119                writeback(inst, state->mainPkt);
120            }
121        }
122
123        if (inst->isStore()) {
124            completeStore(state->idx);
125        }
126    }
127
128    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
129        delete state->mainPkt->req;
130        delete state->mainPkt;
131    }
132
133    pkt->req->setAccessLatency();
134    delete state;
135    delete pkt->req;
136    delete pkt;
137}
138
139template <class Impl>
140LSQUnit<Impl>::LSQUnit()
141    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
142      isStoreBlocked(false), isLoadBlocked(false),
143      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
144{
145}
146
147template<class Impl>
148void
149LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
150        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
151        unsigned id)
152{
153    cpu = cpu_ptr;
154    iewStage = iew_ptr;
155
156    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
157
158    lsq = lsq_ptr;
159
160    lsqID = id;
161
162    // Add 1 for the sentinel entry (they are circular queues).
163    LQEntries = maxLQEntries + 1;
164    SQEntries = maxSQEntries + 1;
165
166    //Due to uint8_t index in LSQSenderState
167    assert(LQEntries <= 256);
168    assert(SQEntries <= 256);
169
170    loadQueue.resize(LQEntries);
171    storeQueue.resize(SQEntries);
172
173    depCheckShift = params->LSQDepCheckShift;
174    checkLoads = params->LSQCheckLoads;
175    cachePorts = params->cachePorts;
176    needsTSO = params->needsTSO;
177
178    resetState();
179}
180
181
182template<class Impl>
183void
184LSQUnit<Impl>::resetState()
185{
186    loads = stores = storesToWB = 0;
187
188    loadHead = loadTail = 0;
189
190    storeHead = storeWBIdx = storeTail = 0;
191
192    usedPorts = 0;
193
194    retryPkt = NULL;
195    memDepViolator = NULL;
196
197    blockedLoadSeqNum = 0;
198
199    stalled = false;
200    isLoadBlocked = false;
201    loadBlockedHandled = false;
202
203    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
204}
205
206template<class Impl>
207std::string
208LSQUnit<Impl>::name() const
209{
210    if (Impl::MaxThreads == 1) {
211        return iewStage->name() + ".lsq";
212    } else {
213        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
214    }
215}
216
217template<class Impl>
218void
219LSQUnit<Impl>::regStats()
220{
221    lsqForwLoads
222        .name(name() + ".forwLoads")
223        .desc("Number of loads that had data forwarded from stores");
224
225    invAddrLoads
226        .name(name() + ".invAddrLoads")
227        .desc("Number of loads ignored due to an invalid address");
228
229    lsqSquashedLoads
230        .name(name() + ".squashedLoads")
231        .desc("Number of loads squashed");
232
233    lsqIgnoredResponses
234        .name(name() + ".ignoredResponses")
235        .desc("Number of memory responses ignored because the instruction is squashed");
236
237    lsqMemOrderViolation
238        .name(name() + ".memOrderViolation")
239        .desc("Number of memory ordering violations");
240
241    lsqSquashedStores
242        .name(name() + ".squashedStores")
243        .desc("Number of stores squashed");
244
245    invAddrSwpfs
246        .name(name() + ".invAddrSwpfs")
247        .desc("Number of software prefetches ignored due to an invalid address");
248
249    lsqBlockedLoads
250        .name(name() + ".blockedLoads")
251        .desc("Number of blocked loads due to partial load-store forwarding");
252
253    lsqRescheduledLoads
254        .name(name() + ".rescheduledLoads")
255        .desc("Number of loads that were rescheduled");
256
257    lsqCacheBlocked
258        .name(name() + ".cacheBlocked")
259        .desc("Number of times an access to memory failed due to the cache being blocked");
260}
261
262template<class Impl>
263void
264LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
265{
266    dcachePort = dcache_port;
267}
268
269template<class Impl>
270void
271LSQUnit<Impl>::clearLQ()
272{
273    loadQueue.clear();
274}
275
276template<class Impl>
277void
278LSQUnit<Impl>::clearSQ()
279{
280    storeQueue.clear();
281}
282
283template<class Impl>
284void
285LSQUnit<Impl>::drainSanityCheck() const
286{
287    for (int i = 0; i < loadQueue.size(); ++i)
288        assert(!loadQueue[i]);
289
290    assert(storesToWB == 0);
291    assert(!retryPkt);
292}
293
294template<class Impl>
295void
296LSQUnit<Impl>::takeOverFrom()
297{
298    resetState();
299}
300
301template<class Impl>
302void
303LSQUnit<Impl>::resizeLQ(unsigned size)
304{
305    unsigned size_plus_sentinel = size + 1;
306    assert(size_plus_sentinel >= LQEntries);
307
308    if (size_plus_sentinel > LQEntries) {
309        while (size_plus_sentinel > loadQueue.size()) {
310            DynInstPtr dummy;
311            loadQueue.push_back(dummy);
312            LQEntries++;
313        }
314    } else {
315        LQEntries = size_plus_sentinel;
316    }
317
318    assert(LQEntries <= 256);
319}
320
321template<class Impl>
322void
323LSQUnit<Impl>::resizeSQ(unsigned size)
324{
325    unsigned size_plus_sentinel = size + 1;
326    if (size_plus_sentinel > SQEntries) {
327        while (size_plus_sentinel > storeQueue.size()) {
328            SQEntry dummy;
329            storeQueue.push_back(dummy);
330            SQEntries++;
331        }
332    } else {
333        SQEntries = size_plus_sentinel;
334    }
335
336    assert(SQEntries <= 256);
337}
338
339template <class Impl>
340void
341LSQUnit<Impl>::insert(DynInstPtr &inst)
342{
343    assert(inst->isMemRef());
344
345    assert(inst->isLoad() || inst->isStore());
346
347    if (inst->isLoad()) {
348        insertLoad(inst);
349    } else {
350        insertStore(inst);
351    }
352
353    inst->setInLSQ();
354}
355
356template <class Impl>
357void
358LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
359{
360    assert((loadTail + 1) % LQEntries != loadHead);
361    assert(loads < LQEntries);
362
363    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
364            load_inst->pcState(), loadTail, load_inst->seqNum);
365
366    load_inst->lqIdx = loadTail;
367
368    if (stores == 0) {
369        load_inst->sqIdx = -1;
370    } else {
371        load_inst->sqIdx = storeTail;
372    }
373
374    loadQueue[loadTail] = load_inst;
375
376    incrLdIdx(loadTail);
377
378    ++loads;
379}
380
381template <class Impl>
382void
383LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
384{
385    // Make sure it is not full before inserting an instruction.
386    assert((storeTail + 1) % SQEntries != storeHead);
387    assert(stores < SQEntries);
388
389    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
390            store_inst->pcState(), storeTail, store_inst->seqNum);
391
392    store_inst->sqIdx = storeTail;
393    store_inst->lqIdx = loadTail;
394
395    storeQueue[storeTail] = SQEntry(store_inst);
396
397    incrStIdx(storeTail);
398
399    ++stores;
400}
401
402template <class Impl>
403typename Impl::DynInstPtr
404LSQUnit<Impl>::getMemDepViolator()
405{
406    DynInstPtr temp = memDepViolator;
407
408    memDepViolator = NULL;
409
410    return temp;
411}
412
413template <class Impl>
414unsigned
415LSQUnit<Impl>::numFreeEntries()
416{
417    unsigned free_lq_entries = LQEntries - loads;
418    unsigned free_sq_entries = SQEntries - stores;
419
420    // Both the LQ and SQ entries have an extra dummy entry to differentiate
421    // empty/full conditions.  Subtract 1 from the free entries.
422    if (free_lq_entries < free_sq_entries) {
423        return free_lq_entries - 1;
424    } else {
425        return free_sq_entries - 1;
426    }
427}
428
429template <class Impl>
430void
431LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
432{
433    int load_idx = loadHead;
434
435    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
436    // address. The CPU can speculatively execute a LL operation after a pending
437    // SC operation in the pipeline and that can make the cache monitor the CPU
438    // is connected to valid while it really shouldn't be.
439    for (int x = 0; x < cpu->numActiveThreads(); x++) {
440        ThreadContext *tc = cpu->getContext(x);
441        bool no_squash = cpu->thread[x]->noSquashFromTC;
442        cpu->thread[x]->noSquashFromTC = true;
443        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
444        cpu->thread[x]->noSquashFromTC = no_squash;
445    }
446
447    // If this is the only load in the LSQ we don't care
448    if (load_idx == loadTail)
449        return;
450    incrLdIdx(load_idx);
451
452    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
453    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
454    while (load_idx != loadTail) {
455        DynInstPtr ld_inst = loadQueue[load_idx];
456
457        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
458            incrLdIdx(load_idx);
459            continue;
460        }
461
462        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
463        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
464                    ld_inst->seqNum, load_addr, invalidate_addr);
465
466        if (load_addr == invalidate_addr) {
467            if (ld_inst->possibleLoadViolation()) {
468                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
469                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
470
471                // Mark the load for re-execution
472                ld_inst->fault = new ReExec;
473            } else {
474                // If a older load checks this and it's true
475                // then we might have missed the snoop
476                // in which case we need to invalidate to be sure
477                ld_inst->hitExternalSnoop(true);
478            }
479        }
480        incrLdIdx(load_idx);
481    }
482    return;
483}
484
485template <class Impl>
486Fault
487LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
488{
489    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
490    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
491
492    /** @todo in theory you only need to check an instruction that has executed
493     * however, there isn't a good way in the pipeline at the moment to check
494     * all instructions that will execute before the store writes back. Thus,
495     * like the implementation that came before it, we're overly conservative.
496     */
497    while (load_idx != loadTail) {
498        DynInstPtr ld_inst = loadQueue[load_idx];
499        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
500            incrLdIdx(load_idx);
501            continue;
502        }
503
504        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
505        Addr ld_eff_addr2 =
506            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
507
508        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
509            if (inst->isLoad()) {
510                // If this load is to the same block as an external snoop
511                // invalidate that we've observed then the load needs to be
512                // squashed as it could have newer data
513                if (ld_inst->hitExternalSnoop()) {
514                    if (!memDepViolator ||
515                            ld_inst->seqNum < memDepViolator->seqNum) {
516                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
517                                "and [sn:%lli] at address %#x\n",
518                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
519                        memDepViolator = ld_inst;
520
521                        ++lsqMemOrderViolation;
522
523                        return new GenericISA::M5PanicFault(
524                                "Detected fault with inst [sn:%lli] and "
525                                "[sn:%lli] at address %#x\n",
526                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
527                    }
528                }
529
530                // Otherwise, mark the load has a possible load violation
531                // and if we see a snoop before it's commited, we need to squash
532                ld_inst->possibleLoadViolation(true);
533                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
534                        " between instructions [sn:%lli] and [sn:%lli]\n",
535                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
536            } else {
537                // A load/store incorrectly passed this store.
538                // Check if we already have a violator, or if it's newer
539                // squash and refetch.
540                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
541                    break;
542
543                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
544                        "[sn:%lli] at address %#x\n",
545                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
546                memDepViolator = ld_inst;
547
548                ++lsqMemOrderViolation;
549
550                return new GenericISA::M5PanicFault("Detected fault with "
551                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
552                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
553            }
554        }
555
556        incrLdIdx(load_idx);
557    }
558    return NoFault;
559}
560
561
562
563
564template <class Impl>
565Fault
566LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
567{
568    using namespace TheISA;
569    // Execute a specific load.
570    Fault load_fault = NoFault;
571
572    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
573            inst->pcState(), inst->seqNum);
574
575    assert(!inst->isSquashed());
576
577    load_fault = inst->initiateAcc();
578
579    if (inst->isTranslationDelayed() &&
580        load_fault == NoFault)
581        return load_fault;
582
583    // If the instruction faulted or predicated false, then we need to send it
584    // along to commit without the instruction completing.
585    if (load_fault != NoFault || inst->readPredicate() == false) {
586        // Send this instruction to commit, also make sure iew stage
587        // realizes there is activity.
588        // Mark it as executed unless it is an uncached load that
589        // needs to hit the head of commit.
590        if (inst->readPredicate() == false)
591            inst->forwardOldRegs();
592        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
593                inst->seqNum,
594                (load_fault != NoFault ? "fault" : "predication"));
595        if (!(inst->hasRequest() && inst->uncacheable()) ||
596            inst->isAtCommit()) {
597            inst->setExecuted();
598        }
599        iewStage->instToCommit(inst);
600        iewStage->activityThisCycle();
601    } else if (!loadBlocked()) {
602        assert(inst->effAddrValid());
603        int load_idx = inst->lqIdx;
604        incrLdIdx(load_idx);
605
606        if (checkLoads)
607            return checkViolations(load_idx, inst);
608    }
609
610    return load_fault;
611}
612
613template <class Impl>
614Fault
615LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
616{
617    using namespace TheISA;
618    // Make sure that a store exists.
619    assert(stores != 0);
620
621    int store_idx = store_inst->sqIdx;
622
623    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
624            store_inst->pcState(), store_inst->seqNum);
625
626    assert(!store_inst->isSquashed());
627
628    // Check the recently completed loads to see if any match this store's
629    // address.  If so, then we have a memory ordering violation.
630    int load_idx = store_inst->lqIdx;
631
632    Fault store_fault = store_inst->initiateAcc();
633
634    if (store_inst->isTranslationDelayed() &&
635        store_fault == NoFault)
636        return store_fault;
637
638    if (store_inst->readPredicate() == false)
639        store_inst->forwardOldRegs();
640
641    if (storeQueue[store_idx].size == 0) {
642        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
643                store_inst->pcState(), store_inst->seqNum);
644
645        return store_fault;
646    } else if (store_inst->readPredicate() == false) {
647        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
648                store_inst->seqNum);
649        return store_fault;
650    }
651
652    assert(store_fault == NoFault);
653
654    if (store_inst->isStoreConditional()) {
655        // Store conditionals need to set themselves as able to
656        // writeback if we haven't had a fault by here.
657        storeQueue[store_idx].canWB = true;
658
659        ++storesToWB;
660    }
661
662    return checkViolations(load_idx, store_inst);
663
664}
665
666template <class Impl>
667void
668LSQUnit<Impl>::commitLoad()
669{
670    assert(loadQueue[loadHead]);
671
672    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
673            loadQueue[loadHead]->pcState());
674
675    loadQueue[loadHead] = NULL;
676
677    incrLdIdx(loadHead);
678
679    --loads;
680}
681
682template <class Impl>
683void
684LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
685{
686    assert(loads == 0 || loadQueue[loadHead]);
687
688    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
689        commitLoad();
690    }
691}
692
693template <class Impl>
694void
695LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
696{
697    assert(stores == 0 || storeQueue[storeHead].inst);
698
699    int store_idx = storeHead;
700
701    while (store_idx != storeTail) {
702        assert(storeQueue[store_idx].inst);
703        // Mark any stores that are now committed and have not yet
704        // been marked as able to write back.
705        if (!storeQueue[store_idx].canWB) {
706            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
707                break;
708            }
709            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
710                    "%s [sn:%lli]\n",
711                    storeQueue[store_idx].inst->pcState(),
712                    storeQueue[store_idx].inst->seqNum);
713
714            storeQueue[store_idx].canWB = true;
715
716            ++storesToWB;
717        }
718
719        incrStIdx(store_idx);
720    }
721}
722
723template <class Impl>
724void
725LSQUnit<Impl>::writebackPendingStore()
726{
727    if (hasPendingPkt) {
728        assert(pendingPkt != NULL);
729
730        // If the cache is blocked, this will store the packet for retry.
731        if (sendStore(pendingPkt)) {
732            storePostSend(pendingPkt);
733        }
734        pendingPkt = NULL;
735        hasPendingPkt = false;
736    }
737}
738
739template <class Impl>
740void
741LSQUnit<Impl>::writebackStores()
742{
743    // First writeback the second packet from any split store that didn't
744    // complete last cycle because there weren't enough cache ports available.
745    if (TheISA::HasUnalignedMemAcc) {
746        writebackPendingStore();
747    }
748
749    while (storesToWB > 0 &&
750           storeWBIdx != storeTail &&
751           storeQueue[storeWBIdx].inst &&
752           storeQueue[storeWBIdx].canWB &&
753           ((!needsTSO) || (!storeInFlight)) &&
754           usedPorts < cachePorts) {
755
756        if (isStoreBlocked || lsq->cacheBlocked()) {
757            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
758                    " is blocked!\n");
759            break;
760        }
761
762        // Store didn't write any data so no need to write it back to
763        // memory.
764        if (storeQueue[storeWBIdx].size == 0) {
765            completeStore(storeWBIdx);
766
767            incrStIdx(storeWBIdx);
768
769            continue;
770        }
771
772        ++usedPorts;
773
774        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
775            incrStIdx(storeWBIdx);
776
777            continue;
778        }
779
780        assert(storeQueue[storeWBIdx].req);
781        assert(!storeQueue[storeWBIdx].committed);
782
783        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
784            assert(storeQueue[storeWBIdx].sreqLow);
785            assert(storeQueue[storeWBIdx].sreqHigh);
786        }
787
788        DynInstPtr inst = storeQueue[storeWBIdx].inst;
789
790        Request *req = storeQueue[storeWBIdx].req;
791        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
792        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
793
794        storeQueue[storeWBIdx].committed = true;
795
796        assert(!inst->memData);
797        inst->memData = new uint8_t[64];
798
799        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
800
801        MemCmd command =
802            req->isSwap() ? MemCmd::SwapReq :
803            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
804        PacketPtr data_pkt;
805        PacketPtr snd_data_pkt = NULL;
806
807        LSQSenderState *state = new LSQSenderState;
808        state->isLoad = false;
809        state->idx = storeWBIdx;
810        state->inst = inst;
811
812        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
813
814            // Build a single data packet if the store isn't split.
815            data_pkt = new Packet(req, command);
816            data_pkt->dataStatic(inst->memData);
817            data_pkt->senderState = state;
818        } else {
819            // Create two packets if the store is split in two.
820            data_pkt = new Packet(sreqLow, command);
821            snd_data_pkt = new Packet(sreqHigh, command);
822
823            data_pkt->dataStatic(inst->memData);
824            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
825
826            data_pkt->senderState = state;
827            snd_data_pkt->senderState = state;
828
829            state->isSplit = true;
830            state->outstanding = 2;
831
832            // Can delete the main request now.
833            delete req;
834            req = sreqLow;
835        }
836
837        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
838                "to Addr:%#x, data:%#x [sn:%lli]\n",
839                storeWBIdx, inst->pcState(),
840                req->getPaddr(), (int)*(inst->memData),
841                inst->seqNum);
842
843        // @todo: Remove this SC hack once the memory system handles it.
844        if (inst->isStoreConditional()) {
845            assert(!storeQueue[storeWBIdx].isSplit);
846            // Disable recording the result temporarily.  Writing to
847            // misc regs normally updates the result, but this is not
848            // the desired behavior when handling store conditionals.
849            inst->recordResult(false);
850            bool success = TheISA::handleLockedWrite(inst.get(), req);
851            inst->recordResult(true);
852
853            if (!success) {
854                // Instantly complete this store.
855                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
856                        "Instantly completing it.\n",
857                        inst->seqNum);
858                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
859                cpu->schedule(wb, curTick() + 1);
860                if (cpu->checker) {
861                    // Make sure to set the LLSC data for verification
862                    // if checker is loaded
863                    inst->reqToVerify->setExtraData(0);
864                    inst->completeAcc(data_pkt);
865                }
866                completeStore(storeWBIdx);
867                incrStIdx(storeWBIdx);
868                continue;
869            }
870        } else {
871            // Non-store conditionals do not need a writeback.
872            state->noWB = true;
873        }
874
875        bool split =
876            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
877
878        ThreadContext *thread = cpu->tcBase(lsqID);
879
880        if (req->isMmappedIpr()) {
881            assert(!inst->isStoreConditional());
882            TheISA::handleIprWrite(thread, data_pkt);
883            delete data_pkt;
884            if (split) {
885                assert(snd_data_pkt->req->isMmappedIpr());
886                TheISA::handleIprWrite(thread, snd_data_pkt);
887                delete snd_data_pkt;
888                delete sreqLow;
889                delete sreqHigh;
890            }
891            delete state;
892            delete req;
893            completeStore(storeWBIdx);
894            incrStIdx(storeWBIdx);
895        } else if (!sendStore(data_pkt)) {
896            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
897                    "retry later\n",
898                    inst->seqNum);
899
900            // Need to store the second packet, if split.
901            if (split) {
902                state->pktToSend = true;
903                state->pendingPacket = snd_data_pkt;
904            }
905        } else {
906
907            // If split, try to send the second packet too
908            if (split) {
909                assert(snd_data_pkt);
910
911                // Ensure there are enough ports to use.
912                if (usedPorts < cachePorts) {
913                    ++usedPorts;
914                    if (sendStore(snd_data_pkt)) {
915                        storePostSend(snd_data_pkt);
916                    } else {
917                        DPRINTF(IEW, "D-Cache became blocked when writing"
918                                " [sn:%lli] second packet, will retry later\n",
919                                inst->seqNum);
920                    }
921                } else {
922
923                    // Store the packet for when there's free ports.
924                    assert(pendingPkt == NULL);
925                    pendingPkt = snd_data_pkt;
926                    hasPendingPkt = true;
927                }
928            } else {
929
930                // Not a split store.
931                storePostSend(data_pkt);
932            }
933        }
934    }
935
936    // Not sure this should set it to 0.
937    usedPorts = 0;
938
939    assert(stores >= 0 && storesToWB >= 0);
940}
941
942/*template <class Impl>
943void
944LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
945{
946    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
947                                              mshrSeqNums.end(),
948                                              seqNum);
949
950    if (mshr_it != mshrSeqNums.end()) {
951        mshrSeqNums.erase(mshr_it);
952        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
953    }
954}*/
955
956template <class Impl>
957void
958LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
959{
960    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
961            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
962
963    int load_idx = loadTail;
964    decrLdIdx(load_idx);
965
966    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
967        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
968                "[sn:%lli]\n",
969                loadQueue[load_idx]->pcState(),
970                loadQueue[load_idx]->seqNum);
971
972        if (isStalled() && load_idx == stallingLoadIdx) {
973            stalled = false;
974            stallingStoreIsn = 0;
975            stallingLoadIdx = 0;
976        }
977
978        // Clear the smart pointer to make sure it is decremented.
979        loadQueue[load_idx]->setSquashed();
980        loadQueue[load_idx] = NULL;
981        --loads;
982
983        // Inefficient!
984        loadTail = load_idx;
985
986        decrLdIdx(load_idx);
987        ++lsqSquashedLoads;
988    }
989
990    if (isLoadBlocked) {
991        if (squashed_num < blockedLoadSeqNum) {
992            isLoadBlocked = false;
993            loadBlockedHandled = false;
994            blockedLoadSeqNum = 0;
995        }
996    }
997
998    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
999        memDepViolator = NULL;
1000    }
1001
1002    int store_idx = storeTail;
1003    decrStIdx(store_idx);
1004
1005    while (stores != 0 &&
1006           storeQueue[store_idx].inst->seqNum > squashed_num) {
1007        // Instructions marked as can WB are already committed.
1008        if (storeQueue[store_idx].canWB) {
1009            break;
1010        }
1011
1012        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1013                "idx:%i [sn:%lli]\n",
1014                storeQueue[store_idx].inst->pcState(),
1015                store_idx, storeQueue[store_idx].inst->seqNum);
1016
1017        // I don't think this can happen.  It should have been cleared
1018        // by the stalling load.
1019        if (isStalled() &&
1020            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1021            panic("Is stalled should have been cleared by stalling load!\n");
1022            stalled = false;
1023            stallingStoreIsn = 0;
1024        }
1025
1026        // Clear the smart pointer to make sure it is decremented.
1027        storeQueue[store_idx].inst->setSquashed();
1028        storeQueue[store_idx].inst = NULL;
1029        storeQueue[store_idx].canWB = 0;
1030
1031        // Must delete request now that it wasn't handed off to
1032        // memory.  This is quite ugly.  @todo: Figure out the proper
1033        // place to really handle request deletes.
1034        delete storeQueue[store_idx].req;
1035        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1036            delete storeQueue[store_idx].sreqLow;
1037            delete storeQueue[store_idx].sreqHigh;
1038
1039            storeQueue[store_idx].sreqLow = NULL;
1040            storeQueue[store_idx].sreqHigh = NULL;
1041        }
1042
1043        storeQueue[store_idx].req = NULL;
1044        --stores;
1045
1046        // Inefficient!
1047        storeTail = store_idx;
1048
1049        decrStIdx(store_idx);
1050        ++lsqSquashedStores;
1051    }
1052}
1053
1054template <class Impl>
1055void
1056LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1057{
1058    if (isStalled() &&
1059        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1060        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1061                "load idx:%i\n",
1062                stallingStoreIsn, stallingLoadIdx);
1063        stalled = false;
1064        stallingStoreIsn = 0;
1065        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1066    }
1067
1068    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1069        // The store is basically completed at this time. This
1070        // only works so long as the checker doesn't try to
1071        // verify the value in memory for stores.
1072        storeQueue[storeWBIdx].inst->setCompleted();
1073
1074        if (cpu->checker) {
1075            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1076        }
1077    }
1078
1079    if (needsTSO) {
1080        storeInFlight = true;
1081    }
1082
1083    incrStIdx(storeWBIdx);
1084}
1085
1086template <class Impl>
1087void
1088LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1089{
1090    iewStage->wakeCPU();
1091
1092    // Squashed instructions do not need to complete their access.
1093    if (inst->isSquashed()) {
1094        iewStage->decrWb(inst->seqNum);
1095        assert(!inst->isStore());
1096        ++lsqIgnoredResponses;
1097        return;
1098    }
1099
1100    if (!inst->isExecuted()) {
1101        inst->setExecuted();
1102
1103        // Complete access to copy data to proper place.
1104        inst->completeAcc(pkt);
1105    }
1106
1107    // Need to insert instruction into queue to commit
1108    iewStage->instToCommit(inst);
1109
1110    iewStage->activityThisCycle();
1111
1112    // see if this load changed the PC
1113    iewStage->checkMisprediction(inst);
1114}
1115
1116template <class Impl>
1117void
1118LSQUnit<Impl>::completeStore(int store_idx)
1119{
1120    assert(storeQueue[store_idx].inst);
1121    storeQueue[store_idx].completed = true;
1122    --storesToWB;
1123    // A bit conservative because a store completion may not free up entries,
1124    // but hopefully avoids two store completions in one cycle from making
1125    // the CPU tick twice.
1126    cpu->wakeCPU();
1127    cpu->activityThisCycle();
1128
1129    if (store_idx == storeHead) {
1130        do {
1131            incrStIdx(storeHead);
1132
1133            --stores;
1134        } while (storeQueue[storeHead].completed &&
1135                 storeHead != storeTail);
1136
1137        iewStage->updateLSQNextCycle = true;
1138    }
1139
1140    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1141            "idx:%i\n",
1142            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1143
1144#if TRACING_ON
1145    if (DTRACE(O3PipeView)) {
1146        storeQueue[store_idx].inst->storeTick =
1147            curTick() - storeQueue[store_idx].inst->fetchTick;
1148    }
1149#endif
1150
1151    if (isStalled() &&
1152        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1153        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1154                "load idx:%i\n",
1155                stallingStoreIsn, stallingLoadIdx);
1156        stalled = false;
1157        stallingStoreIsn = 0;
1158        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1159    }
1160
1161    storeQueue[store_idx].inst->setCompleted();
1162
1163    if (needsTSO) {
1164        storeInFlight = false;
1165    }
1166
1167    // Tell the checker we've completed this instruction.  Some stores
1168    // may get reported twice to the checker, but the checker can
1169    // handle that case.
1170    if (cpu->checker) {
1171        cpu->checker->verify(storeQueue[store_idx].inst);
1172    }
1173}
1174
1175template <class Impl>
1176bool
1177LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1178{
1179    if (!dcachePort->sendTimingReq(data_pkt)) {
1180        // Need to handle becoming blocked on a store.
1181        isStoreBlocked = true;
1182        ++lsqCacheBlocked;
1183        assert(retryPkt == NULL);
1184        retryPkt = data_pkt;
1185        lsq->setRetryTid(lsqID);
1186        return false;
1187    }
1188    return true;
1189}
1190
1191template <class Impl>
1192void
1193LSQUnit<Impl>::recvRetry()
1194{
1195    if (isStoreBlocked) {
1196        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1197        assert(retryPkt != NULL);
1198
1199        LSQSenderState *state =
1200            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1201
1202        if (dcachePort->sendTimingReq(retryPkt)) {
1203            // Don't finish the store unless this is the last packet.
1204            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1205                    state->pendingPacket == retryPkt) {
1206                state->pktToSend = false;
1207                storePostSend(retryPkt);
1208            }
1209            retryPkt = NULL;
1210            isStoreBlocked = false;
1211            lsq->setRetryTid(InvalidThreadID);
1212
1213            // Send any outstanding packet.
1214            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1215                assert(state->pendingPacket);
1216                if (sendStore(state->pendingPacket)) {
1217                    storePostSend(state->pendingPacket);
1218                }
1219            }
1220        } else {
1221            // Still blocked!
1222            ++lsqCacheBlocked;
1223            lsq->setRetryTid(lsqID);
1224        }
1225    } else if (isLoadBlocked) {
1226        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1227                "no need to resend packet.\n");
1228    } else {
1229        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1230    }
1231}
1232
1233template <class Impl>
1234inline void
1235LSQUnit<Impl>::incrStIdx(int &store_idx) const
1236{
1237    if (++store_idx >= SQEntries)
1238        store_idx = 0;
1239}
1240
1241template <class Impl>
1242inline void
1243LSQUnit<Impl>::decrStIdx(int &store_idx) const
1244{
1245    if (--store_idx < 0)
1246        store_idx += SQEntries;
1247}
1248
1249template <class Impl>
1250inline void
1251LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1252{
1253    if (++load_idx >= LQEntries)
1254        load_idx = 0;
1255}
1256
1257template <class Impl>
1258inline void
1259LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1260{
1261    if (--load_idx < 0)
1262        load_idx += LQEntries;
1263}
1264
1265template <class Impl>
1266void
1267LSQUnit<Impl>::dumpInsts() const
1268{
1269    cprintf("Load store queue: Dumping instructions.\n");
1270    cprintf("Load queue size: %i\n", loads);
1271    cprintf("Load queue: ");
1272
1273    int load_idx = loadHead;
1274
1275    while (load_idx != loadTail && loadQueue[load_idx]) {
1276        const DynInstPtr &inst(loadQueue[load_idx]);
1277        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1278
1279        incrLdIdx(load_idx);
1280    }
1281    cprintf("\n");
1282
1283    cprintf("Store queue size: %i\n", stores);
1284    cprintf("Store queue: ");
1285
1286    int store_idx = storeHead;
1287
1288    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1289        const DynInstPtr &inst(storeQueue[store_idx].inst);
1290        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1291
1292        incrStIdx(store_idx);
1293    }
1294
1295    cprintf("\n");
1296}
1297
1298#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
1299