lsq_unit_impl.hh revision 9383
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include "arch/generic/debugfaults.hh"
45#include "arch/locked_mem.hh"
46#include "base/str.hh"
47#include "config/the_isa.hh"
48#include "cpu/checker/cpu.hh"
49#include "cpu/o3/lsq.hh"
50#include "cpu/o3/lsq_unit.hh"
51#include "debug/Activity.hh"
52#include "debug/IEW.hh"
53#include "debug/LSQUnit.hh"
54#include "mem/packet.hh"
55#include "mem/request.hh"
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59                                              LSQUnit *lsq_ptr)
60    : Event(Default_Pri, AutoDelete),
61      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
62{
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69    if (!lsqPtr->isSwitchedOut()) {
70        lsqPtr->writeback(inst, pkt);
71    }
72
73    if (pkt->senderState)
74        delete pkt->senderState;
75
76    delete pkt->req;
77    delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84    return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92    DynInstPtr inst = state->inst;
93    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
94    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
95
96    //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98    // If this is a split access, wait until all packets are received.
99    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
100        delete pkt->req;
101        delete pkt;
102        return;
103    }
104
105    if (isSwitchedOut() || inst->isSquashed()) {
106        iewStage->decrWb(inst->seqNum);
107    } else {
108        if (!state->noWB) {
109            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
110                !state->isLoad) {
111                writeback(inst, pkt);
112            } else {
113                writeback(inst, state->mainPkt);
114            }
115        }
116
117        if (inst->isStore()) {
118            completeStore(state->idx);
119        }
120    }
121
122    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
123        delete state->mainPkt->req;
124        delete state->mainPkt;
125    }
126    delete state;
127    delete pkt->req;
128    delete pkt;
129}
130
131template <class Impl>
132LSQUnit<Impl>::LSQUnit()
133    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
134      isStoreBlocked(false), isLoadBlocked(false),
135      loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
136{
137}
138
139template<class Impl>
140void
141LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
142        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
143        unsigned id)
144{
145    cpu = cpu_ptr;
146    iewStage = iew_ptr;
147
148    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
149
150    switchedOut = false;
151
152    cacheBlockMask = 0;
153
154    lsq = lsq_ptr;
155
156    lsqID = id;
157
158    // Add 1 for the sentinel entry (they are circular queues).
159    LQEntries = maxLQEntries + 1;
160    SQEntries = maxSQEntries + 1;
161
162    loadQueue.resize(LQEntries);
163    storeQueue.resize(SQEntries);
164
165    depCheckShift = params->LSQDepCheckShift;
166    checkLoads = params->LSQCheckLoads;
167
168    loadHead = loadTail = 0;
169
170    storeHead = storeWBIdx = storeTail = 0;
171
172    usedPorts = 0;
173    cachePorts = params->cachePorts;
174
175    retryPkt = NULL;
176    memDepViolator = NULL;
177
178    blockedLoadSeqNum = 0;
179    needsTSO = params->needsTSO;
180}
181
182template<class Impl>
183std::string
184LSQUnit<Impl>::name() const
185{
186    if (Impl::MaxThreads == 1) {
187        return iewStage->name() + ".lsq";
188    } else {
189        return iewStage->name() + ".lsq.thread" + to_string(lsqID);
190    }
191}
192
193template<class Impl>
194void
195LSQUnit<Impl>::regStats()
196{
197    lsqForwLoads
198        .name(name() + ".forwLoads")
199        .desc("Number of loads that had data forwarded from stores");
200
201    invAddrLoads
202        .name(name() + ".invAddrLoads")
203        .desc("Number of loads ignored due to an invalid address");
204
205    lsqSquashedLoads
206        .name(name() + ".squashedLoads")
207        .desc("Number of loads squashed");
208
209    lsqIgnoredResponses
210        .name(name() + ".ignoredResponses")
211        .desc("Number of memory responses ignored because the instruction is squashed");
212
213    lsqMemOrderViolation
214        .name(name() + ".memOrderViolation")
215        .desc("Number of memory ordering violations");
216
217    lsqSquashedStores
218        .name(name() + ".squashedStores")
219        .desc("Number of stores squashed");
220
221    invAddrSwpfs
222        .name(name() + ".invAddrSwpfs")
223        .desc("Number of software prefetches ignored due to an invalid address");
224
225    lsqBlockedLoads
226        .name(name() + ".blockedLoads")
227        .desc("Number of blocked loads due to partial load-store forwarding");
228
229    lsqRescheduledLoads
230        .name(name() + ".rescheduledLoads")
231        .desc("Number of loads that were rescheduled");
232
233    lsqCacheBlocked
234        .name(name() + ".cacheBlocked")
235        .desc("Number of times an access to memory failed due to the cache being blocked");
236}
237
238template<class Impl>
239void
240LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
241{
242    dcachePort = dcache_port;
243}
244
245template<class Impl>
246void
247LSQUnit<Impl>::clearLQ()
248{
249    loadQueue.clear();
250}
251
252template<class Impl>
253void
254LSQUnit<Impl>::clearSQ()
255{
256    storeQueue.clear();
257}
258
259template<class Impl>
260void
261LSQUnit<Impl>::switchOut()
262{
263    switchedOut = true;
264    for (int i = 0; i < loadQueue.size(); ++i) {
265        assert(!loadQueue[i]);
266        loadQueue[i] = NULL;
267    }
268
269    assert(storesToWB == 0);
270}
271
272template<class Impl>
273void
274LSQUnit<Impl>::takeOverFrom()
275{
276    switchedOut = false;
277    loads = stores = storesToWB = 0;
278
279    loadHead = loadTail = 0;
280
281    storeHead = storeWBIdx = storeTail = 0;
282
283    usedPorts = 0;
284
285    memDepViolator = NULL;
286
287    blockedLoadSeqNum = 0;
288
289    stalled = false;
290    isLoadBlocked = false;
291    loadBlockedHandled = false;
292
293    // Just incase the memory system changed out from under us
294    cacheBlockMask = 0;
295}
296
297template<class Impl>
298void
299LSQUnit<Impl>::resizeLQ(unsigned size)
300{
301    unsigned size_plus_sentinel = size + 1;
302    assert(size_plus_sentinel >= LQEntries);
303
304    if (size_plus_sentinel > LQEntries) {
305        while (size_plus_sentinel > loadQueue.size()) {
306            DynInstPtr dummy;
307            loadQueue.push_back(dummy);
308            LQEntries++;
309        }
310    } else {
311        LQEntries = size_plus_sentinel;
312    }
313
314}
315
316template<class Impl>
317void
318LSQUnit<Impl>::resizeSQ(unsigned size)
319{
320    unsigned size_plus_sentinel = size + 1;
321    if (size_plus_sentinel > SQEntries) {
322        while (size_plus_sentinel > storeQueue.size()) {
323            SQEntry dummy;
324            storeQueue.push_back(dummy);
325            SQEntries++;
326        }
327    } else {
328        SQEntries = size_plus_sentinel;
329    }
330}
331
332template <class Impl>
333void
334LSQUnit<Impl>::insert(DynInstPtr &inst)
335{
336    assert(inst->isMemRef());
337
338    assert(inst->isLoad() || inst->isStore());
339
340    if (inst->isLoad()) {
341        insertLoad(inst);
342    } else {
343        insertStore(inst);
344    }
345
346    inst->setInLSQ();
347}
348
349template <class Impl>
350void
351LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
352{
353    assert((loadTail + 1) % LQEntries != loadHead);
354    assert(loads < LQEntries);
355
356    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
357            load_inst->pcState(), loadTail, load_inst->seqNum);
358
359    load_inst->lqIdx = loadTail;
360
361    if (stores == 0) {
362        load_inst->sqIdx = -1;
363    } else {
364        load_inst->sqIdx = storeTail;
365    }
366
367    loadQueue[loadTail] = load_inst;
368
369    incrLdIdx(loadTail);
370
371    ++loads;
372}
373
374template <class Impl>
375void
376LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
377{
378    // Make sure it is not full before inserting an instruction.
379    assert((storeTail + 1) % SQEntries != storeHead);
380    assert(stores < SQEntries);
381
382    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
383            store_inst->pcState(), storeTail, store_inst->seqNum);
384
385    store_inst->sqIdx = storeTail;
386    store_inst->lqIdx = loadTail;
387
388    storeQueue[storeTail] = SQEntry(store_inst);
389
390    incrStIdx(storeTail);
391
392    ++stores;
393}
394
395template <class Impl>
396typename Impl::DynInstPtr
397LSQUnit<Impl>::getMemDepViolator()
398{
399    DynInstPtr temp = memDepViolator;
400
401    memDepViolator = NULL;
402
403    return temp;
404}
405
406template <class Impl>
407unsigned
408LSQUnit<Impl>::numFreeEntries()
409{
410    unsigned free_lq_entries = LQEntries - loads;
411    unsigned free_sq_entries = SQEntries - stores;
412
413    // Both the LQ and SQ entries have an extra dummy entry to differentiate
414    // empty/full conditions.  Subtract 1 from the free entries.
415    if (free_lq_entries < free_sq_entries) {
416        return free_lq_entries - 1;
417    } else {
418        return free_sq_entries - 1;
419    }
420}
421
422template <class Impl>
423void
424LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
425{
426    int load_idx = loadHead;
427
428    if (!cacheBlockMask) {
429        assert(dcachePort);
430        Addr bs = dcachePort->peerBlockSize();
431
432        // Make sure we actually got a size
433        assert(bs != 0);
434
435        cacheBlockMask = ~(bs - 1);
436    }
437
438    // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
439    // address. The CPU can speculatively execute a LL operation after a pending
440    // SC operation in the pipeline and that can make the cache monitor the CPU
441    // is connected to valid while it really shouldn't be.
442    for (int x = 0; x < cpu->numActiveThreads(); x++) {
443        ThreadContext *tc = cpu->getContext(x);
444        bool no_squash = cpu->thread[x]->noSquashFromTC;
445        cpu->thread[x]->noSquashFromTC = true;
446        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
447        cpu->thread[x]->noSquashFromTC = no_squash;
448    }
449
450    // If this is the only load in the LSQ we don't care
451    if (load_idx == loadTail)
452        return;
453    incrLdIdx(load_idx);
454
455    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
456    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
457    while (load_idx != loadTail) {
458        DynInstPtr ld_inst = loadQueue[load_idx];
459
460        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
461            incrLdIdx(load_idx);
462            continue;
463        }
464
465        Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
466        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
467                    ld_inst->seqNum, load_addr, invalidate_addr);
468
469        if (load_addr == invalidate_addr) {
470            if (ld_inst->possibleLoadViolation()) {
471                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
472                        ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
473
474                // Mark the load for re-execution
475                ld_inst->fault = new ReExec;
476            } else {
477                // If a older load checks this and it's true
478                // then we might have missed the snoop
479                // in which case we need to invalidate to be sure
480                ld_inst->hitExternalSnoop(true);
481            }
482        }
483        incrLdIdx(load_idx);
484    }
485    return;
486}
487
488template <class Impl>
489Fault
490LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
491{
492    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
493    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
494
495    /** @todo in theory you only need to check an instruction that has executed
496     * however, there isn't a good way in the pipeline at the moment to check
497     * all instructions that will execute before the store writes back. Thus,
498     * like the implementation that came before it, we're overly conservative.
499     */
500    while (load_idx != loadTail) {
501        DynInstPtr ld_inst = loadQueue[load_idx];
502        if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
503            incrLdIdx(load_idx);
504            continue;
505        }
506
507        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
508        Addr ld_eff_addr2 =
509            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
510
511        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
512            if (inst->isLoad()) {
513                // If this load is to the same block as an external snoop
514                // invalidate that we've observed then the load needs to be
515                // squashed as it could have newer data
516                if (ld_inst->hitExternalSnoop()) {
517                    if (!memDepViolator ||
518                            ld_inst->seqNum < memDepViolator->seqNum) {
519                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
520                                "and [sn:%lli] at address %#x\n",
521                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
522                        memDepViolator = ld_inst;
523
524                        ++lsqMemOrderViolation;
525
526                        return new GenericISA::M5PanicFault(
527                                "Detected fault with inst [sn:%lli] and "
528                                "[sn:%lli] at address %#x\n",
529                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
530                    }
531                }
532
533                // Otherwise, mark the load has a possible load violation
534                // and if we see a snoop before it's commited, we need to squash
535                ld_inst->possibleLoadViolation(true);
536                DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
537                        " between instructions [sn:%lli] and [sn:%lli]\n",
538                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
539            } else {
540                // A load/store incorrectly passed this store.
541                // Check if we already have a violator, or if it's newer
542                // squash and refetch.
543                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
544                    break;
545
546                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
547                        "[sn:%lli] at address %#x\n",
548                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
549                memDepViolator = ld_inst;
550
551                ++lsqMemOrderViolation;
552
553                return new GenericISA::M5PanicFault("Detected fault with "
554                        "inst [sn:%lli] and [sn:%lli] at address %#x\n",
555                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
556            }
557        }
558
559        incrLdIdx(load_idx);
560    }
561    return NoFault;
562}
563
564
565
566
567template <class Impl>
568Fault
569LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
570{
571    using namespace TheISA;
572    // Execute a specific load.
573    Fault load_fault = NoFault;
574
575    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
576            inst->pcState(), inst->seqNum);
577
578    assert(!inst->isSquashed());
579
580    load_fault = inst->initiateAcc();
581
582    if (inst->isTranslationDelayed() &&
583        load_fault == NoFault)
584        return load_fault;
585
586    // If the instruction faulted or predicated false, then we need to send it
587    // along to commit without the instruction completing.
588    if (load_fault != NoFault || inst->readPredicate() == false) {
589        // Send this instruction to commit, also make sure iew stage
590        // realizes there is activity.
591        // Mark it as executed unless it is an uncached load that
592        // needs to hit the head of commit.
593        if (inst->readPredicate() == false)
594            inst->forwardOldRegs();
595        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
596                inst->seqNum,
597                (load_fault != NoFault ? "fault" : "predication"));
598        if (!(inst->hasRequest() && inst->uncacheable()) ||
599            inst->isAtCommit()) {
600            inst->setExecuted();
601        }
602        iewStage->instToCommit(inst);
603        iewStage->activityThisCycle();
604    } else if (!loadBlocked()) {
605        assert(inst->effAddrValid());
606        int load_idx = inst->lqIdx;
607        incrLdIdx(load_idx);
608
609        if (checkLoads)
610            return checkViolations(load_idx, inst);
611    }
612
613    return load_fault;
614}
615
616template <class Impl>
617Fault
618LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
619{
620    using namespace TheISA;
621    // Make sure that a store exists.
622    assert(stores != 0);
623
624    int store_idx = store_inst->sqIdx;
625
626    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
627            store_inst->pcState(), store_inst->seqNum);
628
629    assert(!store_inst->isSquashed());
630
631    // Check the recently completed loads to see if any match this store's
632    // address.  If so, then we have a memory ordering violation.
633    int load_idx = store_inst->lqIdx;
634
635    Fault store_fault = store_inst->initiateAcc();
636
637    if (store_inst->isTranslationDelayed() &&
638        store_fault == NoFault)
639        return store_fault;
640
641    if (store_inst->readPredicate() == false)
642        store_inst->forwardOldRegs();
643
644    if (storeQueue[store_idx].size == 0) {
645        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
646                store_inst->pcState(), store_inst->seqNum);
647
648        return store_fault;
649    } else if (store_inst->readPredicate() == false) {
650        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
651                store_inst->seqNum);
652        return store_fault;
653    }
654
655    assert(store_fault == NoFault);
656
657    if (store_inst->isStoreConditional()) {
658        // Store conditionals need to set themselves as able to
659        // writeback if we haven't had a fault by here.
660        storeQueue[store_idx].canWB = true;
661
662        ++storesToWB;
663    }
664
665    return checkViolations(load_idx, store_inst);
666
667}
668
669template <class Impl>
670void
671LSQUnit<Impl>::commitLoad()
672{
673    assert(loadQueue[loadHead]);
674
675    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
676            loadQueue[loadHead]->pcState());
677
678    loadQueue[loadHead] = NULL;
679
680    incrLdIdx(loadHead);
681
682    --loads;
683}
684
685template <class Impl>
686void
687LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
688{
689    assert(loads == 0 || loadQueue[loadHead]);
690
691    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
692        commitLoad();
693    }
694}
695
696template <class Impl>
697void
698LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
699{
700    assert(stores == 0 || storeQueue[storeHead].inst);
701
702    int store_idx = storeHead;
703
704    while (store_idx != storeTail) {
705        assert(storeQueue[store_idx].inst);
706        // Mark any stores that are now committed and have not yet
707        // been marked as able to write back.
708        if (!storeQueue[store_idx].canWB) {
709            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
710                break;
711            }
712            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
713                    "%s [sn:%lli]\n",
714                    storeQueue[store_idx].inst->pcState(),
715                    storeQueue[store_idx].inst->seqNum);
716
717            storeQueue[store_idx].canWB = true;
718
719            ++storesToWB;
720        }
721
722        incrStIdx(store_idx);
723    }
724}
725
726template <class Impl>
727void
728LSQUnit<Impl>::writebackPendingStore()
729{
730    if (hasPendingPkt) {
731        assert(pendingPkt != NULL);
732
733        // If the cache is blocked, this will store the packet for retry.
734        if (sendStore(pendingPkt)) {
735            storePostSend(pendingPkt);
736        }
737        pendingPkt = NULL;
738        hasPendingPkt = false;
739    }
740}
741
742template <class Impl>
743void
744LSQUnit<Impl>::writebackStores()
745{
746    // First writeback the second packet from any split store that didn't
747    // complete last cycle because there weren't enough cache ports available.
748    if (TheISA::HasUnalignedMemAcc) {
749        writebackPendingStore();
750    }
751
752    while (storesToWB > 0 &&
753           storeWBIdx != storeTail &&
754           storeQueue[storeWBIdx].inst &&
755           storeQueue[storeWBIdx].canWB &&
756           ((!needsTSO) || (!storeInFlight)) &&
757           usedPorts < cachePorts) {
758
759        if (isStoreBlocked || lsq->cacheBlocked()) {
760            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
761                    " is blocked!\n");
762            break;
763        }
764
765        // Store didn't write any data so no need to write it back to
766        // memory.
767        if (storeQueue[storeWBIdx].size == 0) {
768            completeStore(storeWBIdx);
769
770            incrStIdx(storeWBIdx);
771
772            continue;
773        }
774
775        ++usedPorts;
776
777        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
778            incrStIdx(storeWBIdx);
779
780            continue;
781        }
782
783        assert(storeQueue[storeWBIdx].req);
784        assert(!storeQueue[storeWBIdx].committed);
785
786        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
787            assert(storeQueue[storeWBIdx].sreqLow);
788            assert(storeQueue[storeWBIdx].sreqHigh);
789        }
790
791        DynInstPtr inst = storeQueue[storeWBIdx].inst;
792
793        Request *req = storeQueue[storeWBIdx].req;
794        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
795        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
796
797        storeQueue[storeWBIdx].committed = true;
798
799        assert(!inst->memData);
800        inst->memData = new uint8_t[64];
801
802        memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
803
804        MemCmd command =
805            req->isSwap() ? MemCmd::SwapReq :
806            (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
807        PacketPtr data_pkt;
808        PacketPtr snd_data_pkt = NULL;
809
810        LSQSenderState *state = new LSQSenderState;
811        state->isLoad = false;
812        state->idx = storeWBIdx;
813        state->inst = inst;
814
815        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
816
817            // Build a single data packet if the store isn't split.
818            data_pkt = new Packet(req, command);
819            data_pkt->dataStatic(inst->memData);
820            data_pkt->senderState = state;
821        } else {
822            // Create two packets if the store is split in two.
823            data_pkt = new Packet(sreqLow, command);
824            snd_data_pkt = new Packet(sreqHigh, command);
825
826            data_pkt->dataStatic(inst->memData);
827            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
828
829            data_pkt->senderState = state;
830            snd_data_pkt->senderState = state;
831
832            state->isSplit = true;
833            state->outstanding = 2;
834
835            // Can delete the main request now.
836            delete req;
837            req = sreqLow;
838        }
839
840        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
841                "to Addr:%#x, data:%#x [sn:%lli]\n",
842                storeWBIdx, inst->pcState(),
843                req->getPaddr(), (int)*(inst->memData),
844                inst->seqNum);
845
846        // @todo: Remove this SC hack once the memory system handles it.
847        if (inst->isStoreConditional()) {
848            assert(!storeQueue[storeWBIdx].isSplit);
849            // Disable recording the result temporarily.  Writing to
850            // misc regs normally updates the result, but this is not
851            // the desired behavior when handling store conditionals.
852            inst->recordResult(false);
853            bool success = TheISA::handleLockedWrite(inst.get(), req);
854            inst->recordResult(true);
855
856            if (!success) {
857                // Instantly complete this store.
858                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
859                        "Instantly completing it.\n",
860                        inst->seqNum);
861                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
862                cpu->schedule(wb, curTick() + 1);
863                if (cpu->checker) {
864                    // Make sure to set the LLSC data for verification
865                    // if checker is loaded
866                    inst->reqToVerify->setExtraData(0);
867                    inst->completeAcc(data_pkt);
868                }
869                completeStore(storeWBIdx);
870                incrStIdx(storeWBIdx);
871                continue;
872            }
873        } else {
874            // Non-store conditionals do not need a writeback.
875            state->noWB = true;
876        }
877
878        bool split =
879            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
880
881        ThreadContext *thread = cpu->tcBase(lsqID);
882
883        if (req->isMmappedIpr()) {
884            assert(!inst->isStoreConditional());
885            TheISA::handleIprWrite(thread, data_pkt);
886            delete data_pkt;
887            if (split) {
888                assert(snd_data_pkt->req->isMmappedIpr());
889                TheISA::handleIprWrite(thread, snd_data_pkt);
890                delete snd_data_pkt;
891                delete sreqLow;
892                delete sreqHigh;
893            }
894            delete state;
895            delete req;
896            completeStore(storeWBIdx);
897            incrStIdx(storeWBIdx);
898        } else if (!sendStore(data_pkt)) {
899            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
900                    "retry later\n",
901                    inst->seqNum);
902
903            // Need to store the second packet, if split.
904            if (split) {
905                state->pktToSend = true;
906                state->pendingPacket = snd_data_pkt;
907            }
908        } else {
909
910            // If split, try to send the second packet too
911            if (split) {
912                assert(snd_data_pkt);
913
914                // Ensure there are enough ports to use.
915                if (usedPorts < cachePorts) {
916                    ++usedPorts;
917                    if (sendStore(snd_data_pkt)) {
918                        storePostSend(snd_data_pkt);
919                    } else {
920                        DPRINTF(IEW, "D-Cache became blocked when writing"
921                                " [sn:%lli] second packet, will retry later\n",
922                                inst->seqNum);
923                    }
924                } else {
925
926                    // Store the packet for when there's free ports.
927                    assert(pendingPkt == NULL);
928                    pendingPkt = snd_data_pkt;
929                    hasPendingPkt = true;
930                }
931            } else {
932
933                // Not a split store.
934                storePostSend(data_pkt);
935            }
936        }
937    }
938
939    // Not sure this should set it to 0.
940    usedPorts = 0;
941
942    assert(stores >= 0 && storesToWB >= 0);
943}
944
945/*template <class Impl>
946void
947LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
948{
949    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
950                                              mshrSeqNums.end(),
951                                              seqNum);
952
953    if (mshr_it != mshrSeqNums.end()) {
954        mshrSeqNums.erase(mshr_it);
955        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
956    }
957}*/
958
959template <class Impl>
960void
961LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
962{
963    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
964            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
965
966    int load_idx = loadTail;
967    decrLdIdx(load_idx);
968
969    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
970        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
971                "[sn:%lli]\n",
972                loadQueue[load_idx]->pcState(),
973                loadQueue[load_idx]->seqNum);
974
975        if (isStalled() && load_idx == stallingLoadIdx) {
976            stalled = false;
977            stallingStoreIsn = 0;
978            stallingLoadIdx = 0;
979        }
980
981        // Clear the smart pointer to make sure it is decremented.
982        loadQueue[load_idx]->setSquashed();
983        loadQueue[load_idx] = NULL;
984        --loads;
985
986        // Inefficient!
987        loadTail = load_idx;
988
989        decrLdIdx(load_idx);
990        ++lsqSquashedLoads;
991    }
992
993    if (isLoadBlocked) {
994        if (squashed_num < blockedLoadSeqNum) {
995            isLoadBlocked = false;
996            loadBlockedHandled = false;
997            blockedLoadSeqNum = 0;
998        }
999    }
1000
1001    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1002        memDepViolator = NULL;
1003    }
1004
1005    int store_idx = storeTail;
1006    decrStIdx(store_idx);
1007
1008    while (stores != 0 &&
1009           storeQueue[store_idx].inst->seqNum > squashed_num) {
1010        // Instructions marked as can WB are already committed.
1011        if (storeQueue[store_idx].canWB) {
1012            break;
1013        }
1014
1015        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1016                "idx:%i [sn:%lli]\n",
1017                storeQueue[store_idx].inst->pcState(),
1018                store_idx, storeQueue[store_idx].inst->seqNum);
1019
1020        // I don't think this can happen.  It should have been cleared
1021        // by the stalling load.
1022        if (isStalled() &&
1023            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1024            panic("Is stalled should have been cleared by stalling load!\n");
1025            stalled = false;
1026            stallingStoreIsn = 0;
1027        }
1028
1029        // Clear the smart pointer to make sure it is decremented.
1030        storeQueue[store_idx].inst->setSquashed();
1031        storeQueue[store_idx].inst = NULL;
1032        storeQueue[store_idx].canWB = 0;
1033
1034        // Must delete request now that it wasn't handed off to
1035        // memory.  This is quite ugly.  @todo: Figure out the proper
1036        // place to really handle request deletes.
1037        delete storeQueue[store_idx].req;
1038        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1039            delete storeQueue[store_idx].sreqLow;
1040            delete storeQueue[store_idx].sreqHigh;
1041
1042            storeQueue[store_idx].sreqLow = NULL;
1043            storeQueue[store_idx].sreqHigh = NULL;
1044        }
1045
1046        storeQueue[store_idx].req = NULL;
1047        --stores;
1048
1049        // Inefficient!
1050        storeTail = store_idx;
1051
1052        decrStIdx(store_idx);
1053        ++lsqSquashedStores;
1054    }
1055}
1056
1057template <class Impl>
1058void
1059LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1060{
1061    if (isStalled() &&
1062        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1063        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1064                "load idx:%i\n",
1065                stallingStoreIsn, stallingLoadIdx);
1066        stalled = false;
1067        stallingStoreIsn = 0;
1068        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1069    }
1070
1071    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1072        // The store is basically completed at this time. This
1073        // only works so long as the checker doesn't try to
1074        // verify the value in memory for stores.
1075        storeQueue[storeWBIdx].inst->setCompleted();
1076
1077        if (cpu->checker) {
1078            cpu->checker->verify(storeQueue[storeWBIdx].inst);
1079        }
1080    }
1081
1082    if (needsTSO) {
1083        storeInFlight = true;
1084    }
1085
1086    incrStIdx(storeWBIdx);
1087}
1088
1089template <class Impl>
1090void
1091LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1092{
1093    iewStage->wakeCPU();
1094
1095    // Squashed instructions do not need to complete their access.
1096    if (inst->isSquashed()) {
1097        iewStage->decrWb(inst->seqNum);
1098        assert(!inst->isStore());
1099        ++lsqIgnoredResponses;
1100        return;
1101    }
1102
1103    if (!inst->isExecuted()) {
1104        inst->setExecuted();
1105
1106        // Complete access to copy data to proper place.
1107        inst->completeAcc(pkt);
1108    }
1109
1110    // Need to insert instruction into queue to commit
1111    iewStage->instToCommit(inst);
1112
1113    iewStage->activityThisCycle();
1114
1115    // see if this load changed the PC
1116    iewStage->checkMisprediction(inst);
1117}
1118
1119template <class Impl>
1120void
1121LSQUnit<Impl>::completeStore(int store_idx)
1122{
1123    assert(storeQueue[store_idx].inst);
1124    storeQueue[store_idx].completed = true;
1125    --storesToWB;
1126    // A bit conservative because a store completion may not free up entries,
1127    // but hopefully avoids two store completions in one cycle from making
1128    // the CPU tick twice.
1129    cpu->wakeCPU();
1130    cpu->activityThisCycle();
1131
1132    if (store_idx == storeHead) {
1133        do {
1134            incrStIdx(storeHead);
1135
1136            --stores;
1137        } while (storeQueue[storeHead].completed &&
1138                 storeHead != storeTail);
1139
1140        iewStage->updateLSQNextCycle = true;
1141    }
1142
1143    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1144            "idx:%i\n",
1145            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1146
1147    if (isStalled() &&
1148        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1149        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1150                "load idx:%i\n",
1151                stallingStoreIsn, stallingLoadIdx);
1152        stalled = false;
1153        stallingStoreIsn = 0;
1154        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1155    }
1156
1157    storeQueue[store_idx].inst->setCompleted();
1158
1159    if (needsTSO) {
1160        storeInFlight = false;
1161    }
1162
1163    // Tell the checker we've completed this instruction.  Some stores
1164    // may get reported twice to the checker, but the checker can
1165    // handle that case.
1166    if (cpu->checker) {
1167        cpu->checker->verify(storeQueue[store_idx].inst);
1168    }
1169}
1170
1171template <class Impl>
1172bool
1173LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1174{
1175    if (!dcachePort->sendTimingReq(data_pkt)) {
1176        // Need to handle becoming blocked on a store.
1177        isStoreBlocked = true;
1178        ++lsqCacheBlocked;
1179        assert(retryPkt == NULL);
1180        retryPkt = data_pkt;
1181        lsq->setRetryTid(lsqID);
1182        return false;
1183    }
1184    return true;
1185}
1186
1187template <class Impl>
1188void
1189LSQUnit<Impl>::recvRetry()
1190{
1191    if (isStoreBlocked) {
1192        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1193        assert(retryPkt != NULL);
1194
1195        LSQSenderState *state =
1196            dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1197
1198        if (dcachePort->sendTimingReq(retryPkt)) {
1199            // Don't finish the store unless this is the last packet.
1200            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1201                    state->pendingPacket == retryPkt) {
1202                state->pktToSend = false;
1203                storePostSend(retryPkt);
1204            }
1205            retryPkt = NULL;
1206            isStoreBlocked = false;
1207            lsq->setRetryTid(InvalidThreadID);
1208
1209            // Send any outstanding packet.
1210            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1211                assert(state->pendingPacket);
1212                if (sendStore(state->pendingPacket)) {
1213                    storePostSend(state->pendingPacket);
1214                }
1215            }
1216        } else {
1217            // Still blocked!
1218            ++lsqCacheBlocked;
1219            lsq->setRetryTid(lsqID);
1220        }
1221    } else if (isLoadBlocked) {
1222        DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1223                "no need to resend packet.\n");
1224    } else {
1225        DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1226    }
1227}
1228
1229template <class Impl>
1230inline void
1231LSQUnit<Impl>::incrStIdx(int &store_idx)
1232{
1233    if (++store_idx >= SQEntries)
1234        store_idx = 0;
1235}
1236
1237template <class Impl>
1238inline void
1239LSQUnit<Impl>::decrStIdx(int &store_idx)
1240{
1241    if (--store_idx < 0)
1242        store_idx += SQEntries;
1243}
1244
1245template <class Impl>
1246inline void
1247LSQUnit<Impl>::incrLdIdx(int &load_idx)
1248{
1249    if (++load_idx >= LQEntries)
1250        load_idx = 0;
1251}
1252
1253template <class Impl>
1254inline void
1255LSQUnit<Impl>::decrLdIdx(int &load_idx)
1256{
1257    if (--load_idx < 0)
1258        load_idx += LQEntries;
1259}
1260
1261template <class Impl>
1262void
1263LSQUnit<Impl>::dumpInsts()
1264{
1265    cprintf("Load store queue: Dumping instructions.\n");
1266    cprintf("Load queue size: %i\n", loads);
1267    cprintf("Load queue: ");
1268
1269    int load_idx = loadHead;
1270
1271    while (load_idx != loadTail && loadQueue[load_idx]) {
1272        cprintf("%s ", loadQueue[load_idx]->pcState());
1273
1274        incrLdIdx(load_idx);
1275    }
1276
1277    cprintf("Store queue size: %i\n", stores);
1278    cprintf("Store queue: ");
1279
1280    int store_idx = storeHead;
1281
1282    while (store_idx != storeTail && storeQueue[store_idx].inst) {
1283        cprintf("%s ", storeQueue[store_idx].inst->pcState());
1284
1285        incrStIdx(store_idx);
1286    }
1287
1288    cprintf("\n");
1289}
1290