lsq_unit.hh revision 9440
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/generic/debugfaults.hh" 41#include "arch/isa_traits.hh" 42#include "arch/locked_mem.hh" 43#include "arch/mmapped_ipr.hh" 44#include "base/hashmap.hh" 45#include "config/the_isa.hh" 46#include "cpu/inst_seq.hh" 47#include "cpu/timebuf.hh" 48#include "debug/LSQUnit.hh" 49#include "mem/packet.hh" 50#include "mem/port.hh" 51#include "sim/fault_fwd.hh" 52 53struct DerivO3CPUParams; 54 55/** 56 * Class that implements the actual LQ and SQ for each specific 57 * thread. Both are circular queues; load entries are freed upon 58 * committing, while store entries are freed once they writeback. The 59 * LSQUnit tracks if there are memory ordering violations, and also 60 * detects partial load to store forwarding cases (a store only has 61 * part of a load's data) that requires the load to wait until the 62 * store writes back. In the former case it holds onto the instruction 63 * until the dependence unit looks at it, and in the latter it stalls 64 * the LSQ until the store writes back. At that point the load is 65 * replayed. 66 */ 67template <class Impl> 68class LSQUnit { 69 public: 70 typedef typename Impl::O3CPU O3CPU; 71 typedef typename Impl::DynInstPtr DynInstPtr; 72 typedef typename Impl::CPUPol::IEW IEW; 73 typedef typename Impl::CPUPol::LSQ LSQ; 74 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 75 76 public: 77 /** Constructs an LSQ unit. init() must be called prior to use. */ 78 LSQUnit(); 79 80 /** Initializes the LSQ unit with the specified number of entries. */ 81 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 82 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 83 unsigned id); 84 85 /** Returns the name of the LSQ unit. */ 86 std::string name() const; 87 88 /** Registers statistics. */ 89 void regStats(); 90 91 /** Sets the pointer to the dcache port. */ 92 void setDcachePort(MasterPort *dcache_port); 93 94 /** Switches out LSQ unit. */ 95 void switchOut(); 96 97 /** Takes over from another CPU's thread. */ 98 void takeOverFrom(); 99 100 /** Returns if the LSQ is switched out. */ 101 bool isSwitchedOut() { return switchedOut; } 102 103 /** Ticks the LSQ unit, which in this case only resets the number of 104 * used cache ports. 105 * @todo: Move the number of used ports up to the LSQ level so it can 106 * be shared by all LSQ units. 107 */ 108 void tick() { usedPorts = 0; } 109 110 /** Inserts an instruction. */ 111 void insert(DynInstPtr &inst); 112 /** Inserts a load instruction. */ 113 void insertLoad(DynInstPtr &load_inst); 114 /** Inserts a store instruction. */ 115 void insertStore(DynInstPtr &store_inst); 116 117 /** Check for ordering violations in the LSQ. For a store squash if we 118 * ever find a conflicting load. For a load, only squash if we 119 * an external snoop invalidate has been seen for that load address 120 * @param load_idx index to start checking at 121 * @param inst the instruction to check 122 */ 123 Fault checkViolations(int load_idx, DynInstPtr &inst); 124 125 /** Check if an incoming invalidate hits in the lsq on a load 126 * that might have issued out of order wrt another load beacuse 127 * of the intermediate invalidate. 128 */ 129 void checkSnoop(PacketPtr pkt); 130 131 /** Executes a load instruction. */ 132 Fault executeLoad(DynInstPtr &inst); 133 134 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 135 /** Executes a store instruction. */ 136 Fault executeStore(DynInstPtr &inst); 137 138 /** Commits the head load. */ 139 void commitLoad(); 140 /** Commits loads older than a specific sequence number. */ 141 void commitLoads(InstSeqNum &youngest_inst); 142 143 /** Commits stores older than a specific sequence number. */ 144 void commitStores(InstSeqNum &youngest_inst); 145 146 /** Writes back stores. */ 147 void writebackStores(); 148 149 /** Completes the data access that has been returned from the 150 * memory system. */ 151 void completeDataAccess(PacketPtr pkt); 152 153 /** Clears all the entries in the LQ. */ 154 void clearLQ(); 155 156 /** Clears all the entries in the SQ. */ 157 void clearSQ(); 158 159 /** Resizes the LQ to a given size. */ 160 void resizeLQ(unsigned size); 161 162 /** Resizes the SQ to a given size. */ 163 void resizeSQ(unsigned size); 164 165 /** Squashes all instructions younger than a specific sequence number. */ 166 void squash(const InstSeqNum &squashed_num); 167 168 /** Returns if there is a memory ordering violation. Value is reset upon 169 * call to getMemDepViolator(). 170 */ 171 bool violation() { return memDepViolator; } 172 173 /** Returns the memory ordering violator. */ 174 DynInstPtr getMemDepViolator(); 175 176 /** Returns if a load became blocked due to the memory system. */ 177 bool loadBlocked() 178 { return isLoadBlocked; } 179 180 /** Clears the signal that a load became blocked. */ 181 void clearLoadBlocked() 182 { isLoadBlocked = false; } 183 184 /** Returns if the blocked load was handled. */ 185 bool isLoadBlockedHandled() 186 { return loadBlockedHandled; } 187 188 /** Records the blocked load as being handled. */ 189 void setLoadBlockedHandled() 190 { loadBlockedHandled = true; } 191 192 /** Returns the number of free entries (min of free LQ and SQ entries). */ 193 unsigned numFreeEntries(); 194 195 /** Returns the number of loads in the LQ. */ 196 int numLoads() { return loads; } 197 198 /** Returns the number of stores in the SQ. */ 199 int numStores() { return stores; } 200 201 /** Returns if either the LQ or SQ is full. */ 202 bool isFull() { return lqFull() || sqFull(); } 203 204 /** Returns if the LQ is full. */ 205 bool lqFull() { return loads >= (LQEntries - 1); } 206 207 /** Returns if the SQ is full. */ 208 bool sqFull() { return stores >= (SQEntries - 1); } 209 210 /** Returns the number of instructions in the LSQ. */ 211 unsigned getCount() { return loads + stores; } 212 213 /** Returns if there are any stores to writeback. */ 214 bool hasStoresToWB() { return storesToWB; } 215 216 /** Returns the number of stores to writeback. */ 217 int numStoresToWB() { return storesToWB; } 218 219 /** Returns if the LSQ unit will writeback on this cycle. */ 220 bool willWB() { return storeQueue[storeWBIdx].canWB && 221 !storeQueue[storeWBIdx].completed && 222 !isStoreBlocked; } 223 224 /** Handles doing the retry. */ 225 void recvRetry(); 226 227 private: 228 /** Writes back the instruction, sending it to IEW. */ 229 void writeback(DynInstPtr &inst, PacketPtr pkt); 230 231 /** Writes back a store that couldn't be completed the previous cycle. */ 232 void writebackPendingStore(); 233 234 /** Handles completing the send of a store to memory. */ 235 void storePostSend(PacketPtr pkt); 236 237 /** Completes the store at the specified index. */ 238 void completeStore(int store_idx); 239 240 /** Attempts to send a store to the cache. */ 241 bool sendStore(PacketPtr data_pkt); 242 243 /** Increments the given store index (circular queue). */ 244 inline void incrStIdx(int &store_idx) const; 245 /** Decrements the given store index (circular queue). */ 246 inline void decrStIdx(int &store_idx) const; 247 /** Increments the given load index (circular queue). */ 248 inline void incrLdIdx(int &load_idx) const; 249 /** Decrements the given load index (circular queue). */ 250 inline void decrLdIdx(int &load_idx) const; 251 252 public: 253 /** Debugging function to dump instructions in the LSQ. */ 254 void dumpInsts() const; 255 256 private: 257 /** Pointer to the CPU. */ 258 O3CPU *cpu; 259 260 /** Pointer to the IEW stage. */ 261 IEW *iewStage; 262 263 /** Pointer to the LSQ. */ 264 LSQ *lsq; 265 266 /** Pointer to the dcache port. Used only for sending. */ 267 MasterPort *dcachePort; 268 269 /** Derived class to hold any sender state the LSQ needs. */ 270 class LSQSenderState : public Packet::SenderState 271 { 272 public: 273 /** Default constructor. */ 274 LSQSenderState() 275 : mainPkt(NULL), pendingPacket(NULL), outstanding(1), 276 noWB(false), isSplit(false), pktToSend(false) 277 { } 278 279 /** Instruction who initiated the access to memory. */ 280 DynInstPtr inst; 281 /** The main packet from a split load, used during writeback. */ 282 PacketPtr mainPkt; 283 /** A second packet from a split store that needs sending. */ 284 PacketPtr pendingPacket; 285 /** The LQ/SQ index of the instruction. */ 286 uint8_t idx; 287 /** Number of outstanding packets to complete. */ 288 uint8_t outstanding; 289 /** Whether or not it is a load. */ 290 bool isLoad; 291 /** Whether or not the instruction will need to writeback. */ 292 bool noWB; 293 /** Whether or not this access is split in two. */ 294 bool isSplit; 295 /** Whether or not there is a packet that needs sending. */ 296 bool pktToSend; 297 298 /** Completes a packet and returns whether the access is finished. */ 299 inline bool complete() { return --outstanding == 0; } 300 }; 301 302 /** Writeback event, specifically for when stores forward data to loads. */ 303 class WritebackEvent : public Event { 304 public: 305 /** Constructs a writeback event. */ 306 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 307 308 /** Processes the writeback event. */ 309 void process(); 310 311 /** Returns the description of this event. */ 312 const char *description() const; 313 314 private: 315 /** Instruction whose results are being written back. */ 316 DynInstPtr inst; 317 318 /** The packet that would have been sent to memory. */ 319 PacketPtr pkt; 320 321 /** The pointer to the LSQ unit that issued the store. */ 322 LSQUnit<Impl> *lsqPtr; 323 }; 324 325 public: 326 struct SQEntry { 327 /** Constructs an empty store queue entry. */ 328 SQEntry() 329 : inst(NULL), req(NULL), size(0), 330 canWB(0), committed(0), completed(0) 331 { 332 std::memset(data, 0, sizeof(data)); 333 } 334 335 ~SQEntry() 336 { 337 inst = NULL; 338 } 339 340 /** Constructs a store queue entry for a given instruction. */ 341 SQEntry(DynInstPtr &_inst) 342 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 343 isSplit(0), canWB(0), committed(0), completed(0) 344 { 345 std::memset(data, 0, sizeof(data)); 346 } 347 /** The store data. */ 348 char data[16]; 349 /** The store instruction. */ 350 DynInstPtr inst; 351 /** The request for the store. */ 352 RequestPtr req; 353 /** The split requests for the store. */ 354 RequestPtr sreqLow; 355 RequestPtr sreqHigh; 356 /** The size of the store. */ 357 uint8_t size; 358 /** Whether or not the store is split into two requests. */ 359 bool isSplit; 360 /** Whether or not the store can writeback. */ 361 bool canWB; 362 /** Whether or not the store is committed. */ 363 bool committed; 364 /** Whether or not the store is completed. */ 365 bool completed; 366 }; 367 368 private: 369 /** The LSQUnit thread id. */ 370 ThreadID lsqID; 371 372 /** The store queue. */ 373 std::vector<SQEntry> storeQueue; 374 375 /** The load queue. */ 376 std::vector<DynInstPtr> loadQueue; 377 378 /** The number of LQ entries, plus a sentinel entry (circular queue). 379 * @todo: Consider having var that records the true number of LQ entries. 380 */ 381 unsigned LQEntries; 382 /** The number of SQ entries, plus a sentinel entry (circular queue). 383 * @todo: Consider having var that records the true number of SQ entries. 384 */ 385 unsigned SQEntries; 386 387 /** The number of places to shift addresses in the LSQ before checking 388 * for dependency violations 389 */ 390 unsigned depCheckShift; 391 392 /** Should loads be checked for dependency issues */ 393 bool checkLoads; 394 395 /** The number of load instructions in the LQ. */ 396 int loads; 397 /** The number of store instructions in the SQ. */ 398 int stores; 399 /** The number of store instructions in the SQ waiting to writeback. */ 400 int storesToWB; 401 402 /** The index of the head instruction in the LQ. */ 403 int loadHead; 404 /** The index of the tail instruction in the LQ. */ 405 int loadTail; 406 407 /** The index of the head instruction in the SQ. */ 408 int storeHead; 409 /** The index of the first instruction that may be ready to be 410 * written back, and has not yet been written back. 411 */ 412 int storeWBIdx; 413 /** The index of the tail instruction in the SQ. */ 414 int storeTail; 415 416 /// @todo Consider moving to a more advanced model with write vs read ports 417 /** The number of cache ports available each cycle. */ 418 int cachePorts; 419 420 /** The number of used cache ports in this cycle. */ 421 int usedPorts; 422 423 /** Is the LSQ switched out. */ 424 bool switchedOut; 425 426 //list<InstSeqNum> mshrSeqNums; 427 428 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 429 Addr cacheBlockMask; 430 431 /** Wire to read information from the issue stage time queue. */ 432 typename TimeBuffer<IssueStruct>::wire fromIssue; 433 434 /** Whether or not the LSQ is stalled. */ 435 bool stalled; 436 /** The store that causes the stall due to partial store to load 437 * forwarding. 438 */ 439 InstSeqNum stallingStoreIsn; 440 /** The index of the above store. */ 441 int stallingLoadIdx; 442 443 /** The packet that needs to be retried. */ 444 PacketPtr retryPkt; 445 446 /** Whehter or not a store is blocked due to the memory system. */ 447 bool isStoreBlocked; 448 449 /** Whether or not a load is blocked due to the memory system. */ 450 bool isLoadBlocked; 451 452 /** Has the blocked load been handled. */ 453 bool loadBlockedHandled; 454 455 /** Whether or not a store is in flight. */ 456 bool storeInFlight; 457 458 /** The sequence number of the blocked load. */ 459 InstSeqNum blockedLoadSeqNum; 460 461 /** The oldest load that caused a memory ordering violation. */ 462 DynInstPtr memDepViolator; 463 464 /** Whether or not there is a packet that couldn't be sent because of 465 * a lack of cache ports. */ 466 bool hasPendingPkt; 467 468 /** The packet that is pending free cache ports. */ 469 PacketPtr pendingPkt; 470 471 /** Flag for memory model. */ 472 bool needsTSO; 473 474 // Will also need how many read/write ports the Dcache has. Or keep track 475 // of that in stage that is one level up, and only call executeLoad/Store 476 // the appropriate number of times. 477 /** Total number of loads forwaded from LSQ stores. */ 478 Stats::Scalar lsqForwLoads; 479 480 /** Total number of loads ignored due to invalid addresses. */ 481 Stats::Scalar invAddrLoads; 482 483 /** Total number of squashed loads. */ 484 Stats::Scalar lsqSquashedLoads; 485 486 /** Total number of responses from the memory system that are 487 * ignored due to the instruction already being squashed. */ 488 Stats::Scalar lsqIgnoredResponses; 489 490 /** Tota number of memory ordering violations. */ 491 Stats::Scalar lsqMemOrderViolation; 492 493 /** Total number of squashed stores. */ 494 Stats::Scalar lsqSquashedStores; 495 496 /** Total number of software prefetches ignored due to invalid addresses. */ 497 Stats::Scalar invAddrSwpfs; 498 499 /** Ready loads blocked due to partial store-forwarding. */ 500 Stats::Scalar lsqBlockedLoads; 501 502 /** Number of loads that were rescheduled. */ 503 Stats::Scalar lsqRescheduledLoads; 504 505 /** Number of times the LSQ is blocked due to the cache. */ 506 Stats::Scalar lsqCacheBlocked; 507 508 public: 509 /** Executes the load at the given index. */ 510 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 511 uint8_t *data, int load_idx); 512 513 /** Executes the store at the given index. */ 514 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 515 uint8_t *data, int store_idx); 516 517 /** Returns the index of the head load instruction. */ 518 int getLoadHead() { return loadHead; } 519 /** Returns the sequence number of the head load instruction. */ 520 InstSeqNum getLoadHeadSeqNum() 521 { 522 if (loadQueue[loadHead]) { 523 return loadQueue[loadHead]->seqNum; 524 } else { 525 return 0; 526 } 527 528 } 529 530 /** Returns the index of the head store instruction. */ 531 int getStoreHead() { return storeHead; } 532 /** Returns the sequence number of the head store instruction. */ 533 InstSeqNum getStoreHeadSeqNum() 534 { 535 if (storeQueue[storeHead].inst) { 536 return storeQueue[storeHead].inst->seqNum; 537 } else { 538 return 0; 539 } 540 541 } 542 543 /** Returns whether or not the LSQ unit is stalled. */ 544 bool isStalled() { return stalled; } 545}; 546 547template <class Impl> 548Fault 549LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 550 uint8_t *data, int load_idx) 551{ 552 DynInstPtr load_inst = loadQueue[load_idx]; 553 554 assert(load_inst); 555 556 assert(!load_inst->isExecuted()); 557 558 // Make sure this isn't an uncacheable access 559 // A bit of a hackish way to get uncached accesses to work only if they're 560 // at the head of the LSQ and are ready to commit (at the head of the ROB 561 // too). 562 if (req->isUncacheable() && 563 (load_idx != loadHead || !load_inst->isAtCommit())) { 564 iewStage->rescheduleMemInst(load_inst); 565 ++lsqRescheduledLoads; 566 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 567 load_inst->seqNum, load_inst->pcState()); 568 569 // Must delete request now that it wasn't handed off to 570 // memory. This is quite ugly. @todo: Figure out the proper 571 // place to really handle request deletes. 572 delete req; 573 if (TheISA::HasUnalignedMemAcc && sreqLow) { 574 delete sreqLow; 575 delete sreqHigh; 576 } 577 return new GenericISA::M5PanicFault( 578 "Uncachable load [sn:%llx] PC %s\n", 579 load_inst->seqNum, load_inst->pcState()); 580 } 581 582 // Check the SQ for any previous stores that might lead to forwarding 583 int store_idx = load_inst->sqIdx; 584 585 int store_size = 0; 586 587 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 588 "storeHead: %i addr: %#x%s\n", 589 load_idx, store_idx, storeHead, req->getPaddr(), 590 sreqLow ? " split" : ""); 591 592 if (req->isLLSC()) { 593 assert(!sreqLow); 594 // Disable recording the result temporarily. Writing to misc 595 // regs normally updates the result, but this is not the 596 // desired behavior when handling store conditionals. 597 load_inst->recordResult(false); 598 TheISA::handleLockedRead(load_inst.get(), req); 599 load_inst->recordResult(true); 600 } 601 602 if (req->isMmappedIpr()) { 603 assert(!load_inst->memData); 604 load_inst->memData = new uint8_t[64]; 605 606 ThreadContext *thread = cpu->tcBase(lsqID); 607 Cycles delay(0); 608 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 609 610 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 611 data_pkt->dataStatic(load_inst->memData); 612 delay = TheISA::handleIprRead(thread, data_pkt); 613 } else { 614 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 615 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 616 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 617 618 fst_data_pkt->dataStatic(load_inst->memData); 619 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 620 621 delay = TheISA::handleIprRead(thread, fst_data_pkt); 622 Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 623 if (delay2 > delay) 624 delay = delay2; 625 626 delete sreqLow; 627 delete sreqHigh; 628 delete fst_data_pkt; 629 delete snd_data_pkt; 630 } 631 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 632 cpu->schedule(wb, cpu->clockEdge(delay)); 633 return NoFault; 634 } 635 636 while (store_idx != -1) { 637 // End once we've reached the top of the LSQ 638 if (store_idx == storeWBIdx) { 639 break; 640 } 641 642 // Move the index to one younger 643 if (--store_idx < 0) 644 store_idx += SQEntries; 645 646 assert(storeQueue[store_idx].inst); 647 648 store_size = storeQueue[store_idx].size; 649 650 if (store_size == 0) 651 continue; 652 else if (storeQueue[store_idx].inst->uncacheable()) 653 continue; 654 655 assert(storeQueue[store_idx].inst->effAddrValid()); 656 657 // Check if the store data is within the lower and upper bounds of 658 // addresses that the request needs. 659 bool store_has_lower_limit = 660 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 661 bool store_has_upper_limit = 662 (req->getVaddr() + req->getSize()) <= 663 (storeQueue[store_idx].inst->effAddr + store_size); 664 bool lower_load_has_store_part = 665 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 666 store_size); 667 bool upper_load_has_store_part = 668 (req->getVaddr() + req->getSize()) > 669 storeQueue[store_idx].inst->effAddr; 670 671 // If the store's data has all of the data needed, we can forward. 672 if ((store_has_lower_limit && store_has_upper_limit)) { 673 // Get shift amount for offset into the store's data. 674 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 675 676 memcpy(data, storeQueue[store_idx].data + shift_amt, 677 req->getSize()); 678 679 assert(!load_inst->memData); 680 load_inst->memData = new uint8_t[64]; 681 682 memcpy(load_inst->memData, 683 storeQueue[store_idx].data + shift_amt, req->getSize()); 684 685 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 686 "addr %#x, data %#x\n", 687 store_idx, req->getVaddr(), data); 688 689 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 690 data_pkt->dataStatic(load_inst->memData); 691 692 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 693 694 // We'll say this has a 1 cycle load-store forwarding latency 695 // for now. 696 // @todo: Need to make this a parameter. 697 cpu->schedule(wb, curTick()); 698 699 // Don't need to do anything special for split loads. 700 if (TheISA::HasUnalignedMemAcc && sreqLow) { 701 delete sreqLow; 702 delete sreqHigh; 703 } 704 705 ++lsqForwLoads; 706 return NoFault; 707 } else if ((store_has_lower_limit && lower_load_has_store_part) || 708 (store_has_upper_limit && upper_load_has_store_part) || 709 (lower_load_has_store_part && upper_load_has_store_part)) { 710 // This is the partial store-load forwarding case where a store 711 // has only part of the load's data. 712 713 // If it's already been written back, then don't worry about 714 // stalling on it. 715 if (storeQueue[store_idx].completed) { 716 panic("Should not check one of these"); 717 continue; 718 } 719 720 // Must stall load and force it to retry, so long as it's the oldest 721 // load that needs to do so. 722 if (!stalled || 723 (stalled && 724 load_inst->seqNum < 725 loadQueue[stallingLoadIdx]->seqNum)) { 726 stalled = true; 727 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 728 stallingLoadIdx = load_idx; 729 } 730 731 // Tell IQ/mem dep unit that this instruction will need to be 732 // rescheduled eventually 733 iewStage->rescheduleMemInst(load_inst); 734 iewStage->decrWb(load_inst->seqNum); 735 load_inst->clearIssued(); 736 ++lsqRescheduledLoads; 737 738 // Do not generate a writeback event as this instruction is not 739 // complete. 740 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 741 "Store idx %i to load addr %#x\n", 742 store_idx, req->getVaddr()); 743 744 // Must delete request now that it wasn't handed off to 745 // memory. This is quite ugly. @todo: Figure out the 746 // proper place to really handle request deletes. 747 delete req; 748 if (TheISA::HasUnalignedMemAcc && sreqLow) { 749 delete sreqLow; 750 delete sreqHigh; 751 } 752 753 return NoFault; 754 } 755 } 756 757 // If there's no forwarding case, then go access memory 758 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 759 load_inst->seqNum, load_inst->pcState()); 760 761 assert(!load_inst->memData); 762 load_inst->memData = new uint8_t[64]; 763 764 ++usedPorts; 765 766 // if we the cache is not blocked, do cache access 767 bool completedFirst = false; 768 if (!lsq->cacheBlocked()) { 769 MemCmd command = 770 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 771 PacketPtr data_pkt = new Packet(req, command); 772 PacketPtr fst_data_pkt = NULL; 773 PacketPtr snd_data_pkt = NULL; 774 775 data_pkt->dataStatic(load_inst->memData); 776 777 LSQSenderState *state = new LSQSenderState; 778 state->isLoad = true; 779 state->idx = load_idx; 780 state->inst = load_inst; 781 data_pkt->senderState = state; 782 783 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 784 785 // Point the first packet at the main data packet. 786 fst_data_pkt = data_pkt; 787 } else { 788 789 // Create the split packets. 790 fst_data_pkt = new Packet(sreqLow, command); 791 snd_data_pkt = new Packet(sreqHigh, command); 792 793 fst_data_pkt->dataStatic(load_inst->memData); 794 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 795 796 fst_data_pkt->senderState = state; 797 snd_data_pkt->senderState = state; 798 799 state->isSplit = true; 800 state->outstanding = 2; 801 state->mainPkt = data_pkt; 802 } 803 804 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 805 // Delete state and data packet because a load retry 806 // initiates a pipeline restart; it does not retry. 807 delete state; 808 delete data_pkt->req; 809 delete data_pkt; 810 if (TheISA::HasUnalignedMemAcc && sreqLow) { 811 delete fst_data_pkt->req; 812 delete fst_data_pkt; 813 delete snd_data_pkt->req; 814 delete snd_data_pkt; 815 sreqLow = NULL; 816 sreqHigh = NULL; 817 } 818 819 req = NULL; 820 821 // If the access didn't succeed, tell the LSQ by setting 822 // the retry thread id. 823 lsq->setRetryTid(lsqID); 824 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 825 completedFirst = true; 826 827 // The first packet was sent without problems, so send this one 828 // too. If there is a problem with this packet then the whole 829 // load will be squashed, so indicate this to the state object. 830 // The first packet will return in completeDataAccess and be 831 // handled there. 832 ++usedPorts; 833 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 834 835 // The main packet will be deleted in completeDataAccess. 836 delete snd_data_pkt->req; 837 delete snd_data_pkt; 838 839 state->complete(); 840 841 req = NULL; 842 sreqHigh = NULL; 843 844 lsq->setRetryTid(lsqID); 845 } 846 } 847 } 848 849 // If the cache was blocked, or has become blocked due to the access, 850 // handle it. 851 if (lsq->cacheBlocked()) { 852 if (req) 853 delete req; 854 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 855 delete sreqLow; 856 delete sreqHigh; 857 } 858 859 ++lsqCacheBlocked; 860 861 // If the first part of a split access succeeds, then let the LSQ 862 // handle the decrWb when completeDataAccess is called upon return 863 // of the requested first part of data 864 if (!completedFirst) 865 iewStage->decrWb(load_inst->seqNum); 866 867 // There's an older load that's already going to squash. 868 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 869 return NoFault; 870 871 // Record that the load was blocked due to memory. This 872 // load will squash all instructions after it, be 873 // refetched, and re-executed. 874 isLoadBlocked = true; 875 loadBlockedHandled = false; 876 blockedLoadSeqNum = load_inst->seqNum; 877 // No fault occurred, even though the interface is blocked. 878 return NoFault; 879 } 880 881 return NoFault; 882} 883 884template <class Impl> 885Fault 886LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 887 uint8_t *data, int store_idx) 888{ 889 assert(storeQueue[store_idx].inst); 890 891 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 892 " | storeHead:%i [sn:%i]\n", 893 store_idx, req->getPaddr(), data, storeHead, 894 storeQueue[store_idx].inst->seqNum); 895 896 storeQueue[store_idx].req = req; 897 storeQueue[store_idx].sreqLow = sreqLow; 898 storeQueue[store_idx].sreqHigh = sreqHigh; 899 unsigned size = req->getSize(); 900 storeQueue[store_idx].size = size; 901 assert(size <= sizeof(storeQueue[store_idx].data)); 902 903 // Split stores can only occur in ISAs with unaligned memory accesses. If 904 // a store request has been split, sreqLow and sreqHigh will be non-null. 905 if (TheISA::HasUnalignedMemAcc && sreqLow) { 906 storeQueue[store_idx].isSplit = true; 907 } 908 909 memcpy(storeQueue[store_idx].data, data, size); 910 911 // This function only writes the data to the store queue, so no fault 912 // can happen here. 913 return NoFault; 914} 915 916#endif // __CPU_O3_LSQ_UNIT_HH__ 917