lsq_unit.hh revision 9358:aa761458ddcb
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <cstring>
37#include <map>
38#include <queue>
39
40#include "arch/generic/debugfaults.hh"
41#include "arch/isa_traits.hh"
42#include "arch/locked_mem.hh"
43#include "arch/mmapped_ipr.hh"
44#include "base/hashmap.hh"
45#include "config/the_isa.hh"
46#include "cpu/inst_seq.hh"
47#include "cpu/timebuf.hh"
48#include "debug/LSQUnit.hh"
49#include "mem/packet.hh"
50#include "mem/port.hh"
51#include "sim/fault_fwd.hh"
52
53struct DerivO3CPUParams;
54
55/**
56 * Class that implements the actual LQ and SQ for each specific
57 * thread.  Both are circular queues; load entries are freed upon
58 * committing, while store entries are freed once they writeback. The
59 * LSQUnit tracks if there are memory ordering violations, and also
60 * detects partial load to store forwarding cases (a store only has
61 * part of a load's data) that requires the load to wait until the
62 * store writes back. In the former case it holds onto the instruction
63 * until the dependence unit looks at it, and in the latter it stalls
64 * the LSQ until the store writes back. At that point the load is
65 * replayed.
66 */
67template <class Impl>
68class LSQUnit {
69  public:
70    typedef typename Impl::O3CPU O3CPU;
71    typedef typename Impl::DynInstPtr DynInstPtr;
72    typedef typename Impl::CPUPol::IEW IEW;
73    typedef typename Impl::CPUPol::LSQ LSQ;
74    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
75
76  public:
77    /** Constructs an LSQ unit. init() must be called prior to use. */
78    LSQUnit();
79
80    /** Initializes the LSQ unit with the specified number of entries. */
81    void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
82            LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
83            unsigned id);
84
85    /** Returns the name of the LSQ unit. */
86    std::string name() const;
87
88    /** Registers statistics. */
89    void regStats();
90
91    /** Sets the pointer to the dcache port. */
92    void setDcachePort(MasterPort *dcache_port);
93
94    /** Switches out LSQ unit. */
95    void switchOut();
96
97    /** Takes over from another CPU's thread. */
98    void takeOverFrom();
99
100    /** Returns if the LSQ is switched out. */
101    bool isSwitchedOut() { return switchedOut; }
102
103    /** Ticks the LSQ unit, which in this case only resets the number of
104     * used cache ports.
105     * @todo: Move the number of used ports up to the LSQ level so it can
106     * be shared by all LSQ units.
107     */
108    void tick() { usedPorts = 0; }
109
110    /** Inserts an instruction. */
111    void insert(DynInstPtr &inst);
112    /** Inserts a load instruction. */
113    void insertLoad(DynInstPtr &load_inst);
114    /** Inserts a store instruction. */
115    void insertStore(DynInstPtr &store_inst);
116
117    /** Check for ordering violations in the LSQ. For a store squash if we
118     * ever find a conflicting load. For a load, only squash if we
119     * an external snoop invalidate has been seen for that load address
120     * @param load_idx index to start checking at
121     * @param inst the instruction to check
122     */
123    Fault checkViolations(int load_idx, DynInstPtr &inst);
124
125    /** Check if an incoming invalidate hits in the lsq on a load
126     * that might have issued out of order wrt another load beacuse
127     * of the intermediate invalidate.
128     */
129    void checkSnoop(PacketPtr pkt);
130
131    /** Executes a load instruction. */
132    Fault executeLoad(DynInstPtr &inst);
133
134    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
135    /** Executes a store instruction. */
136    Fault executeStore(DynInstPtr &inst);
137
138    /** Commits the head load. */
139    void commitLoad();
140    /** Commits loads older than a specific sequence number. */
141    void commitLoads(InstSeqNum &youngest_inst);
142
143    /** Commits stores older than a specific sequence number. */
144    void commitStores(InstSeqNum &youngest_inst);
145
146    /** Writes back stores. */
147    void writebackStores();
148
149    /** Completes the data access that has been returned from the
150     * memory system. */
151    void completeDataAccess(PacketPtr pkt);
152
153    /** Clears all the entries in the LQ. */
154    void clearLQ();
155
156    /** Clears all the entries in the SQ. */
157    void clearSQ();
158
159    /** Resizes the LQ to a given size. */
160    void resizeLQ(unsigned size);
161
162    /** Resizes the SQ to a given size. */
163    void resizeSQ(unsigned size);
164
165    /** Squashes all instructions younger than a specific sequence number. */
166    void squash(const InstSeqNum &squashed_num);
167
168    /** Returns if there is a memory ordering violation. Value is reset upon
169     * call to getMemDepViolator().
170     */
171    bool violation() { return memDepViolator; }
172
173    /** Returns the memory ordering violator. */
174    DynInstPtr getMemDepViolator();
175
176    /** Returns if a load became blocked due to the memory system. */
177    bool loadBlocked()
178    { return isLoadBlocked; }
179
180    /** Clears the signal that a load became blocked. */
181    void clearLoadBlocked()
182    { isLoadBlocked = false; }
183
184    /** Returns if the blocked load was handled. */
185    bool isLoadBlockedHandled()
186    { return loadBlockedHandled; }
187
188    /** Records the blocked load as being handled. */
189    void setLoadBlockedHandled()
190    { loadBlockedHandled = true; }
191
192    /** Returns the number of free entries (min of free LQ and SQ entries). */
193    unsigned numFreeEntries();
194
195    /** Returns the number of loads in the LQ. */
196    int numLoads() { return loads; }
197
198    /** Returns the number of stores in the SQ. */
199    int numStores() { return stores; }
200
201    /** Returns if either the LQ or SQ is full. */
202    bool isFull() { return lqFull() || sqFull(); }
203
204    /** Returns if the LQ is full. */
205    bool lqFull() { return loads >= (LQEntries - 1); }
206
207    /** Returns if the SQ is full. */
208    bool sqFull() { return stores >= (SQEntries - 1); }
209
210    /** Returns the number of instructions in the LSQ. */
211    unsigned getCount() { return loads + stores; }
212
213    /** Returns if there are any stores to writeback. */
214    bool hasStoresToWB() { return storesToWB; }
215
216    /** Returns the number of stores to writeback. */
217    int numStoresToWB() { return storesToWB; }
218
219    /** Returns if the LSQ unit will writeback on this cycle. */
220    bool willWB() { return storeQueue[storeWBIdx].canWB &&
221                        !storeQueue[storeWBIdx].completed &&
222                        !isStoreBlocked; }
223
224    /** Handles doing the retry. */
225    void recvRetry();
226
227  private:
228    /** Writes back the instruction, sending it to IEW. */
229    void writeback(DynInstPtr &inst, PacketPtr pkt);
230
231    /** Writes back a store that couldn't be completed the previous cycle. */
232    void writebackPendingStore();
233
234    /** Handles completing the send of a store to memory. */
235    void storePostSend(PacketPtr pkt);
236
237    /** Completes the store at the specified index. */
238    void completeStore(int store_idx);
239
240    /** Attempts to send a store to the cache. */
241    bool sendStore(PacketPtr data_pkt);
242
243    /** Increments the given store index (circular queue). */
244    inline void incrStIdx(int &store_idx);
245    /** Decrements the given store index (circular queue). */
246    inline void decrStIdx(int &store_idx);
247    /** Increments the given load index (circular queue). */
248    inline void incrLdIdx(int &load_idx);
249    /** Decrements the given load index (circular queue). */
250    inline void decrLdIdx(int &load_idx);
251
252  public:
253    /** Debugging function to dump instructions in the LSQ. */
254    void dumpInsts();
255
256  private:
257    /** Pointer to the CPU. */
258    O3CPU *cpu;
259
260    /** Pointer to the IEW stage. */
261    IEW *iewStage;
262
263    /** Pointer to the LSQ. */
264    LSQ *lsq;
265
266    /** Pointer to the dcache port.  Used only for sending. */
267    MasterPort *dcachePort;
268
269    /** Derived class to hold any sender state the LSQ needs. */
270    class LSQSenderState : public Packet::SenderState
271    {
272      public:
273        /** Default constructor. */
274        LSQSenderState()
275            : mainPkt(NULL), pendingPacket(NULL), outstanding(1),
276              noWB(false), isSplit(false), pktToSend(false)
277          { }
278
279        /** Instruction who initiated the access to memory. */
280        DynInstPtr inst;
281        /** The main packet from a split load, used during writeback. */
282        PacketPtr mainPkt;
283        /** A second packet from a split store that needs sending. */
284        PacketPtr pendingPacket;
285        /** The LQ/SQ index of the instruction. */
286        uint8_t idx;
287        /** Number of outstanding packets to complete. */
288        uint8_t outstanding;
289        /** Whether or not it is a load. */
290        bool isLoad;
291        /** Whether or not the instruction will need to writeback. */
292        bool noWB;
293        /** Whether or not this access is split in two. */
294        bool isSplit;
295        /** Whether or not there is a packet that needs sending. */
296        bool pktToSend;
297
298        /** Completes a packet and returns whether the access is finished. */
299        inline bool complete() { return --outstanding == 0; }
300    };
301
302    /** Writeback event, specifically for when stores forward data to loads. */
303    class WritebackEvent : public Event {
304      public:
305        /** Constructs a writeback event. */
306        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
307
308        /** Processes the writeback event. */
309        void process();
310
311        /** Returns the description of this event. */
312        const char *description() const;
313
314      private:
315        /** Instruction whose results are being written back. */
316        DynInstPtr inst;
317
318        /** The packet that would have been sent to memory. */
319        PacketPtr pkt;
320
321        /** The pointer to the LSQ unit that issued the store. */
322        LSQUnit<Impl> *lsqPtr;
323    };
324
325  public:
326    struct SQEntry {
327        /** Constructs an empty store queue entry. */
328        SQEntry()
329            : inst(NULL), req(NULL), size(0),
330              canWB(0), committed(0), completed(0)
331        {
332            std::memset(data, 0, sizeof(data));
333        }
334
335        ~SQEntry()
336        {
337            inst = NULL;
338        }
339
340        /** Constructs a store queue entry for a given instruction. */
341        SQEntry(DynInstPtr &_inst)
342            : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
343              isSplit(0), canWB(0), committed(0), completed(0)
344        {
345            std::memset(data, 0, sizeof(data));
346        }
347        /** The store data. */
348        char data[16];
349        /** The store instruction. */
350        DynInstPtr inst;
351        /** The request for the store. */
352        RequestPtr req;
353        /** The split requests for the store. */
354        RequestPtr sreqLow;
355        RequestPtr sreqHigh;
356        /** The size of the store. */
357        uint8_t size;
358        /** Whether or not the store is split into two requests. */
359        bool isSplit;
360        /** Whether or not the store can writeback. */
361        bool canWB;
362        /** Whether or not the store is committed. */
363        bool committed;
364        /** Whether or not the store is completed. */
365        bool completed;
366    };
367
368  private:
369    /** The LSQUnit thread id. */
370    ThreadID lsqID;
371
372    /** The store queue. */
373    std::vector<SQEntry> storeQueue;
374
375    /** The load queue. */
376    std::vector<DynInstPtr> loadQueue;
377
378    /** The number of LQ entries, plus a sentinel entry (circular queue).
379     *  @todo: Consider having var that records the true number of LQ entries.
380     */
381    unsigned LQEntries;
382    /** The number of SQ entries, plus a sentinel entry (circular queue).
383     *  @todo: Consider having var that records the true number of SQ entries.
384     */
385    unsigned SQEntries;
386
387    /** The number of places to shift addresses in the LSQ before checking
388     * for dependency violations
389     */
390    unsigned depCheckShift;
391
392    /** Should loads be checked for dependency issues */
393    bool checkLoads;
394
395    /** The number of load instructions in the LQ. */
396    int loads;
397    /** The number of store instructions in the SQ. */
398    int stores;
399    /** The number of store instructions in the SQ waiting to writeback. */
400    int storesToWB;
401
402    /** The index of the head instruction in the LQ. */
403    int loadHead;
404    /** The index of the tail instruction in the LQ. */
405    int loadTail;
406
407    /** The index of the head instruction in the SQ. */
408    int storeHead;
409    /** The index of the first instruction that may be ready to be
410     * written back, and has not yet been written back.
411     */
412    int storeWBIdx;
413    /** The index of the tail instruction in the SQ. */
414    int storeTail;
415
416    /// @todo Consider moving to a more advanced model with write vs read ports
417    /** The number of cache ports available each cycle. */
418    int cachePorts;
419
420    /** The number of used cache ports in this cycle. */
421    int usedPorts;
422
423    /** Is the LSQ switched out. */
424    bool switchedOut;
425
426    //list<InstSeqNum> mshrSeqNums;
427
428    /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
429    Addr cacheBlockMask;
430
431    /** Wire to read information from the issue stage time queue. */
432    typename TimeBuffer<IssueStruct>::wire fromIssue;
433
434    /** Whether or not the LSQ is stalled. */
435    bool stalled;
436    /** The store that causes the stall due to partial store to load
437     * forwarding.
438     */
439    InstSeqNum stallingStoreIsn;
440    /** The index of the above store. */
441    int stallingLoadIdx;
442
443    /** The packet that needs to be retried. */
444    PacketPtr retryPkt;
445
446    /** Whehter or not a store is blocked due to the memory system. */
447    bool isStoreBlocked;
448
449    /** Whether or not a load is blocked due to the memory system. */
450    bool isLoadBlocked;
451
452    /** Has the blocked load been handled. */
453    bool loadBlockedHandled;
454
455    /** Whether or not a store is in flight. */
456    bool storeInFlight;
457
458    /** The sequence number of the blocked load. */
459    InstSeqNum blockedLoadSeqNum;
460
461    /** The oldest load that caused a memory ordering violation. */
462    DynInstPtr memDepViolator;
463
464    /** Whether or not there is a packet that couldn't be sent because of
465     * a lack of cache ports. */
466    bool hasPendingPkt;
467
468    /** The packet that is pending free cache ports. */
469    PacketPtr pendingPkt;
470
471    /** Flag for memory model. */
472    bool needsTSO;
473
474    // Will also need how many read/write ports the Dcache has.  Or keep track
475    // of that in stage that is one level up, and only call executeLoad/Store
476    // the appropriate number of times.
477    /** Total number of loads forwaded from LSQ stores. */
478    Stats::Scalar lsqForwLoads;
479
480    /** Total number of loads ignored due to invalid addresses. */
481    Stats::Scalar invAddrLoads;
482
483    /** Total number of squashed loads. */
484    Stats::Scalar lsqSquashedLoads;
485
486    /** Total number of responses from the memory system that are
487     * ignored due to the instruction already being squashed. */
488    Stats::Scalar lsqIgnoredResponses;
489
490    /** Tota number of memory ordering violations. */
491    Stats::Scalar lsqMemOrderViolation;
492
493    /** Total number of squashed stores. */
494    Stats::Scalar lsqSquashedStores;
495
496    /** Total number of software prefetches ignored due to invalid addresses. */
497    Stats::Scalar invAddrSwpfs;
498
499    /** Ready loads blocked due to partial store-forwarding. */
500    Stats::Scalar lsqBlockedLoads;
501
502    /** Number of loads that were rescheduled. */
503    Stats::Scalar lsqRescheduledLoads;
504
505    /** Number of times the LSQ is blocked due to the cache. */
506    Stats::Scalar lsqCacheBlocked;
507
508  public:
509    /** Executes the load at the given index. */
510    Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
511               uint8_t *data, int load_idx);
512
513    /** Executes the store at the given index. */
514    Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
515                uint8_t *data, int store_idx);
516
517    /** Returns the index of the head load instruction. */
518    int getLoadHead() { return loadHead; }
519    /** Returns the sequence number of the head load instruction. */
520    InstSeqNum getLoadHeadSeqNum()
521    {
522        if (loadQueue[loadHead]) {
523            return loadQueue[loadHead]->seqNum;
524        } else {
525            return 0;
526        }
527
528    }
529
530    /** Returns the index of the head store instruction. */
531    int getStoreHead() { return storeHead; }
532    /** Returns the sequence number of the head store instruction. */
533    InstSeqNum getStoreHeadSeqNum()
534    {
535        if (storeQueue[storeHead].inst) {
536            return storeQueue[storeHead].inst->seqNum;
537        } else {
538            return 0;
539        }
540
541    }
542
543    /** Returns whether or not the LSQ unit is stalled. */
544    bool isStalled()  { return stalled; }
545};
546
547template <class Impl>
548Fault
549LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
550                    uint8_t *data, int load_idx)
551{
552    DynInstPtr load_inst = loadQueue[load_idx];
553
554    assert(load_inst);
555
556    assert(!load_inst->isExecuted());
557
558    // Make sure this isn't an uncacheable access
559    // A bit of a hackish way to get uncached accesses to work only if they're
560    // at the head of the LSQ and are ready to commit (at the head of the ROB
561    // too).
562    if (req->isUncacheable() &&
563        (load_idx != loadHead || !load_inst->isAtCommit())) {
564        iewStage->rescheduleMemInst(load_inst);
565        ++lsqRescheduledLoads;
566        DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
567                load_inst->seqNum, load_inst->pcState());
568
569        // Must delete request now that it wasn't handed off to
570        // memory.  This is quite ugly.  @todo: Figure out the proper
571        // place to really handle request deletes.
572        delete req;
573        if (TheISA::HasUnalignedMemAcc && sreqLow) {
574            delete sreqLow;
575            delete sreqHigh;
576        }
577        return new GenericISA::M5PanicFault(
578                "Uncachable load [sn:%llx] PC %s\n",
579                load_inst->seqNum, load_inst->pcState());
580    }
581
582    // Check the SQ for any previous stores that might lead to forwarding
583    int store_idx = load_inst->sqIdx;
584
585    int store_size = 0;
586
587    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
588            "storeHead: %i addr: %#x%s\n",
589            load_idx, store_idx, storeHead, req->getPaddr(),
590            sreqLow ? " split" : "");
591
592    if (req->isLLSC()) {
593        assert(!sreqLow);
594        // Disable recording the result temporarily.  Writing to misc
595        // regs normally updates the result, but this is not the
596        // desired behavior when handling store conditionals.
597        load_inst->recordResult(false);
598        TheISA::handleLockedRead(load_inst.get(), req);
599        load_inst->recordResult(true);
600    }
601
602    if (req->isMmappedIpr()) {
603        assert(!load_inst->memData);
604        load_inst->memData = new uint8_t[64];
605
606        ThreadContext *thread = cpu->tcBase(lsqID);
607        Cycles delay(0);
608        PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
609
610        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
611            data_pkt->dataStatic(load_inst->memData);
612            delay = TheISA::handleIprRead(thread, data_pkt);
613        } else {
614            assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr());
615            PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq);
616            PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq);
617
618            fst_data_pkt->dataStatic(load_inst->memData);
619            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
620
621            delay = TheISA::handleIprRead(thread, fst_data_pkt);
622            Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt);
623            if (delay2 > delay)
624                delay = delay2;
625
626            delete sreqLow;
627            delete sreqHigh;
628            delete fst_data_pkt;
629            delete snd_data_pkt;
630        }
631        WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
632        cpu->schedule(wb, cpu->clockEdge(delay));
633        return NoFault;
634    }
635
636    while (store_idx != -1) {
637        // End once we've reached the top of the LSQ
638        if (store_idx == storeWBIdx) {
639            break;
640        }
641
642        // Move the index to one younger
643        if (--store_idx < 0)
644            store_idx += SQEntries;
645
646        assert(storeQueue[store_idx].inst);
647
648        store_size = storeQueue[store_idx].size;
649
650        if (store_size == 0)
651            continue;
652        else if (storeQueue[store_idx].inst->uncacheable())
653            continue;
654
655        assert(storeQueue[store_idx].inst->effAddrValid());
656
657        // Check if the store data is within the lower and upper bounds of
658        // addresses that the request needs.
659        bool store_has_lower_limit =
660            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
661        bool store_has_upper_limit =
662            (req->getVaddr() + req->getSize()) <=
663            (storeQueue[store_idx].inst->effAddr + store_size);
664        bool lower_load_has_store_part =
665            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
666                           store_size);
667        bool upper_load_has_store_part =
668            (req->getVaddr() + req->getSize()) >
669            storeQueue[store_idx].inst->effAddr;
670
671        // If the store's data has all of the data needed, we can forward.
672        if ((store_has_lower_limit && store_has_upper_limit)) {
673            // Get shift amount for offset into the store's data.
674            int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr;
675
676            memcpy(data, storeQueue[store_idx].data + shift_amt,
677                   req->getSize());
678
679            assert(!load_inst->memData);
680            load_inst->memData = new uint8_t[64];
681
682            memcpy(load_inst->memData,
683                    storeQueue[store_idx].data + shift_amt, req->getSize());
684
685            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
686                    "addr %#x, data %#x\n",
687                    store_idx, req->getVaddr(), data);
688
689            PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
690            data_pkt->dataStatic(load_inst->memData);
691
692            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
693
694            // We'll say this has a 1 cycle load-store forwarding latency
695            // for now.
696            // @todo: Need to make this a parameter.
697            cpu->schedule(wb, curTick());
698
699            // Don't need to do anything special for split loads.
700            if (TheISA::HasUnalignedMemAcc && sreqLow) {
701                delete sreqLow;
702                delete sreqHigh;
703            }
704
705            ++lsqForwLoads;
706            return NoFault;
707        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
708                   (store_has_upper_limit && upper_load_has_store_part) ||
709                   (lower_load_has_store_part && upper_load_has_store_part)) {
710            // This is the partial store-load forwarding case where a store
711            // has only part of the load's data.
712
713            // If it's already been written back, then don't worry about
714            // stalling on it.
715            if (storeQueue[store_idx].completed) {
716                panic("Should not check one of these");
717                continue;
718            }
719
720            // Must stall load and force it to retry, so long as it's the oldest
721            // load that needs to do so.
722            if (!stalled ||
723                (stalled &&
724                 load_inst->seqNum <
725                 loadQueue[stallingLoadIdx]->seqNum)) {
726                stalled = true;
727                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
728                stallingLoadIdx = load_idx;
729            }
730
731            // Tell IQ/mem dep unit that this instruction will need to be
732            // rescheduled eventually
733            iewStage->rescheduleMemInst(load_inst);
734            iewStage->decrWb(load_inst->seqNum);
735            load_inst->clearIssued();
736            ++lsqRescheduledLoads;
737
738            // Do not generate a writeback event as this instruction is not
739            // complete.
740            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
741                    "Store idx %i to load addr %#x\n",
742                    store_idx, req->getVaddr());
743
744            // Must delete request now that it wasn't handed off to
745            // memory.  This is quite ugly.  @todo: Figure out the
746            // proper place to really handle request deletes.
747            delete req;
748            if (TheISA::HasUnalignedMemAcc && sreqLow) {
749                delete sreqLow;
750                delete sreqHigh;
751            }
752
753            return NoFault;
754        }
755    }
756
757    // If there's no forwarding case, then go access memory
758    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
759            load_inst->seqNum, load_inst->pcState());
760
761    assert(!load_inst->memData);
762    load_inst->memData = new uint8_t[64];
763
764    ++usedPorts;
765
766    // if we the cache is not blocked, do cache access
767    bool completedFirst = false;
768    if (!lsq->cacheBlocked()) {
769        MemCmd command =
770            req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
771        PacketPtr data_pkt = new Packet(req, command);
772        PacketPtr fst_data_pkt = NULL;
773        PacketPtr snd_data_pkt = NULL;
774
775        data_pkt->dataStatic(load_inst->memData);
776
777        LSQSenderState *state = new LSQSenderState;
778        state->isLoad = true;
779        state->idx = load_idx;
780        state->inst = load_inst;
781        data_pkt->senderState = state;
782
783        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
784
785            // Point the first packet at the main data packet.
786            fst_data_pkt = data_pkt;
787        } else {
788
789            // Create the split packets.
790            fst_data_pkt = new Packet(sreqLow, command);
791            snd_data_pkt = new Packet(sreqHigh, command);
792
793            fst_data_pkt->dataStatic(load_inst->memData);
794            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
795
796            fst_data_pkt->senderState = state;
797            snd_data_pkt->senderState = state;
798
799            state->isSplit = true;
800            state->outstanding = 2;
801            state->mainPkt = data_pkt;
802        }
803
804        if (!dcachePort->sendTimingReq(fst_data_pkt)) {
805            // Delete state and data packet because a load retry
806            // initiates a pipeline restart; it does not retry.
807            delete state;
808            delete data_pkt->req;
809            delete data_pkt;
810            if (TheISA::HasUnalignedMemAcc && sreqLow) {
811                delete fst_data_pkt->req;
812                delete fst_data_pkt;
813                delete snd_data_pkt->req;
814                delete snd_data_pkt;
815                sreqLow = NULL;
816                sreqHigh = NULL;
817            }
818
819            req = NULL;
820
821            // If the access didn't succeed, tell the LSQ by setting
822            // the retry thread id.
823            lsq->setRetryTid(lsqID);
824        } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
825            completedFirst = true;
826
827            // The first packet was sent without problems, so send this one
828            // too. If there is a problem with this packet then the whole
829            // load will be squashed, so indicate this to the state object.
830            // The first packet will return in completeDataAccess and be
831            // handled there.
832            ++usedPorts;
833            if (!dcachePort->sendTimingReq(snd_data_pkt)) {
834
835                // The main packet will be deleted in completeDataAccess.
836                delete snd_data_pkt->req;
837                delete snd_data_pkt;
838
839                state->complete();
840
841                req = NULL;
842                sreqHigh = NULL;
843
844                lsq->setRetryTid(lsqID);
845            }
846        }
847    }
848
849    // If the cache was blocked, or has become blocked due to the access,
850    // handle it.
851    if (lsq->cacheBlocked()) {
852        if (req)
853            delete req;
854        if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
855            delete sreqLow;
856            delete sreqHigh;
857        }
858
859        ++lsqCacheBlocked;
860
861        // If the first part of a split access succeeds, then let the LSQ
862        // handle the decrWb when completeDataAccess is called upon return
863        // of the requested first part of data
864        if (!completedFirst)
865            iewStage->decrWb(load_inst->seqNum);
866
867        // There's an older load that's already going to squash.
868        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
869            return NoFault;
870
871        // Record that the load was blocked due to memory.  This
872        // load will squash all instructions after it, be
873        // refetched, and re-executed.
874        isLoadBlocked = true;
875        loadBlockedHandled = false;
876        blockedLoadSeqNum = load_inst->seqNum;
877        // No fault occurred, even though the interface is blocked.
878        return NoFault;
879    }
880
881    return NoFault;
882}
883
884template <class Impl>
885Fault
886LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
887                     uint8_t *data, int store_idx)
888{
889    assert(storeQueue[store_idx].inst);
890
891    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
892            " | storeHead:%i [sn:%i]\n",
893            store_idx, req->getPaddr(), data, storeHead,
894            storeQueue[store_idx].inst->seqNum);
895
896    storeQueue[store_idx].req = req;
897    storeQueue[store_idx].sreqLow = sreqLow;
898    storeQueue[store_idx].sreqHigh = sreqHigh;
899    unsigned size = req->getSize();
900    storeQueue[store_idx].size = size;
901    assert(size <= sizeof(storeQueue[store_idx].data));
902
903    // Split stores can only occur in ISAs with unaligned memory accesses.  If
904    // a store request has been split, sreqLow and sreqHigh will be non-null.
905    if (TheISA::HasUnalignedMemAcc && sreqLow) {
906        storeQueue[store_idx].isSplit = true;
907    }
908
909    memcpy(storeQueue[store_idx].data, data, size);
910
911    // This function only writes the data to the store queue, so no fault
912    // can happen here.
913    return NoFault;
914}
915
916#endif // __CPU_O3_LSQ_UNIT_HH__
917