lsq_unit.hh revision 9152
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/generic/debugfaults.hh" 41#include "arch/isa_traits.hh" 42#include "arch/locked_mem.hh" 43#include "arch/mmapped_ipr.hh" 44#include "base/hashmap.hh" 45#include "config/the_isa.hh" 46#include "cpu/inst_seq.hh" 47#include "cpu/timebuf.hh" 48#include "debug/LSQUnit.hh" 49#include "mem/packet.hh" 50#include "mem/port.hh" 51#include "sim/fault_fwd.hh" 52 53struct DerivO3CPUParams; 54 55/** 56 * Class that implements the actual LQ and SQ for each specific 57 * thread. Both are circular queues; load entries are freed upon 58 * committing, while store entries are freed once they writeback. The 59 * LSQUnit tracks if there are memory ordering violations, and also 60 * detects partial load to store forwarding cases (a store only has 61 * part of a load's data) that requires the load to wait until the 62 * store writes back. In the former case it holds onto the instruction 63 * until the dependence unit looks at it, and in the latter it stalls 64 * the LSQ until the store writes back. At that point the load is 65 * replayed. 66 */ 67template <class Impl> 68class LSQUnit { 69 public: 70 typedef typename Impl::O3CPU O3CPU; 71 typedef typename Impl::DynInstPtr DynInstPtr; 72 typedef typename Impl::CPUPol::IEW IEW; 73 typedef typename Impl::CPUPol::LSQ LSQ; 74 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 75 76 public: 77 /** Constructs an LSQ unit. init() must be called prior to use. */ 78 LSQUnit(); 79 80 /** Initializes the LSQ unit with the specified number of entries. */ 81 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 82 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 83 unsigned id); 84 85 /** Returns the name of the LSQ unit. */ 86 std::string name() const; 87 88 /** Registers statistics. */ 89 void regStats(); 90 91 /** Sets the pointer to the dcache port. */ 92 void setDcachePort(MasterPort *dcache_port); 93 94 /** Switches out LSQ unit. */ 95 void switchOut(); 96 97 /** Takes over from another CPU's thread. */ 98 void takeOverFrom(); 99 100 /** Returns if the LSQ is switched out. */ 101 bool isSwitchedOut() { return switchedOut; } 102 103 /** Ticks the LSQ unit, which in this case only resets the number of 104 * used cache ports. 105 * @todo: Move the number of used ports up to the LSQ level so it can 106 * be shared by all LSQ units. 107 */ 108 void tick() { usedPorts = 0; } 109 110 /** Inserts an instruction. */ 111 void insert(DynInstPtr &inst); 112 /** Inserts a load instruction. */ 113 void insertLoad(DynInstPtr &load_inst); 114 /** Inserts a store instruction. */ 115 void insertStore(DynInstPtr &store_inst); 116 117 /** Check for ordering violations in the LSQ. For a store squash if we 118 * ever find a conflicting load. For a load, only squash if we 119 * an external snoop invalidate has been seen for that load address 120 * @param load_idx index to start checking at 121 * @param inst the instruction to check 122 */ 123 Fault checkViolations(int load_idx, DynInstPtr &inst); 124 125 /** Check if an incoming invalidate hits in the lsq on a load 126 * that might have issued out of order wrt another load beacuse 127 * of the intermediate invalidate. 128 */ 129 void checkSnoop(PacketPtr pkt); 130 131 /** Executes a load instruction. */ 132 Fault executeLoad(DynInstPtr &inst); 133 134 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 135 /** Executes a store instruction. */ 136 Fault executeStore(DynInstPtr &inst); 137 138 /** Commits the head load. */ 139 void commitLoad(); 140 /** Commits loads older than a specific sequence number. */ 141 void commitLoads(InstSeqNum &youngest_inst); 142 143 /** Commits stores older than a specific sequence number. */ 144 void commitStores(InstSeqNum &youngest_inst); 145 146 /** Writes back stores. */ 147 void writebackStores(); 148 149 /** Completes the data access that has been returned from the 150 * memory system. */ 151 void completeDataAccess(PacketPtr pkt); 152 153 /** Clears all the entries in the LQ. */ 154 void clearLQ(); 155 156 /** Clears all the entries in the SQ. */ 157 void clearSQ(); 158 159 /** Resizes the LQ to a given size. */ 160 void resizeLQ(unsigned size); 161 162 /** Resizes the SQ to a given size. */ 163 void resizeSQ(unsigned size); 164 165 /** Squashes all instructions younger than a specific sequence number. */ 166 void squash(const InstSeqNum &squashed_num); 167 168 /** Returns if there is a memory ordering violation. Value is reset upon 169 * call to getMemDepViolator(). 170 */ 171 bool violation() { return memDepViolator; } 172 173 /** Returns the memory ordering violator. */ 174 DynInstPtr getMemDepViolator(); 175 176 /** Returns if a load became blocked due to the memory system. */ 177 bool loadBlocked() 178 { return isLoadBlocked; } 179 180 /** Clears the signal that a load became blocked. */ 181 void clearLoadBlocked() 182 { isLoadBlocked = false; } 183 184 /** Returns if the blocked load was handled. */ 185 bool isLoadBlockedHandled() 186 { return loadBlockedHandled; } 187 188 /** Records the blocked load as being handled. */ 189 void setLoadBlockedHandled() 190 { loadBlockedHandled = true; } 191 192 /** Returns the number of free entries (min of free LQ and SQ entries). */ 193 unsigned numFreeEntries(); 194 195 /** Returns the number of loads ready to execute. */ 196 int numLoadsReady(); 197 198 /** Returns the number of loads in the LQ. */ 199 int numLoads() { return loads; } 200 201 /** Returns the number of stores in the SQ. */ 202 int numStores() { return stores; } 203 204 /** Returns if either the LQ or SQ is full. */ 205 bool isFull() { return lqFull() || sqFull(); } 206 207 /** Returns if the LQ is full. */ 208 bool lqFull() { return loads >= (LQEntries - 1); } 209 210 /** Returns if the SQ is full. */ 211 bool sqFull() { return stores >= (SQEntries - 1); } 212 213 /** Returns the number of instructions in the LSQ. */ 214 unsigned getCount() { return loads + stores; } 215 216 /** Returns if there are any stores to writeback. */ 217 bool hasStoresToWB() { return storesToWB; } 218 219 /** Returns the number of stores to writeback. */ 220 int numStoresToWB() { return storesToWB; } 221 222 /** Returns if the LSQ unit will writeback on this cycle. */ 223 bool willWB() { return storeQueue[storeWBIdx].canWB && 224 !storeQueue[storeWBIdx].completed && 225 !isStoreBlocked; } 226 227 /** Handles doing the retry. */ 228 void recvRetry(); 229 230 private: 231 /** Writes back the instruction, sending it to IEW. */ 232 void writeback(DynInstPtr &inst, PacketPtr pkt); 233 234 /** Writes back a store that couldn't be completed the previous cycle. */ 235 void writebackPendingStore(); 236 237 /** Handles completing the send of a store to memory. */ 238 void storePostSend(PacketPtr pkt); 239 240 /** Completes the store at the specified index. */ 241 void completeStore(int store_idx); 242 243 /** Attempts to send a store to the cache. */ 244 bool sendStore(PacketPtr data_pkt); 245 246 /** Increments the given store index (circular queue). */ 247 inline void incrStIdx(int &store_idx); 248 /** Decrements the given store index (circular queue). */ 249 inline void decrStIdx(int &store_idx); 250 /** Increments the given load index (circular queue). */ 251 inline void incrLdIdx(int &load_idx); 252 /** Decrements the given load index (circular queue). */ 253 inline void decrLdIdx(int &load_idx); 254 255 public: 256 /** Debugging function to dump instructions in the LSQ. */ 257 void dumpInsts(); 258 259 private: 260 /** Pointer to the CPU. */ 261 O3CPU *cpu; 262 263 /** Pointer to the IEW stage. */ 264 IEW *iewStage; 265 266 /** Pointer to the LSQ. */ 267 LSQ *lsq; 268 269 /** Pointer to the dcache port. Used only for sending. */ 270 MasterPort *dcachePort; 271 272 /** Derived class to hold any sender state the LSQ needs. */ 273 class LSQSenderState : public Packet::SenderState 274 { 275 public: 276 /** Default constructor. */ 277 LSQSenderState() 278 : mainPkt(NULL), pendingPacket(NULL), outstanding(1), 279 noWB(false), isSplit(false), pktToSend(false) 280 { } 281 282 /** Instruction who initiated the access to memory. */ 283 DynInstPtr inst; 284 /** The main packet from a split load, used during writeback. */ 285 PacketPtr mainPkt; 286 /** A second packet from a split store that needs sending. */ 287 PacketPtr pendingPacket; 288 /** The LQ/SQ index of the instruction. */ 289 uint8_t idx; 290 /** Number of outstanding packets to complete. */ 291 uint8_t outstanding; 292 /** Whether or not it is a load. */ 293 bool isLoad; 294 /** Whether or not the instruction will need to writeback. */ 295 bool noWB; 296 /** Whether or not this access is split in two. */ 297 bool isSplit; 298 /** Whether or not there is a packet that needs sending. */ 299 bool pktToSend; 300 301 /** Completes a packet and returns whether the access is finished. */ 302 inline bool complete() { return --outstanding == 0; } 303 }; 304 305 /** Writeback event, specifically for when stores forward data to loads. */ 306 class WritebackEvent : public Event { 307 public: 308 /** Constructs a writeback event. */ 309 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 310 311 /** Processes the writeback event. */ 312 void process(); 313 314 /** Returns the description of this event. */ 315 const char *description() const; 316 317 private: 318 /** Instruction whose results are being written back. */ 319 DynInstPtr inst; 320 321 /** The packet that would have been sent to memory. */ 322 PacketPtr pkt; 323 324 /** The pointer to the LSQ unit that issued the store. */ 325 LSQUnit<Impl> *lsqPtr; 326 }; 327 328 public: 329 struct SQEntry { 330 /** Constructs an empty store queue entry. */ 331 SQEntry() 332 : inst(NULL), req(NULL), size(0), 333 canWB(0), committed(0), completed(0) 334 { 335 std::memset(data, 0, sizeof(data)); 336 } 337 338 ~SQEntry() 339 { 340 inst = NULL; 341 } 342 343 /** Constructs a store queue entry for a given instruction. */ 344 SQEntry(DynInstPtr &_inst) 345 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 346 isSplit(0), canWB(0), committed(0), completed(0) 347 { 348 std::memset(data, 0, sizeof(data)); 349 } 350 /** The store data. */ 351 char data[16]; 352 /** The store instruction. */ 353 DynInstPtr inst; 354 /** The request for the store. */ 355 RequestPtr req; 356 /** The split requests for the store. */ 357 RequestPtr sreqLow; 358 RequestPtr sreqHigh; 359 /** The size of the store. */ 360 uint8_t size; 361 /** Whether or not the store is split into two requests. */ 362 bool isSplit; 363 /** Whether or not the store can writeback. */ 364 bool canWB; 365 /** Whether or not the store is committed. */ 366 bool committed; 367 /** Whether or not the store is completed. */ 368 bool completed; 369 }; 370 371 private: 372 /** The LSQUnit thread id. */ 373 ThreadID lsqID; 374 375 /** The store queue. */ 376 std::vector<SQEntry> storeQueue; 377 378 /** The load queue. */ 379 std::vector<DynInstPtr> loadQueue; 380 381 /** The number of LQ entries, plus a sentinel entry (circular queue). 382 * @todo: Consider having var that records the true number of LQ entries. 383 */ 384 unsigned LQEntries; 385 /** The number of SQ entries, plus a sentinel entry (circular queue). 386 * @todo: Consider having var that records the true number of SQ entries. 387 */ 388 unsigned SQEntries; 389 390 /** The number of places to shift addresses in the LSQ before checking 391 * for dependency violations 392 */ 393 unsigned depCheckShift; 394 395 /** Should loads be checked for dependency issues */ 396 bool checkLoads; 397 398 /** The number of load instructions in the LQ. */ 399 int loads; 400 /** The number of store instructions in the SQ. */ 401 int stores; 402 /** The number of store instructions in the SQ waiting to writeback. */ 403 int storesToWB; 404 405 /** The index of the head instruction in the LQ. */ 406 int loadHead; 407 /** The index of the tail instruction in the LQ. */ 408 int loadTail; 409 410 /** The index of the head instruction in the SQ. */ 411 int storeHead; 412 /** The index of the first instruction that may be ready to be 413 * written back, and has not yet been written back. 414 */ 415 int storeWBIdx; 416 /** The index of the tail instruction in the SQ. */ 417 int storeTail; 418 419 /// @todo Consider moving to a more advanced model with write vs read ports 420 /** The number of cache ports available each cycle. */ 421 int cachePorts; 422 423 /** The number of used cache ports in this cycle. */ 424 int usedPorts; 425 426 /** Is the LSQ switched out. */ 427 bool switchedOut; 428 429 //list<InstSeqNum> mshrSeqNums; 430 431 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 432 Addr cacheBlockMask; 433 434 /** Wire to read information from the issue stage time queue. */ 435 typename TimeBuffer<IssueStruct>::wire fromIssue; 436 437 /** Whether or not the LSQ is stalled. */ 438 bool stalled; 439 /** The store that causes the stall due to partial store to load 440 * forwarding. 441 */ 442 InstSeqNum stallingStoreIsn; 443 /** The index of the above store. */ 444 int stallingLoadIdx; 445 446 /** The packet that needs to be retried. */ 447 PacketPtr retryPkt; 448 449 /** Whehter or not a store is blocked due to the memory system. */ 450 bool isStoreBlocked; 451 452 /** Whether or not a load is blocked due to the memory system. */ 453 bool isLoadBlocked; 454 455 /** Has the blocked load been handled. */ 456 bool loadBlockedHandled; 457 458 /** Whether or not a store is in flight. */ 459 bool storeInFlight; 460 461 /** The sequence number of the blocked load. */ 462 InstSeqNum blockedLoadSeqNum; 463 464 /** The oldest load that caused a memory ordering violation. */ 465 DynInstPtr memDepViolator; 466 467 /** Whether or not there is a packet that couldn't be sent because of 468 * a lack of cache ports. */ 469 bool hasPendingPkt; 470 471 /** The packet that is pending free cache ports. */ 472 PacketPtr pendingPkt; 473 474 /** Flag for memory model. */ 475 bool needsTSO; 476 477 // Will also need how many read/write ports the Dcache has. Or keep track 478 // of that in stage that is one level up, and only call executeLoad/Store 479 // the appropriate number of times. 480 /** Total number of loads forwaded from LSQ stores. */ 481 Stats::Scalar lsqForwLoads; 482 483 /** Total number of loads ignored due to invalid addresses. */ 484 Stats::Scalar invAddrLoads; 485 486 /** Total number of squashed loads. */ 487 Stats::Scalar lsqSquashedLoads; 488 489 /** Total number of responses from the memory system that are 490 * ignored due to the instruction already being squashed. */ 491 Stats::Scalar lsqIgnoredResponses; 492 493 /** Tota number of memory ordering violations. */ 494 Stats::Scalar lsqMemOrderViolation; 495 496 /** Total number of squashed stores. */ 497 Stats::Scalar lsqSquashedStores; 498 499 /** Total number of software prefetches ignored due to invalid addresses. */ 500 Stats::Scalar invAddrSwpfs; 501 502 /** Ready loads blocked due to partial store-forwarding. */ 503 Stats::Scalar lsqBlockedLoads; 504 505 /** Number of loads that were rescheduled. */ 506 Stats::Scalar lsqRescheduledLoads; 507 508 /** Number of times the LSQ is blocked due to the cache. */ 509 Stats::Scalar lsqCacheBlocked; 510 511 public: 512 /** Executes the load at the given index. */ 513 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 514 uint8_t *data, int load_idx); 515 516 /** Executes the store at the given index. */ 517 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 518 uint8_t *data, int store_idx); 519 520 /** Returns the index of the head load instruction. */ 521 int getLoadHead() { return loadHead; } 522 /** Returns the sequence number of the head load instruction. */ 523 InstSeqNum getLoadHeadSeqNum() 524 { 525 if (loadQueue[loadHead]) { 526 return loadQueue[loadHead]->seqNum; 527 } else { 528 return 0; 529 } 530 531 } 532 533 /** Returns the index of the head store instruction. */ 534 int getStoreHead() { return storeHead; } 535 /** Returns the sequence number of the head store instruction. */ 536 InstSeqNum getStoreHeadSeqNum() 537 { 538 if (storeQueue[storeHead].inst) { 539 return storeQueue[storeHead].inst->seqNum; 540 } else { 541 return 0; 542 } 543 544 } 545 546 /** Returns whether or not the LSQ unit is stalled. */ 547 bool isStalled() { return stalled; } 548}; 549 550template <class Impl> 551Fault 552LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 553 uint8_t *data, int load_idx) 554{ 555 DynInstPtr load_inst = loadQueue[load_idx]; 556 557 assert(load_inst); 558 559 assert(!load_inst->isExecuted()); 560 561 // Make sure this isn't an uncacheable access 562 // A bit of a hackish way to get uncached accesses to work only if they're 563 // at the head of the LSQ and are ready to commit (at the head of the ROB 564 // too). 565 if (req->isUncacheable() && 566 (load_idx != loadHead || !load_inst->isAtCommit())) { 567 iewStage->rescheduleMemInst(load_inst); 568 ++lsqRescheduledLoads; 569 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 570 load_inst->seqNum, load_inst->pcState()); 571 572 // Must delete request now that it wasn't handed off to 573 // memory. This is quite ugly. @todo: Figure out the proper 574 // place to really handle request deletes. 575 delete req; 576 if (TheISA::HasUnalignedMemAcc && sreqLow) { 577 delete sreqLow; 578 delete sreqHigh; 579 } 580 return new GenericISA::M5PanicFault( 581 "Uncachable load [sn:%llx] PC %s\n", 582 load_inst->seqNum, load_inst->pcState()); 583 } 584 585 // Check the SQ for any previous stores that might lead to forwarding 586 int store_idx = load_inst->sqIdx; 587 588 int store_size = 0; 589 590 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 591 "storeHead: %i addr: %#x%s\n", 592 load_idx, store_idx, storeHead, req->getPaddr(), 593 sreqLow ? " split" : ""); 594 595 if (req->isLLSC()) { 596 assert(!sreqLow); 597 // Disable recording the result temporarily. Writing to misc 598 // regs normally updates the result, but this is not the 599 // desired behavior when handling store conditionals. 600 load_inst->recordResult(false); 601 TheISA::handleLockedRead(load_inst.get(), req); 602 load_inst->recordResult(true); 603 } 604 605 if (req->isMmappedIpr()) { 606 assert(!load_inst->memData); 607 load_inst->memData = new uint8_t[64]; 608 609 ThreadContext *thread = cpu->tcBase(lsqID); 610 Tick delay; 611 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 612 613 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 614 data_pkt->dataStatic(load_inst->memData); 615 delay = TheISA::handleIprRead(thread, data_pkt); 616 } else { 617 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 618 PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); 619 PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); 620 621 fst_data_pkt->dataStatic(load_inst->memData); 622 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 623 624 delay = TheISA::handleIprRead(thread, fst_data_pkt); 625 unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 626 if (delay2 > delay) 627 delay = delay2; 628 629 delete sreqLow; 630 delete sreqHigh; 631 delete fst_data_pkt; 632 delete snd_data_pkt; 633 } 634 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 635 cpu->schedule(wb, curTick() + delay); 636 return NoFault; 637 } 638 639 while (store_idx != -1) { 640 // End once we've reached the top of the LSQ 641 if (store_idx == storeWBIdx) { 642 break; 643 } 644 645 // Move the index to one younger 646 if (--store_idx < 0) 647 store_idx += SQEntries; 648 649 assert(storeQueue[store_idx].inst); 650 651 store_size = storeQueue[store_idx].size; 652 653 if (store_size == 0) 654 continue; 655 else if (storeQueue[store_idx].inst->uncacheable()) 656 continue; 657 658 assert(storeQueue[store_idx].inst->effAddrValid()); 659 660 // Check if the store data is within the lower and upper bounds of 661 // addresses that the request needs. 662 bool store_has_lower_limit = 663 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 664 bool store_has_upper_limit = 665 (req->getVaddr() + req->getSize()) <= 666 (storeQueue[store_idx].inst->effAddr + store_size); 667 bool lower_load_has_store_part = 668 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 669 store_size); 670 bool upper_load_has_store_part = 671 (req->getVaddr() + req->getSize()) > 672 storeQueue[store_idx].inst->effAddr; 673 674 // If the store's data has all of the data needed, we can forward. 675 if ((store_has_lower_limit && store_has_upper_limit)) { 676 // Get shift amount for offset into the store's data. 677 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 678 679 memcpy(data, storeQueue[store_idx].data + shift_amt, 680 req->getSize()); 681 682 assert(!load_inst->memData); 683 load_inst->memData = new uint8_t[64]; 684 685 memcpy(load_inst->memData, 686 storeQueue[store_idx].data + shift_amt, req->getSize()); 687 688 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 689 "addr %#x, data %#x\n", 690 store_idx, req->getVaddr(), data); 691 692 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); 693 data_pkt->dataStatic(load_inst->memData); 694 695 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 696 697 // We'll say this has a 1 cycle load-store forwarding latency 698 // for now. 699 // @todo: Need to make this a parameter. 700 cpu->schedule(wb, curTick()); 701 702 // Don't need to do anything special for split loads. 703 if (TheISA::HasUnalignedMemAcc && sreqLow) { 704 delete sreqLow; 705 delete sreqHigh; 706 } 707 708 ++lsqForwLoads; 709 return NoFault; 710 } else if ((store_has_lower_limit && lower_load_has_store_part) || 711 (store_has_upper_limit && upper_load_has_store_part) || 712 (lower_load_has_store_part && upper_load_has_store_part)) { 713 // This is the partial store-load forwarding case where a store 714 // has only part of the load's data. 715 716 // If it's already been written back, then don't worry about 717 // stalling on it. 718 if (storeQueue[store_idx].completed) { 719 panic("Should not check one of these"); 720 continue; 721 } 722 723 // Must stall load and force it to retry, so long as it's the oldest 724 // load that needs to do so. 725 if (!stalled || 726 (stalled && 727 load_inst->seqNum < 728 loadQueue[stallingLoadIdx]->seqNum)) { 729 stalled = true; 730 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 731 stallingLoadIdx = load_idx; 732 } 733 734 // Tell IQ/mem dep unit that this instruction will need to be 735 // rescheduled eventually 736 iewStage->rescheduleMemInst(load_inst); 737 iewStage->decrWb(load_inst->seqNum); 738 load_inst->clearIssued(); 739 ++lsqRescheduledLoads; 740 741 // Do not generate a writeback event as this instruction is not 742 // complete. 743 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 744 "Store idx %i to load addr %#x\n", 745 store_idx, req->getVaddr()); 746 747 // Must delete request now that it wasn't handed off to 748 // memory. This is quite ugly. @todo: Figure out the 749 // proper place to really handle request deletes. 750 delete req; 751 if (TheISA::HasUnalignedMemAcc && sreqLow) { 752 delete sreqLow; 753 delete sreqHigh; 754 } 755 756 return NoFault; 757 } 758 } 759 760 // If there's no forwarding case, then go access memory 761 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 762 load_inst->seqNum, load_inst->pcState()); 763 764 assert(!load_inst->memData); 765 load_inst->memData = new uint8_t[64]; 766 767 ++usedPorts; 768 769 // if we the cache is not blocked, do cache access 770 bool completedFirst = false; 771 if (!lsq->cacheBlocked()) { 772 MemCmd command = 773 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 774 PacketPtr data_pkt = new Packet(req, command); 775 PacketPtr fst_data_pkt = NULL; 776 PacketPtr snd_data_pkt = NULL; 777 778 data_pkt->dataStatic(load_inst->memData); 779 780 LSQSenderState *state = new LSQSenderState; 781 state->isLoad = true; 782 state->idx = load_idx; 783 state->inst = load_inst; 784 data_pkt->senderState = state; 785 786 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 787 788 // Point the first packet at the main data packet. 789 fst_data_pkt = data_pkt; 790 } else { 791 792 // Create the split packets. 793 fst_data_pkt = new Packet(sreqLow, command); 794 snd_data_pkt = new Packet(sreqHigh, command); 795 796 fst_data_pkt->dataStatic(load_inst->memData); 797 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 798 799 fst_data_pkt->senderState = state; 800 snd_data_pkt->senderState = state; 801 802 state->isSplit = true; 803 state->outstanding = 2; 804 state->mainPkt = data_pkt; 805 } 806 807 if (!dcachePort->sendTimingReq(fst_data_pkt)) { 808 // Delete state and data packet because a load retry 809 // initiates a pipeline restart; it does not retry. 810 delete state; 811 delete data_pkt->req; 812 delete data_pkt; 813 if (TheISA::HasUnalignedMemAcc && sreqLow) { 814 delete fst_data_pkt->req; 815 delete fst_data_pkt; 816 delete snd_data_pkt->req; 817 delete snd_data_pkt; 818 sreqLow = NULL; 819 sreqHigh = NULL; 820 } 821 822 req = NULL; 823 824 // If the access didn't succeed, tell the LSQ by setting 825 // the retry thread id. 826 lsq->setRetryTid(lsqID); 827 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 828 completedFirst = true; 829 830 // The first packet was sent without problems, so send this one 831 // too. If there is a problem with this packet then the whole 832 // load will be squashed, so indicate this to the state object. 833 // The first packet will return in completeDataAccess and be 834 // handled there. 835 ++usedPorts; 836 if (!dcachePort->sendTimingReq(snd_data_pkt)) { 837 838 // The main packet will be deleted in completeDataAccess. 839 delete snd_data_pkt->req; 840 delete snd_data_pkt; 841 842 state->complete(); 843 844 req = NULL; 845 sreqHigh = NULL; 846 847 lsq->setRetryTid(lsqID); 848 } 849 } 850 } 851 852 // If the cache was blocked, or has become blocked due to the access, 853 // handle it. 854 if (lsq->cacheBlocked()) { 855 if (req) 856 delete req; 857 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 858 delete sreqLow; 859 delete sreqHigh; 860 } 861 862 ++lsqCacheBlocked; 863 864 // If the first part of a split access succeeds, then let the LSQ 865 // handle the decrWb when completeDataAccess is called upon return 866 // of the requested first part of data 867 if (!completedFirst) 868 iewStage->decrWb(load_inst->seqNum); 869 870 // There's an older load that's already going to squash. 871 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 872 return NoFault; 873 874 // Record that the load was blocked due to memory. This 875 // load will squash all instructions after it, be 876 // refetched, and re-executed. 877 isLoadBlocked = true; 878 loadBlockedHandled = false; 879 blockedLoadSeqNum = load_inst->seqNum; 880 // No fault occurred, even though the interface is blocked. 881 return NoFault; 882 } 883 884 return NoFault; 885} 886 887template <class Impl> 888Fault 889LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 890 uint8_t *data, int store_idx) 891{ 892 assert(storeQueue[store_idx].inst); 893 894 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 895 " | storeHead:%i [sn:%i]\n", 896 store_idx, req->getPaddr(), data, storeHead, 897 storeQueue[store_idx].inst->seqNum); 898 899 storeQueue[store_idx].req = req; 900 storeQueue[store_idx].sreqLow = sreqLow; 901 storeQueue[store_idx].sreqHigh = sreqHigh; 902 unsigned size = req->getSize(); 903 storeQueue[store_idx].size = size; 904 assert(size <= sizeof(storeQueue[store_idx].data)); 905 906 // Split stores can only occur in ISAs with unaligned memory accesses. If 907 // a store request has been split, sreqLow and sreqHigh will be non-null. 908 if (TheISA::HasUnalignedMemAcc && sreqLow) { 909 storeQueue[store_idx].isSplit = true; 910 } 911 912 memcpy(storeQueue[store_idx].data, data, size); 913 914 // This function only writes the data to the store queue, so no fault 915 // can happen here. 916 return NoFault; 917} 918 919#endif // __CPU_O3_LSQ_UNIT_HH__ 920