lsq_unit.hh revision 9044
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <cstring>
37#include <map>
38#include <queue>
39
40#include "arch/generic/debugfaults.hh"
41#include "arch/isa_traits.hh"
42#include "arch/locked_mem.hh"
43#include "arch/mmapped_ipr.hh"
44#include "base/hashmap.hh"
45#include "config/the_isa.hh"
46#include "cpu/inst_seq.hh"
47#include "cpu/timebuf.hh"
48#include "debug/LSQUnit.hh"
49#include "mem/packet.hh"
50#include "mem/port.hh"
51#include "sim/fault_fwd.hh"
52
53struct DerivO3CPUParams;
54
55/**
56 * Class that implements the actual LQ and SQ for each specific
57 * thread.  Both are circular queues; load entries are freed upon
58 * committing, while store entries are freed once they writeback. The
59 * LSQUnit tracks if there are memory ordering violations, and also
60 * detects partial load to store forwarding cases (a store only has
61 * part of a load's data) that requires the load to wait until the
62 * store writes back. In the former case it holds onto the instruction
63 * until the dependence unit looks at it, and in the latter it stalls
64 * the LSQ until the store writes back. At that point the load is
65 * replayed.
66 */
67template <class Impl>
68class LSQUnit {
69  public:
70    typedef typename Impl::O3CPU O3CPU;
71    typedef typename Impl::DynInstPtr DynInstPtr;
72    typedef typename Impl::CPUPol::IEW IEW;
73    typedef typename Impl::CPUPol::LSQ LSQ;
74    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
75
76  public:
77    /** Constructs an LSQ unit. init() must be called prior to use. */
78    LSQUnit();
79
80    /** Initializes the LSQ unit with the specified number of entries. */
81    void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
82            LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
83            unsigned id);
84
85    /** Returns the name of the LSQ unit. */
86    std::string name() const;
87
88    /** Registers statistics. */
89    void regStats();
90
91    /** Sets the pointer to the dcache port. */
92    void setDcachePort(MasterPort *dcache_port);
93
94    /** Switches out LSQ unit. */
95    void switchOut();
96
97    /** Takes over from another CPU's thread. */
98    void takeOverFrom();
99
100    /** Returns if the LSQ is switched out. */
101    bool isSwitchedOut() { return switchedOut; }
102
103    /** Ticks the LSQ unit, which in this case only resets the number of
104     * used cache ports.
105     * @todo: Move the number of used ports up to the LSQ level so it can
106     * be shared by all LSQ units.
107     */
108    void tick() { usedPorts = 0; }
109
110    /** Inserts an instruction. */
111    void insert(DynInstPtr &inst);
112    /** Inserts a load instruction. */
113    void insertLoad(DynInstPtr &load_inst);
114    /** Inserts a store instruction. */
115    void insertStore(DynInstPtr &store_inst);
116
117    /** Check for ordering violations in the LSQ. For a store squash if we
118     * ever find a conflicting load. For a load, only squash if we
119     * an external snoop invalidate has been seen for that load address
120     * @param load_idx index to start checking at
121     * @param inst the instruction to check
122     */
123    Fault checkViolations(int load_idx, DynInstPtr &inst);
124
125    /** Check if an incoming invalidate hits in the lsq on a load
126     * that might have issued out of order wrt another load beacuse
127     * of the intermediate invalidate.
128     */
129    void checkSnoop(PacketPtr pkt);
130
131    /** Executes a load instruction. */
132    Fault executeLoad(DynInstPtr &inst);
133
134    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
135    /** Executes a store instruction. */
136    Fault executeStore(DynInstPtr &inst);
137
138    /** Commits the head load. */
139    void commitLoad();
140    /** Commits loads older than a specific sequence number. */
141    void commitLoads(InstSeqNum &youngest_inst);
142
143    /** Commits stores older than a specific sequence number. */
144    void commitStores(InstSeqNum &youngest_inst);
145
146    /** Writes back stores. */
147    void writebackStores();
148
149    /** Completes the data access that has been returned from the
150     * memory system. */
151    void completeDataAccess(PacketPtr pkt);
152
153    /** Clears all the entries in the LQ. */
154    void clearLQ();
155
156    /** Clears all the entries in the SQ. */
157    void clearSQ();
158
159    /** Resizes the LQ to a given size. */
160    void resizeLQ(unsigned size);
161
162    /** Resizes the SQ to a given size. */
163    void resizeSQ(unsigned size);
164
165    /** Squashes all instructions younger than a specific sequence number. */
166    void squash(const InstSeqNum &squashed_num);
167
168    /** Returns if there is a memory ordering violation. Value is reset upon
169     * call to getMemDepViolator().
170     */
171    bool violation() { return memDepViolator; }
172
173    /** Returns the memory ordering violator. */
174    DynInstPtr getMemDepViolator();
175
176    /** Returns if a load became blocked due to the memory system. */
177    bool loadBlocked()
178    { return isLoadBlocked; }
179
180    /** Clears the signal that a load became blocked. */
181    void clearLoadBlocked()
182    { isLoadBlocked = false; }
183
184    /** Returns if the blocked load was handled. */
185    bool isLoadBlockedHandled()
186    { return loadBlockedHandled; }
187
188    /** Records the blocked load as being handled. */
189    void setLoadBlockedHandled()
190    { loadBlockedHandled = true; }
191
192    /** Returns the number of free entries (min of free LQ and SQ entries). */
193    unsigned numFreeEntries();
194
195    /** Returns the number of loads ready to execute. */
196    int numLoadsReady();
197
198    /** Returns the number of loads in the LQ. */
199    int numLoads() { return loads; }
200
201    /** Returns the number of stores in the SQ. */
202    int numStores() { return stores; }
203
204    /** Returns if either the LQ or SQ is full. */
205    bool isFull() { return lqFull() || sqFull(); }
206
207    /** Returns if the LQ is full. */
208    bool lqFull() { return loads >= (LQEntries - 1); }
209
210    /** Returns if the SQ is full. */
211    bool sqFull() { return stores >= (SQEntries - 1); }
212
213    /** Returns the number of instructions in the LSQ. */
214    unsigned getCount() { return loads + stores; }
215
216    /** Returns if there are any stores to writeback. */
217    bool hasStoresToWB() { return storesToWB; }
218
219    /** Returns the number of stores to writeback. */
220    int numStoresToWB() { return storesToWB; }
221
222    /** Returns if the LSQ unit will writeback on this cycle. */
223    bool willWB() { return storeQueue[storeWBIdx].canWB &&
224                        !storeQueue[storeWBIdx].completed &&
225                        !isStoreBlocked; }
226
227    /** Handles doing the retry. */
228    void recvRetry();
229
230  private:
231    /** Writes back the instruction, sending it to IEW. */
232    void writeback(DynInstPtr &inst, PacketPtr pkt);
233
234    /** Writes back a store that couldn't be completed the previous cycle. */
235    void writebackPendingStore();
236
237    /** Handles completing the send of a store to memory. */
238    void storePostSend(PacketPtr pkt);
239
240    /** Completes the store at the specified index. */
241    void completeStore(int store_idx);
242
243    /** Attempts to send a store to the cache. */
244    bool sendStore(PacketPtr data_pkt);
245
246    /** Increments the given store index (circular queue). */
247    inline void incrStIdx(int &store_idx);
248    /** Decrements the given store index (circular queue). */
249    inline void decrStIdx(int &store_idx);
250    /** Increments the given load index (circular queue). */
251    inline void incrLdIdx(int &load_idx);
252    /** Decrements the given load index (circular queue). */
253    inline void decrLdIdx(int &load_idx);
254
255  public:
256    /** Debugging function to dump instructions in the LSQ. */
257    void dumpInsts();
258
259  private:
260    /** Pointer to the CPU. */
261    O3CPU *cpu;
262
263    /** Pointer to the IEW stage. */
264    IEW *iewStage;
265
266    /** Pointer to the LSQ. */
267    LSQ *lsq;
268
269    /** Pointer to the dcache port.  Used only for sending. */
270    MasterPort *dcachePort;
271
272    /** Derived class to hold any sender state the LSQ needs. */
273    class LSQSenderState : public Packet::SenderState
274    {
275      public:
276        /** Default constructor. */
277        LSQSenderState()
278            : noWB(false), isSplit(false), pktToSend(false), outstanding(1),
279              mainPkt(NULL), pendingPacket(NULL)
280        { }
281
282        /** Instruction who initiated the access to memory. */
283        DynInstPtr inst;
284        /** Whether or not it is a load. */
285        bool isLoad;
286        /** The LQ/SQ index of the instruction. */
287        int idx;
288        /** Whether or not the instruction will need to writeback. */
289        bool noWB;
290        /** Whether or not this access is split in two. */
291        bool isSplit;
292        /** Whether or not there is a packet that needs sending. */
293        bool pktToSend;
294        /** Number of outstanding packets to complete. */
295        int outstanding;
296        /** The main packet from a split load, used during writeback. */
297        PacketPtr mainPkt;
298        /** A second packet from a split store that needs sending. */
299        PacketPtr pendingPacket;
300
301        /** Completes a packet and returns whether the access is finished. */
302        inline bool complete() { return --outstanding == 0; }
303    };
304
305    /** Writeback event, specifically for when stores forward data to loads. */
306    class WritebackEvent : public Event {
307      public:
308        /** Constructs a writeback event. */
309        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
310
311        /** Processes the writeback event. */
312        void process();
313
314        /** Returns the description of this event. */
315        const char *description() const;
316
317      private:
318        /** Instruction whose results are being written back. */
319        DynInstPtr inst;
320
321        /** The packet that would have been sent to memory. */
322        PacketPtr pkt;
323
324        /** The pointer to the LSQ unit that issued the store. */
325        LSQUnit<Impl> *lsqPtr;
326    };
327
328  public:
329    struct SQEntry {
330        /** Constructs an empty store queue entry. */
331        SQEntry()
332            : inst(NULL), req(NULL), size(0),
333              canWB(0), committed(0), completed(0)
334        {
335            std::memset(data, 0, sizeof(data));
336        }
337
338        /** Constructs a store queue entry for a given instruction. */
339        SQEntry(DynInstPtr &_inst)
340            : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
341              isSplit(0), canWB(0), committed(0), completed(0)
342        {
343            std::memset(data, 0, sizeof(data));
344        }
345
346        /** The store instruction. */
347        DynInstPtr inst;
348        /** The request for the store. */
349        RequestPtr req;
350        /** The split requests for the store. */
351        RequestPtr sreqLow;
352        RequestPtr sreqHigh;
353        /** The size of the store. */
354        int size;
355        /** The store data. */
356        char data[16];
357        /** Whether or not the store is split into two requests. */
358        bool isSplit;
359        /** Whether or not the store can writeback. */
360        bool canWB;
361        /** Whether or not the store is committed. */
362        bool committed;
363        /** Whether or not the store is completed. */
364        bool completed;
365    };
366
367  private:
368    /** The LSQUnit thread id. */
369    ThreadID lsqID;
370
371    /** The store queue. */
372    std::vector<SQEntry> storeQueue;
373
374    /** The load queue. */
375    std::vector<DynInstPtr> loadQueue;
376
377    /** The number of LQ entries, plus a sentinel entry (circular queue).
378     *  @todo: Consider having var that records the true number of LQ entries.
379     */
380    unsigned LQEntries;
381    /** The number of SQ entries, plus a sentinel entry (circular queue).
382     *  @todo: Consider having var that records the true number of SQ entries.
383     */
384    unsigned SQEntries;
385
386    /** The number of places to shift addresses in the LSQ before checking
387     * for dependency violations
388     */
389    unsigned depCheckShift;
390
391    /** Should loads be checked for dependency issues */
392    bool checkLoads;
393
394    /** The number of load instructions in the LQ. */
395    int loads;
396    /** The number of store instructions in the SQ. */
397    int stores;
398    /** The number of store instructions in the SQ waiting to writeback. */
399    int storesToWB;
400
401    /** The index of the head instruction in the LQ. */
402    int loadHead;
403    /** The index of the tail instruction in the LQ. */
404    int loadTail;
405
406    /** The index of the head instruction in the SQ. */
407    int storeHead;
408    /** The index of the first instruction that may be ready to be
409     * written back, and has not yet been written back.
410     */
411    int storeWBIdx;
412    /** The index of the tail instruction in the SQ. */
413    int storeTail;
414
415    /// @todo Consider moving to a more advanced model with write vs read ports
416    /** The number of cache ports available each cycle. */
417    int cachePorts;
418
419    /** The number of used cache ports in this cycle. */
420    int usedPorts;
421
422    /** Is the LSQ switched out. */
423    bool switchedOut;
424
425    //list<InstSeqNum> mshrSeqNums;
426
427    /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
428    Addr cacheBlockMask;
429
430    /** Wire to read information from the issue stage time queue. */
431    typename TimeBuffer<IssueStruct>::wire fromIssue;
432
433    /** Whether or not the LSQ is stalled. */
434    bool stalled;
435    /** The store that causes the stall due to partial store to load
436     * forwarding.
437     */
438    InstSeqNum stallingStoreIsn;
439    /** The index of the above store. */
440    int stallingLoadIdx;
441
442    /** The packet that needs to be retried. */
443    PacketPtr retryPkt;
444
445    /** Whehter or not a store is blocked due to the memory system. */
446    bool isStoreBlocked;
447
448    /** Whether or not a load is blocked due to the memory system. */
449    bool isLoadBlocked;
450
451    /** Has the blocked load been handled. */
452    bool loadBlockedHandled;
453
454    /** Whether or not a store is in flight. */
455    bool storeInFlight;
456
457    /** The sequence number of the blocked load. */
458    InstSeqNum blockedLoadSeqNum;
459
460    /** The oldest load that caused a memory ordering violation. */
461    DynInstPtr memDepViolator;
462
463    /** Whether or not there is a packet that couldn't be sent because of
464     * a lack of cache ports. */
465    bool hasPendingPkt;
466
467    /** The packet that is pending free cache ports. */
468    PacketPtr pendingPkt;
469
470    /** Flag for memory model. */
471    bool needsTSO;
472
473    // Will also need how many read/write ports the Dcache has.  Or keep track
474    // of that in stage that is one level up, and only call executeLoad/Store
475    // the appropriate number of times.
476    /** Total number of loads forwaded from LSQ stores. */
477    Stats::Scalar lsqForwLoads;
478
479    /** Total number of loads ignored due to invalid addresses. */
480    Stats::Scalar invAddrLoads;
481
482    /** Total number of squashed loads. */
483    Stats::Scalar lsqSquashedLoads;
484
485    /** Total number of responses from the memory system that are
486     * ignored due to the instruction already being squashed. */
487    Stats::Scalar lsqIgnoredResponses;
488
489    /** Tota number of memory ordering violations. */
490    Stats::Scalar lsqMemOrderViolation;
491
492    /** Total number of squashed stores. */
493    Stats::Scalar lsqSquashedStores;
494
495    /** Total number of software prefetches ignored due to invalid addresses. */
496    Stats::Scalar invAddrSwpfs;
497
498    /** Ready loads blocked due to partial store-forwarding. */
499    Stats::Scalar lsqBlockedLoads;
500
501    /** Number of loads that were rescheduled. */
502    Stats::Scalar lsqRescheduledLoads;
503
504    /** Number of times the LSQ is blocked due to the cache. */
505    Stats::Scalar lsqCacheBlocked;
506
507  public:
508    /** Executes the load at the given index. */
509    Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
510               uint8_t *data, int load_idx);
511
512    /** Executes the store at the given index. */
513    Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
514                uint8_t *data, int store_idx);
515
516    /** Returns the index of the head load instruction. */
517    int getLoadHead() { return loadHead; }
518    /** Returns the sequence number of the head load instruction. */
519    InstSeqNum getLoadHeadSeqNum()
520    {
521        if (loadQueue[loadHead]) {
522            return loadQueue[loadHead]->seqNum;
523        } else {
524            return 0;
525        }
526
527    }
528
529    /** Returns the index of the head store instruction. */
530    int getStoreHead() { return storeHead; }
531    /** Returns the sequence number of the head store instruction. */
532    InstSeqNum getStoreHeadSeqNum()
533    {
534        if (storeQueue[storeHead].inst) {
535            return storeQueue[storeHead].inst->seqNum;
536        } else {
537            return 0;
538        }
539
540    }
541
542    /** Returns whether or not the LSQ unit is stalled. */
543    bool isStalled()  { return stalled; }
544};
545
546template <class Impl>
547Fault
548LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
549                    uint8_t *data, int load_idx)
550{
551    DynInstPtr load_inst = loadQueue[load_idx];
552
553    assert(load_inst);
554
555    assert(!load_inst->isExecuted());
556
557    // Make sure this isn't an uncacheable access
558    // A bit of a hackish way to get uncached accesses to work only if they're
559    // at the head of the LSQ and are ready to commit (at the head of the ROB
560    // too).
561    if (req->isUncacheable() &&
562        (load_idx != loadHead || !load_inst->isAtCommit())) {
563        iewStage->rescheduleMemInst(load_inst);
564        ++lsqRescheduledLoads;
565        DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
566                load_inst->seqNum, load_inst->pcState());
567
568        // Must delete request now that it wasn't handed off to
569        // memory.  This is quite ugly.  @todo: Figure out the proper
570        // place to really handle request deletes.
571        delete req;
572        if (TheISA::HasUnalignedMemAcc && sreqLow) {
573            delete sreqLow;
574            delete sreqHigh;
575        }
576        return new GenericISA::M5PanicFault(
577                "Uncachable load [sn:%llx] PC %s\n",
578                load_inst->seqNum, load_inst->pcState());
579    }
580
581    // Check the SQ for any previous stores that might lead to forwarding
582    int store_idx = load_inst->sqIdx;
583
584    int store_size = 0;
585
586    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
587            "storeHead: %i addr: %#x%s\n",
588            load_idx, store_idx, storeHead, req->getPaddr(),
589            sreqLow ? " split" : "");
590
591    if (req->isLLSC()) {
592        assert(!sreqLow);
593        // Disable recording the result temporarily.  Writing to misc
594        // regs normally updates the result, but this is not the
595        // desired behavior when handling store conditionals.
596        load_inst->recordResult = false;
597        TheISA::handleLockedRead(load_inst.get(), req);
598        load_inst->recordResult = true;
599    }
600
601    if (req->isMmappedIpr()) {
602        assert(!load_inst->memData);
603        load_inst->memData = new uint8_t[64];
604
605        ThreadContext *thread = cpu->tcBase(lsqID);
606        Tick delay;
607        PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
608
609        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
610            data_pkt->dataStatic(load_inst->memData);
611            delay = TheISA::handleIprRead(thread, data_pkt);
612        } else {
613            assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr());
614            PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq);
615            PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq);
616
617            fst_data_pkt->dataStatic(load_inst->memData);
618            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
619
620            delay = TheISA::handleIprRead(thread, fst_data_pkt);
621            unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt);
622            if (delay2 > delay)
623                delay = delay2;
624
625            delete sreqLow;
626            delete sreqHigh;
627            delete fst_data_pkt;
628            delete snd_data_pkt;
629        }
630        WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
631        cpu->schedule(wb, curTick() + delay);
632        return NoFault;
633    }
634
635    while (store_idx != -1) {
636        // End once we've reached the top of the LSQ
637        if (store_idx == storeWBIdx) {
638            break;
639        }
640
641        // Move the index to one younger
642        if (--store_idx < 0)
643            store_idx += SQEntries;
644
645        assert(storeQueue[store_idx].inst);
646
647        store_size = storeQueue[store_idx].size;
648
649        if (store_size == 0)
650            continue;
651        else if (storeQueue[store_idx].inst->uncacheable())
652            continue;
653
654        assert(storeQueue[store_idx].inst->effAddrValid);
655
656        // Check if the store data is within the lower and upper bounds of
657        // addresses that the request needs.
658        bool store_has_lower_limit =
659            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
660        bool store_has_upper_limit =
661            (req->getVaddr() + req->getSize()) <=
662            (storeQueue[store_idx].inst->effAddr + store_size);
663        bool lower_load_has_store_part =
664            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
665                           store_size);
666        bool upper_load_has_store_part =
667            (req->getVaddr() + req->getSize()) >
668            storeQueue[store_idx].inst->effAddr;
669
670        // If the store's data has all of the data needed, we can forward.
671        if ((store_has_lower_limit && store_has_upper_limit)) {
672            // Get shift amount for offset into the store's data.
673            int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr;
674
675            memcpy(data, storeQueue[store_idx].data + shift_amt,
676                   req->getSize());
677
678            assert(!load_inst->memData);
679            load_inst->memData = new uint8_t[64];
680
681            memcpy(load_inst->memData,
682                    storeQueue[store_idx].data + shift_amt, req->getSize());
683
684            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
685                    "addr %#x, data %#x\n",
686                    store_idx, req->getVaddr(), data);
687
688            PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
689            data_pkt->dataStatic(load_inst->memData);
690
691            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
692
693            // We'll say this has a 1 cycle load-store forwarding latency
694            // for now.
695            // @todo: Need to make this a parameter.
696            cpu->schedule(wb, curTick());
697
698            // Don't need to do anything special for split loads.
699            if (TheISA::HasUnalignedMemAcc && sreqLow) {
700                delete sreqLow;
701                delete sreqHigh;
702            }
703
704            ++lsqForwLoads;
705            return NoFault;
706        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
707                   (store_has_upper_limit && upper_load_has_store_part) ||
708                   (lower_load_has_store_part && upper_load_has_store_part)) {
709            // This is the partial store-load forwarding case where a store
710            // has only part of the load's data.
711
712            // If it's already been written back, then don't worry about
713            // stalling on it.
714            if (storeQueue[store_idx].completed) {
715                panic("Should not check one of these");
716                continue;
717            }
718
719            // Must stall load and force it to retry, so long as it's the oldest
720            // load that needs to do so.
721            if (!stalled ||
722                (stalled &&
723                 load_inst->seqNum <
724                 loadQueue[stallingLoadIdx]->seqNum)) {
725                stalled = true;
726                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
727                stallingLoadIdx = load_idx;
728            }
729
730            // Tell IQ/mem dep unit that this instruction will need to be
731            // rescheduled eventually
732            iewStage->rescheduleMemInst(load_inst);
733            iewStage->decrWb(load_inst->seqNum);
734            load_inst->clearIssued();
735            ++lsqRescheduledLoads;
736
737            // Do not generate a writeback event as this instruction is not
738            // complete.
739            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
740                    "Store idx %i to load addr %#x\n",
741                    store_idx, req->getVaddr());
742
743            // Must delete request now that it wasn't handed off to
744            // memory.  This is quite ugly.  @todo: Figure out the
745            // proper place to really handle request deletes.
746            delete req;
747            if (TheISA::HasUnalignedMemAcc && sreqLow) {
748                delete sreqLow;
749                delete sreqHigh;
750            }
751
752            return NoFault;
753        }
754    }
755
756    // If there's no forwarding case, then go access memory
757    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
758            load_inst->seqNum, load_inst->pcState());
759
760    assert(!load_inst->memData);
761    load_inst->memData = new uint8_t[64];
762
763    ++usedPorts;
764
765    // if we the cache is not blocked, do cache access
766    bool completedFirst = false;
767    if (!lsq->cacheBlocked()) {
768        MemCmd command =
769            req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
770        PacketPtr data_pkt = new Packet(req, command);
771        PacketPtr fst_data_pkt = NULL;
772        PacketPtr snd_data_pkt = NULL;
773
774        data_pkt->dataStatic(load_inst->memData);
775
776        LSQSenderState *state = new LSQSenderState;
777        state->isLoad = true;
778        state->idx = load_idx;
779        state->inst = load_inst;
780        data_pkt->senderState = state;
781
782        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
783
784            // Point the first packet at the main data packet.
785            fst_data_pkt = data_pkt;
786        } else {
787
788            // Create the split packets.
789            fst_data_pkt = new Packet(sreqLow, command);
790            snd_data_pkt = new Packet(sreqHigh, command);
791
792            fst_data_pkt->dataStatic(load_inst->memData);
793            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
794
795            fst_data_pkt->senderState = state;
796            snd_data_pkt->senderState = state;
797
798            state->isSplit = true;
799            state->outstanding = 2;
800            state->mainPkt = data_pkt;
801        }
802
803        if (!dcachePort->sendTimingReq(fst_data_pkt)) {
804            // Delete state and data packet because a load retry
805            // initiates a pipeline restart; it does not retry.
806            delete state;
807            delete data_pkt->req;
808            delete data_pkt;
809            if (TheISA::HasUnalignedMemAcc && sreqLow) {
810                delete fst_data_pkt->req;
811                delete fst_data_pkt;
812                delete snd_data_pkt->req;
813                delete snd_data_pkt;
814                sreqLow = NULL;
815                sreqHigh = NULL;
816            }
817
818            req = NULL;
819
820            // If the access didn't succeed, tell the LSQ by setting
821            // the retry thread id.
822            lsq->setRetryTid(lsqID);
823        } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
824            completedFirst = true;
825
826            // The first packet was sent without problems, so send this one
827            // too. If there is a problem with this packet then the whole
828            // load will be squashed, so indicate this to the state object.
829            // The first packet will return in completeDataAccess and be
830            // handled there.
831            ++usedPorts;
832            if (!dcachePort->sendTimingReq(snd_data_pkt)) {
833
834                // The main packet will be deleted in completeDataAccess.
835                delete snd_data_pkt->req;
836                delete snd_data_pkt;
837
838                state->complete();
839
840                req = NULL;
841                sreqHigh = NULL;
842
843                lsq->setRetryTid(lsqID);
844            }
845        }
846    }
847
848    // If the cache was blocked, or has become blocked due to the access,
849    // handle it.
850    if (lsq->cacheBlocked()) {
851        if (req)
852            delete req;
853        if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
854            delete sreqLow;
855            delete sreqHigh;
856        }
857
858        ++lsqCacheBlocked;
859
860        // If the first part of a split access succeeds, then let the LSQ
861        // handle the decrWb when completeDataAccess is called upon return
862        // of the requested first part of data
863        if (!completedFirst)
864            iewStage->decrWb(load_inst->seqNum);
865
866        // There's an older load that's already going to squash.
867        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
868            return NoFault;
869
870        // Record that the load was blocked due to memory.  This
871        // load will squash all instructions after it, be
872        // refetched, and re-executed.
873        isLoadBlocked = true;
874        loadBlockedHandled = false;
875        blockedLoadSeqNum = load_inst->seqNum;
876        // No fault occurred, even though the interface is blocked.
877        return NoFault;
878    }
879
880    return NoFault;
881}
882
883template <class Impl>
884Fault
885LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
886                     uint8_t *data, int store_idx)
887{
888    assert(storeQueue[store_idx].inst);
889
890    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
891            " | storeHead:%i [sn:%i]\n",
892            store_idx, req->getPaddr(), data, storeHead,
893            storeQueue[store_idx].inst->seqNum);
894
895    storeQueue[store_idx].req = req;
896    storeQueue[store_idx].sreqLow = sreqLow;
897    storeQueue[store_idx].sreqHigh = sreqHigh;
898    unsigned size = req->getSize();
899    storeQueue[store_idx].size = size;
900    assert(size <= sizeof(storeQueue[store_idx].data));
901
902    // Split stores can only occur in ISAs with unaligned memory accesses.  If
903    // a store request has been split, sreqLow and sreqHigh will be non-null.
904    if (TheISA::HasUnalignedMemAcc && sreqLow) {
905        storeQueue[store_idx].isSplit = true;
906    }
907
908    memcpy(storeQueue[store_idx].data, data, size);
909
910    // This function only writes the data to the store queue, so no fault
911    // can happen here.
912    return NoFault;
913}
914
915#endif // __CPU_O3_LSQ_UNIT_HH__
916