lsq_unit.hh revision 8922
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/generic/debugfaults.hh" 41#include "arch/isa_traits.hh" 42#include "arch/locked_mem.hh" 43#include "arch/mmapped_ipr.hh" 44#include "base/fast_alloc.hh" 45#include "base/hashmap.hh" 46#include "config/the_isa.hh" 47#include "cpu/inst_seq.hh" 48#include "cpu/timebuf.hh" 49#include "debug/LSQUnit.hh" 50#include "mem/packet.hh" 51#include "mem/port.hh" 52#include "sim/fault_fwd.hh" 53 54struct DerivO3CPUParams; 55 56/** 57 * Class that implements the actual LQ and SQ for each specific 58 * thread. Both are circular queues; load entries are freed upon 59 * committing, while store entries are freed once they writeback. The 60 * LSQUnit tracks if there are memory ordering violations, and also 61 * detects partial load to store forwarding cases (a store only has 62 * part of a load's data) that requires the load to wait until the 63 * store writes back. In the former case it holds onto the instruction 64 * until the dependence unit looks at it, and in the latter it stalls 65 * the LSQ until the store writes back. At that point the load is 66 * replayed. 67 */ 68template <class Impl> 69class LSQUnit { 70 public: 71 typedef typename Impl::O3CPU O3CPU; 72 typedef typename Impl::DynInstPtr DynInstPtr; 73 typedef typename Impl::CPUPol::IEW IEW; 74 typedef typename Impl::CPUPol::LSQ LSQ; 75 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 76 77 public: 78 /** Constructs an LSQ unit. init() must be called prior to use. */ 79 LSQUnit(); 80 81 /** Initializes the LSQ unit with the specified number of entries. */ 82 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 83 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 84 unsigned id); 85 86 /** Returns the name of the LSQ unit. */ 87 std::string name() const; 88 89 /** Registers statistics. */ 90 void regStats(); 91 92 /** Sets the pointer to the dcache port. */ 93 void setDcachePort(MasterPort *dcache_port); 94 95 /** Switches out LSQ unit. */ 96 void switchOut(); 97 98 /** Takes over from another CPU's thread. */ 99 void takeOverFrom(); 100 101 /** Returns if the LSQ is switched out. */ 102 bool isSwitchedOut() { return switchedOut; } 103 104 /** Ticks the LSQ unit, which in this case only resets the number of 105 * used cache ports. 106 * @todo: Move the number of used ports up to the LSQ level so it can 107 * be shared by all LSQ units. 108 */ 109 void tick() { usedPorts = 0; } 110 111 /** Inserts an instruction. */ 112 void insert(DynInstPtr &inst); 113 /** Inserts a load instruction. */ 114 void insertLoad(DynInstPtr &load_inst); 115 /** Inserts a store instruction. */ 116 void insertStore(DynInstPtr &store_inst); 117 118 /** Check for ordering violations in the LSQ. For a store squash if we 119 * ever find a conflicting load. For a load, only squash if we 120 * an external snoop invalidate has been seen for that load address 121 * @param load_idx index to start checking at 122 * @param inst the instruction to check 123 */ 124 Fault checkViolations(int load_idx, DynInstPtr &inst); 125 126 /** Check if an incoming invalidate hits in the lsq on a load 127 * that might have issued out of order wrt another load beacuse 128 * of the intermediate invalidate. 129 */ 130 void checkSnoop(PacketPtr pkt); 131 132 /** Executes a load instruction. */ 133 Fault executeLoad(DynInstPtr &inst); 134 135 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 136 /** Executes a store instruction. */ 137 Fault executeStore(DynInstPtr &inst); 138 139 /** Commits the head load. */ 140 void commitLoad(); 141 /** Commits loads older than a specific sequence number. */ 142 void commitLoads(InstSeqNum &youngest_inst); 143 144 /** Commits stores older than a specific sequence number. */ 145 void commitStores(InstSeqNum &youngest_inst); 146 147 /** Writes back stores. */ 148 void writebackStores(); 149 150 /** Completes the data access that has been returned from the 151 * memory system. */ 152 void completeDataAccess(PacketPtr pkt); 153 154 /** Clears all the entries in the LQ. */ 155 void clearLQ(); 156 157 /** Clears all the entries in the SQ. */ 158 void clearSQ(); 159 160 /** Resizes the LQ to a given size. */ 161 void resizeLQ(unsigned size); 162 163 /** Resizes the SQ to a given size. */ 164 void resizeSQ(unsigned size); 165 166 /** Squashes all instructions younger than a specific sequence number. */ 167 void squash(const InstSeqNum &squashed_num); 168 169 /** Returns if there is a memory ordering violation. Value is reset upon 170 * call to getMemDepViolator(). 171 */ 172 bool violation() { return memDepViolator; } 173 174 /** Returns the memory ordering violator. */ 175 DynInstPtr getMemDepViolator(); 176 177 /** Returns if a load became blocked due to the memory system. */ 178 bool loadBlocked() 179 { return isLoadBlocked; } 180 181 /** Clears the signal that a load became blocked. */ 182 void clearLoadBlocked() 183 { isLoadBlocked = false; } 184 185 /** Returns if the blocked load was handled. */ 186 bool isLoadBlockedHandled() 187 { return loadBlockedHandled; } 188 189 /** Records the blocked load as being handled. */ 190 void setLoadBlockedHandled() 191 { loadBlockedHandled = true; } 192 193 /** Returns the number of free entries (min of free LQ and SQ entries). */ 194 unsigned numFreeEntries(); 195 196 /** Returns the number of loads ready to execute. */ 197 int numLoadsReady(); 198 199 /** Returns the number of loads in the LQ. */ 200 int numLoads() { return loads; } 201 202 /** Returns the number of stores in the SQ. */ 203 int numStores() { return stores; } 204 205 /** Returns if either the LQ or SQ is full. */ 206 bool isFull() { return lqFull() || sqFull(); } 207 208 /** Returns if the LQ is full. */ 209 bool lqFull() { return loads >= (LQEntries - 1); } 210 211 /** Returns if the SQ is full. */ 212 bool sqFull() { return stores >= (SQEntries - 1); } 213 214 /** Returns the number of instructions in the LSQ. */ 215 unsigned getCount() { return loads + stores; } 216 217 /** Returns if there are any stores to writeback. */ 218 bool hasStoresToWB() { return storesToWB; } 219 220 /** Returns the number of stores to writeback. */ 221 int numStoresToWB() { return storesToWB; } 222 223 /** Returns if the LSQ unit will writeback on this cycle. */ 224 bool willWB() { return storeQueue[storeWBIdx].canWB && 225 !storeQueue[storeWBIdx].completed && 226 !isStoreBlocked; } 227 228 /** Handles doing the retry. */ 229 void recvRetry(); 230 231 private: 232 /** Writes back the instruction, sending it to IEW. */ 233 void writeback(DynInstPtr &inst, PacketPtr pkt); 234 235 /** Writes back a store that couldn't be completed the previous cycle. */ 236 void writebackPendingStore(); 237 238 /** Handles completing the send of a store to memory. */ 239 void storePostSend(PacketPtr pkt); 240 241 /** Completes the store at the specified index. */ 242 void completeStore(int store_idx); 243 244 /** Attempts to send a store to the cache. */ 245 bool sendStore(PacketPtr data_pkt); 246 247 /** Increments the given store index (circular queue). */ 248 inline void incrStIdx(int &store_idx); 249 /** Decrements the given store index (circular queue). */ 250 inline void decrStIdx(int &store_idx); 251 /** Increments the given load index (circular queue). */ 252 inline void incrLdIdx(int &load_idx); 253 /** Decrements the given load index (circular queue). */ 254 inline void decrLdIdx(int &load_idx); 255 256 public: 257 /** Debugging function to dump instructions in the LSQ. */ 258 void dumpInsts(); 259 260 private: 261 /** Pointer to the CPU. */ 262 O3CPU *cpu; 263 264 /** Pointer to the IEW stage. */ 265 IEW *iewStage; 266 267 /** Pointer to the LSQ. */ 268 LSQ *lsq; 269 270 /** Pointer to the dcache port. Used only for sending. */ 271 MasterPort *dcachePort; 272 273 /** Derived class to hold any sender state the LSQ needs. */ 274 class LSQSenderState : public Packet::SenderState, public FastAlloc 275 { 276 public: 277 /** Default constructor. */ 278 LSQSenderState() 279 : noWB(false), isSplit(false), pktToSend(false), outstanding(1), 280 mainPkt(NULL), pendingPacket(NULL) 281 { } 282 283 /** Instruction who initiated the access to memory. */ 284 DynInstPtr inst; 285 /** Whether or not it is a load. */ 286 bool isLoad; 287 /** The LQ/SQ index of the instruction. */ 288 int idx; 289 /** Whether or not the instruction will need to writeback. */ 290 bool noWB; 291 /** Whether or not this access is split in two. */ 292 bool isSplit; 293 /** Whether or not there is a packet that needs sending. */ 294 bool pktToSend; 295 /** Number of outstanding packets to complete. */ 296 int outstanding; 297 /** The main packet from a split load, used during writeback. */ 298 PacketPtr mainPkt; 299 /** A second packet from a split store that needs sending. */ 300 PacketPtr pendingPacket; 301 302 /** Completes a packet and returns whether the access is finished. */ 303 inline bool complete() { return --outstanding == 0; } 304 }; 305 306 /** Writeback event, specifically for when stores forward data to loads. */ 307 class WritebackEvent : public Event { 308 public: 309 /** Constructs a writeback event. */ 310 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 311 312 /** Processes the writeback event. */ 313 void process(); 314 315 /** Returns the description of this event. */ 316 const char *description() const; 317 318 private: 319 /** Instruction whose results are being written back. */ 320 DynInstPtr inst; 321 322 /** The packet that would have been sent to memory. */ 323 PacketPtr pkt; 324 325 /** The pointer to the LSQ unit that issued the store. */ 326 LSQUnit<Impl> *lsqPtr; 327 }; 328 329 public: 330 struct SQEntry { 331 /** Constructs an empty store queue entry. */ 332 SQEntry() 333 : inst(NULL), req(NULL), size(0), 334 canWB(0), committed(0), completed(0) 335 { 336 std::memset(data, 0, sizeof(data)); 337 } 338 339 /** Constructs a store queue entry for a given instruction. */ 340 SQEntry(DynInstPtr &_inst) 341 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 342 isSplit(0), canWB(0), committed(0), completed(0) 343 { 344 std::memset(data, 0, sizeof(data)); 345 } 346 347 /** The store instruction. */ 348 DynInstPtr inst; 349 /** The request for the store. */ 350 RequestPtr req; 351 /** The split requests for the store. */ 352 RequestPtr sreqLow; 353 RequestPtr sreqHigh; 354 /** The size of the store. */ 355 int size; 356 /** The store data. */ 357 char data[16]; 358 /** Whether or not the store is split into two requests. */ 359 bool isSplit; 360 /** Whether or not the store can writeback. */ 361 bool canWB; 362 /** Whether or not the store is committed. */ 363 bool committed; 364 /** Whether or not the store is completed. */ 365 bool completed; 366 }; 367 368 private: 369 /** The LSQUnit thread id. */ 370 ThreadID lsqID; 371 372 /** The store queue. */ 373 std::vector<SQEntry> storeQueue; 374 375 /** The load queue. */ 376 std::vector<DynInstPtr> loadQueue; 377 378 /** The number of LQ entries, plus a sentinel entry (circular queue). 379 * @todo: Consider having var that records the true number of LQ entries. 380 */ 381 unsigned LQEntries; 382 /** The number of SQ entries, plus a sentinel entry (circular queue). 383 * @todo: Consider having var that records the true number of SQ entries. 384 */ 385 unsigned SQEntries; 386 387 /** The number of places to shift addresses in the LSQ before checking 388 * for dependency violations 389 */ 390 unsigned depCheckShift; 391 392 /** Should loads be checked for dependency issues */ 393 bool checkLoads; 394 395 /** The number of load instructions in the LQ. */ 396 int loads; 397 /** The number of store instructions in the SQ. */ 398 int stores; 399 /** The number of store instructions in the SQ waiting to writeback. */ 400 int storesToWB; 401 402 /** The index of the head instruction in the LQ. */ 403 int loadHead; 404 /** The index of the tail instruction in the LQ. */ 405 int loadTail; 406 407 /** The index of the head instruction in the SQ. */ 408 int storeHead; 409 /** The index of the first instruction that may be ready to be 410 * written back, and has not yet been written back. 411 */ 412 int storeWBIdx; 413 /** The index of the tail instruction in the SQ. */ 414 int storeTail; 415 416 /// @todo Consider moving to a more advanced model with write vs read ports 417 /** The number of cache ports available each cycle. */ 418 int cachePorts; 419 420 /** The number of used cache ports in this cycle. */ 421 int usedPorts; 422 423 /** Is the LSQ switched out. */ 424 bool switchedOut; 425 426 //list<InstSeqNum> mshrSeqNums; 427 428 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 429 Addr cacheBlockMask; 430 431 /** Wire to read information from the issue stage time queue. */ 432 typename TimeBuffer<IssueStruct>::wire fromIssue; 433 434 /** Whether or not the LSQ is stalled. */ 435 bool stalled; 436 /** The store that causes the stall due to partial store to load 437 * forwarding. 438 */ 439 InstSeqNum stallingStoreIsn; 440 /** The index of the above store. */ 441 int stallingLoadIdx; 442 443 /** The packet that needs to be retried. */ 444 PacketPtr retryPkt; 445 446 /** Whehter or not a store is blocked due to the memory system. */ 447 bool isStoreBlocked; 448 449 /** Whether or not a load is blocked due to the memory system. */ 450 bool isLoadBlocked; 451 452 /** Has the blocked load been handled. */ 453 bool loadBlockedHandled; 454 455 /** Whether or not a store is in flight. */ 456 bool storeInFlight; 457 458 /** The sequence number of the blocked load. */ 459 InstSeqNum blockedLoadSeqNum; 460 461 /** The oldest load that caused a memory ordering violation. */ 462 DynInstPtr memDepViolator; 463 464 /** Whether or not there is a packet that couldn't be sent because of 465 * a lack of cache ports. */ 466 bool hasPendingPkt; 467 468 /** The packet that is pending free cache ports. */ 469 PacketPtr pendingPkt; 470 471 /** Flag for memory model. */ 472 bool needsTSO; 473 474 // Will also need how many read/write ports the Dcache has. Or keep track 475 // of that in stage that is one level up, and only call executeLoad/Store 476 // the appropriate number of times. 477 /** Total number of loads forwaded from LSQ stores. */ 478 Stats::Scalar lsqForwLoads; 479 480 /** Total number of loads ignored due to invalid addresses. */ 481 Stats::Scalar invAddrLoads; 482 483 /** Total number of squashed loads. */ 484 Stats::Scalar lsqSquashedLoads; 485 486 /** Total number of responses from the memory system that are 487 * ignored due to the instruction already being squashed. */ 488 Stats::Scalar lsqIgnoredResponses; 489 490 /** Tota number of memory ordering violations. */ 491 Stats::Scalar lsqMemOrderViolation; 492 493 /** Total number of squashed stores. */ 494 Stats::Scalar lsqSquashedStores; 495 496 /** Total number of software prefetches ignored due to invalid addresses. */ 497 Stats::Scalar invAddrSwpfs; 498 499 /** Ready loads blocked due to partial store-forwarding. */ 500 Stats::Scalar lsqBlockedLoads; 501 502 /** Number of loads that were rescheduled. */ 503 Stats::Scalar lsqRescheduledLoads; 504 505 /** Number of times the LSQ is blocked due to the cache. */ 506 Stats::Scalar lsqCacheBlocked; 507 508 public: 509 /** Executes the load at the given index. */ 510 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 511 uint8_t *data, int load_idx); 512 513 /** Executes the store at the given index. */ 514 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 515 uint8_t *data, int store_idx); 516 517 /** Returns the index of the head load instruction. */ 518 int getLoadHead() { return loadHead; } 519 /** Returns the sequence number of the head load instruction. */ 520 InstSeqNum getLoadHeadSeqNum() 521 { 522 if (loadQueue[loadHead]) { 523 return loadQueue[loadHead]->seqNum; 524 } else { 525 return 0; 526 } 527 528 } 529 530 /** Returns the index of the head store instruction. */ 531 int getStoreHead() { return storeHead; } 532 /** Returns the sequence number of the head store instruction. */ 533 InstSeqNum getStoreHeadSeqNum() 534 { 535 if (storeQueue[storeHead].inst) { 536 return storeQueue[storeHead].inst->seqNum; 537 } else { 538 return 0; 539 } 540 541 } 542 543 /** Returns whether or not the LSQ unit is stalled. */ 544 bool isStalled() { return stalled; } 545}; 546 547template <class Impl> 548Fault 549LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 550 uint8_t *data, int load_idx) 551{ 552 DynInstPtr load_inst = loadQueue[load_idx]; 553 554 assert(load_inst); 555 556 assert(!load_inst->isExecuted()); 557 558 // Make sure this isn't an uncacheable access 559 // A bit of a hackish way to get uncached accesses to work only if they're 560 // at the head of the LSQ and are ready to commit (at the head of the ROB 561 // too). 562 if (req->isUncacheable() && 563 (load_idx != loadHead || !load_inst->isAtCommit())) { 564 iewStage->rescheduleMemInst(load_inst); 565 ++lsqRescheduledLoads; 566 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 567 load_inst->seqNum, load_inst->pcState()); 568 569 // Must delete request now that it wasn't handed off to 570 // memory. This is quite ugly. @todo: Figure out the proper 571 // place to really handle request deletes. 572 delete req; 573 if (TheISA::HasUnalignedMemAcc && sreqLow) { 574 delete sreqLow; 575 delete sreqHigh; 576 } 577 return new GenericISA::M5PanicFault( 578 "Uncachable load [sn:%llx] PC %s\n", 579 load_inst->seqNum, load_inst->pcState()); 580 } 581 582 // Check the SQ for any previous stores that might lead to forwarding 583 int store_idx = load_inst->sqIdx; 584 585 int store_size = 0; 586 587 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 588 "storeHead: %i addr: %#x%s\n", 589 load_idx, store_idx, storeHead, req->getPaddr(), 590 sreqLow ? " split" : ""); 591 592 if (req->isLLSC()) { 593 assert(!sreqLow); 594 // Disable recording the result temporarily. Writing to misc 595 // regs normally updates the result, but this is not the 596 // desired behavior when handling store conditionals. 597 load_inst->recordResult = false; 598 TheISA::handleLockedRead(load_inst.get(), req); 599 load_inst->recordResult = true; 600 } 601 602 if (req->isMmappedIpr()) { 603 assert(!load_inst->memData); 604 load_inst->memData = new uint8_t[64]; 605 606 ThreadContext *thread = cpu->tcBase(lsqID); 607 Tick delay; 608 PacketPtr data_pkt = 609 new Packet(req, MemCmd::ReadReq, Packet::Broadcast); 610 611 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 612 data_pkt->dataStatic(load_inst->memData); 613 delay = TheISA::handleIprRead(thread, data_pkt); 614 } else { 615 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 616 PacketPtr fst_data_pkt = 617 new Packet(sreqLow, MemCmd::ReadReq, Packet::Broadcast); 618 PacketPtr snd_data_pkt = 619 new Packet(sreqHigh, MemCmd::ReadReq, Packet::Broadcast); 620 621 fst_data_pkt->dataStatic(load_inst->memData); 622 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 623 624 delay = TheISA::handleIprRead(thread, fst_data_pkt); 625 unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 626 if (delay2 > delay) 627 delay = delay2; 628 629 delete sreqLow; 630 delete sreqHigh; 631 delete fst_data_pkt; 632 delete snd_data_pkt; 633 } 634 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 635 cpu->schedule(wb, curTick() + delay); 636 return NoFault; 637 } 638 639 while (store_idx != -1) { 640 // End once we've reached the top of the LSQ 641 if (store_idx == storeWBIdx) { 642 break; 643 } 644 645 // Move the index to one younger 646 if (--store_idx < 0) 647 store_idx += SQEntries; 648 649 assert(storeQueue[store_idx].inst); 650 651 store_size = storeQueue[store_idx].size; 652 653 if (store_size == 0) 654 continue; 655 else if (storeQueue[store_idx].inst->uncacheable()) 656 continue; 657 658 assert(storeQueue[store_idx].inst->effAddrValid); 659 660 // Check if the store data is within the lower and upper bounds of 661 // addresses that the request needs. 662 bool store_has_lower_limit = 663 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 664 bool store_has_upper_limit = 665 (req->getVaddr() + req->getSize()) <= 666 (storeQueue[store_idx].inst->effAddr + store_size); 667 bool lower_load_has_store_part = 668 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 669 store_size); 670 bool upper_load_has_store_part = 671 (req->getVaddr() + req->getSize()) > 672 storeQueue[store_idx].inst->effAddr; 673 674 // If the store's data has all of the data needed, we can forward. 675 if ((store_has_lower_limit && store_has_upper_limit)) { 676 // Get shift amount for offset into the store's data. 677 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 678 679 memcpy(data, storeQueue[store_idx].data + shift_amt, 680 req->getSize()); 681 682 assert(!load_inst->memData); 683 load_inst->memData = new uint8_t[64]; 684 685 memcpy(load_inst->memData, 686 storeQueue[store_idx].data + shift_amt, req->getSize()); 687 688 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 689 "addr %#x, data %#x\n", 690 store_idx, req->getVaddr(), data); 691 692 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq, 693 Packet::Broadcast); 694 data_pkt->dataStatic(load_inst->memData); 695 696 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 697 698 // We'll say this has a 1 cycle load-store forwarding latency 699 // for now. 700 // @todo: Need to make this a parameter. 701 cpu->schedule(wb, curTick()); 702 703 // Don't need to do anything special for split loads. 704 if (TheISA::HasUnalignedMemAcc && sreqLow) { 705 delete sreqLow; 706 delete sreqHigh; 707 } 708 709 ++lsqForwLoads; 710 return NoFault; 711 } else if ((store_has_lower_limit && lower_load_has_store_part) || 712 (store_has_upper_limit && upper_load_has_store_part) || 713 (lower_load_has_store_part && upper_load_has_store_part)) { 714 // This is the partial store-load forwarding case where a store 715 // has only part of the load's data. 716 717 // If it's already been written back, then don't worry about 718 // stalling on it. 719 if (storeQueue[store_idx].completed) { 720 panic("Should not check one of these"); 721 continue; 722 } 723 724 // Must stall load and force it to retry, so long as it's the oldest 725 // load that needs to do so. 726 if (!stalled || 727 (stalled && 728 load_inst->seqNum < 729 loadQueue[stallingLoadIdx]->seqNum)) { 730 stalled = true; 731 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 732 stallingLoadIdx = load_idx; 733 } 734 735 // Tell IQ/mem dep unit that this instruction will need to be 736 // rescheduled eventually 737 iewStage->rescheduleMemInst(load_inst); 738 iewStage->decrWb(load_inst->seqNum); 739 load_inst->clearIssued(); 740 ++lsqRescheduledLoads; 741 742 // Do not generate a writeback event as this instruction is not 743 // complete. 744 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 745 "Store idx %i to load addr %#x\n", 746 store_idx, req->getVaddr()); 747 748 // Must delete request now that it wasn't handed off to 749 // memory. This is quite ugly. @todo: Figure out the 750 // proper place to really handle request deletes. 751 delete req; 752 if (TheISA::HasUnalignedMemAcc && sreqLow) { 753 delete sreqLow; 754 delete sreqHigh; 755 } 756 757 return NoFault; 758 } 759 } 760 761 // If there's no forwarding case, then go access memory 762 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 763 load_inst->seqNum, load_inst->pcState()); 764 765 assert(!load_inst->memData); 766 load_inst->memData = new uint8_t[64]; 767 768 ++usedPorts; 769 770 // if we the cache is not blocked, do cache access 771 bool completedFirst = false; 772 if (!lsq->cacheBlocked()) { 773 MemCmd command = 774 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 775 PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast); 776 PacketPtr fst_data_pkt = NULL; 777 PacketPtr snd_data_pkt = NULL; 778 779 data_pkt->dataStatic(load_inst->memData); 780 781 LSQSenderState *state = new LSQSenderState; 782 state->isLoad = true; 783 state->idx = load_idx; 784 state->inst = load_inst; 785 data_pkt->senderState = state; 786 787 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 788 789 // Point the first packet at the main data packet. 790 fst_data_pkt = data_pkt; 791 } else { 792 793 // Create the split packets. 794 fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast); 795 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast); 796 797 fst_data_pkt->dataStatic(load_inst->memData); 798 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 799 800 fst_data_pkt->senderState = state; 801 snd_data_pkt->senderState = state; 802 803 state->isSplit = true; 804 state->outstanding = 2; 805 state->mainPkt = data_pkt; 806 } 807 808 if (!dcachePort->sendTiming(fst_data_pkt)) { 809 // Delete state and data packet because a load retry 810 // initiates a pipeline restart; it does not retry. 811 delete state; 812 delete data_pkt->req; 813 delete data_pkt; 814 if (TheISA::HasUnalignedMemAcc && sreqLow) { 815 delete fst_data_pkt->req; 816 delete fst_data_pkt; 817 delete snd_data_pkt->req; 818 delete snd_data_pkt; 819 sreqLow = NULL; 820 sreqHigh = NULL; 821 } 822 823 req = NULL; 824 825 // If the access didn't succeed, tell the LSQ by setting 826 // the retry thread id. 827 lsq->setRetryTid(lsqID); 828 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 829 completedFirst = true; 830 831 // The first packet was sent without problems, so send this one 832 // too. If there is a problem with this packet then the whole 833 // load will be squashed, so indicate this to the state object. 834 // The first packet will return in completeDataAccess and be 835 // handled there. 836 ++usedPorts; 837 if (!dcachePort->sendTiming(snd_data_pkt)) { 838 839 // The main packet will be deleted in completeDataAccess. 840 delete snd_data_pkt->req; 841 delete snd_data_pkt; 842 843 state->complete(); 844 845 req = NULL; 846 sreqHigh = NULL; 847 848 lsq->setRetryTid(lsqID); 849 } 850 } 851 } 852 853 // If the cache was blocked, or has become blocked due to the access, 854 // handle it. 855 if (lsq->cacheBlocked()) { 856 if (req) 857 delete req; 858 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 859 delete sreqLow; 860 delete sreqHigh; 861 } 862 863 ++lsqCacheBlocked; 864 865 // If the first part of a split access succeeds, then let the LSQ 866 // handle the decrWb when completeDataAccess is called upon return 867 // of the requested first part of data 868 if (!completedFirst) 869 iewStage->decrWb(load_inst->seqNum); 870 871 // There's an older load that's already going to squash. 872 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 873 return NoFault; 874 875 // Record that the load was blocked due to memory. This 876 // load will squash all instructions after it, be 877 // refetched, and re-executed. 878 isLoadBlocked = true; 879 loadBlockedHandled = false; 880 blockedLoadSeqNum = load_inst->seqNum; 881 // No fault occurred, even though the interface is blocked. 882 return NoFault; 883 } 884 885 return NoFault; 886} 887 888template <class Impl> 889Fault 890LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 891 uint8_t *data, int store_idx) 892{ 893 assert(storeQueue[store_idx].inst); 894 895 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 896 " | storeHead:%i [sn:%i]\n", 897 store_idx, req->getPaddr(), data, storeHead, 898 storeQueue[store_idx].inst->seqNum); 899 900 storeQueue[store_idx].req = req; 901 storeQueue[store_idx].sreqLow = sreqLow; 902 storeQueue[store_idx].sreqHigh = sreqHigh; 903 unsigned size = req->getSize(); 904 storeQueue[store_idx].size = size; 905 assert(size <= sizeof(storeQueue[store_idx].data)); 906 907 // Split stores can only occur in ISAs with unaligned memory accesses. If 908 // a store request has been split, sreqLow and sreqHigh will be non-null. 909 if (TheISA::HasUnalignedMemAcc && sreqLow) { 910 storeQueue[store_idx].isSplit = true; 911 } 912 913 memcpy(storeQueue[store_idx].data, data, size); 914 915 // This function only writes the data to the store queue, so no fault 916 // can happen here. 917 return NoFault; 918} 919 920#endif // __CPU_O3_LSQ_UNIT_HH__ 921