lsq_unit.hh revision 8737
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/faults.hh" 41#include "arch/generic/debugfaults.hh" 42#include "arch/isa_traits.hh" 43#include "arch/locked_mem.hh" 44#include "arch/mmapped_ipr.hh" 45#include "base/fast_alloc.hh" 46#include "base/hashmap.hh" 47#include "config/full_system.hh" 48#include "config/the_isa.hh" 49#include "cpu/inst_seq.hh" 50#include "cpu/timebuf.hh" 51#include "debug/LSQUnit.hh" 52#include "mem/packet.hh" 53#include "mem/port.hh" 54 55struct DerivO3CPUParams; 56 57/** 58 * Class that implements the actual LQ and SQ for each specific 59 * thread. Both are circular queues; load entries are freed upon 60 * committing, while store entries are freed once they writeback. The 61 * LSQUnit tracks if there are memory ordering violations, and also 62 * detects partial load to store forwarding cases (a store only has 63 * part of a load's data) that requires the load to wait until the 64 * store writes back. In the former case it holds onto the instruction 65 * until the dependence unit looks at it, and in the latter it stalls 66 * the LSQ until the store writes back. At that point the load is 67 * replayed. 68 */ 69template <class Impl> 70class LSQUnit { 71 public: 72 typedef typename Impl::O3CPU O3CPU; 73 typedef typename Impl::DynInstPtr DynInstPtr; 74 typedef typename Impl::CPUPol::IEW IEW; 75 typedef typename Impl::CPUPol::LSQ LSQ; 76 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 77 78 public: 79 /** Constructs an LSQ unit. init() must be called prior to use. */ 80 LSQUnit(); 81 82 /** Initializes the LSQ unit with the specified number of entries. */ 83 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 84 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 85 unsigned id); 86 87 /** Returns the name of the LSQ unit. */ 88 std::string name() const; 89 90 /** Registers statistics. */ 91 void regStats(); 92 93 /** Sets the pointer to the dcache port. */ 94 void setDcachePort(Port *dcache_port); 95 96 /** Switches out LSQ unit. */ 97 void switchOut(); 98 99 /** Takes over from another CPU's thread. */ 100 void takeOverFrom(); 101 102 /** Returns if the LSQ is switched out. */ 103 bool isSwitchedOut() { return switchedOut; } 104 105 /** Ticks the LSQ unit, which in this case only resets the number of 106 * used cache ports. 107 * @todo: Move the number of used ports up to the LSQ level so it can 108 * be shared by all LSQ units. 109 */ 110 void tick() { usedPorts = 0; } 111 112 /** Inserts an instruction. */ 113 void insert(DynInstPtr &inst); 114 /** Inserts a load instruction. */ 115 void insertLoad(DynInstPtr &load_inst); 116 /** Inserts a store instruction. */ 117 void insertStore(DynInstPtr &store_inst); 118 119 /** Check for ordering violations in the LSQ. For a store squash if we 120 * ever find a conflicting load. For a load, only squash if we 121 * an external snoop invalidate has been seen for that load address 122 * @param load_idx index to start checking at 123 * @param inst the instruction to check 124 */ 125 Fault checkViolations(int load_idx, DynInstPtr &inst); 126 127 /** Check if an incoming invalidate hits in the lsq on a load 128 * that might have issued out of order wrt another load beacuse 129 * of the intermediate invalidate. 130 */ 131 void checkSnoop(PacketPtr pkt); 132 133 /** Executes a load instruction. */ 134 Fault executeLoad(DynInstPtr &inst); 135 136 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 137 /** Executes a store instruction. */ 138 Fault executeStore(DynInstPtr &inst); 139 140 /** Commits the head load. */ 141 void commitLoad(); 142 /** Commits loads older than a specific sequence number. */ 143 void commitLoads(InstSeqNum &youngest_inst); 144 145 /** Commits stores older than a specific sequence number. */ 146 void commitStores(InstSeqNum &youngest_inst); 147 148 /** Writes back stores. */ 149 void writebackStores(); 150 151 /** Completes the data access that has been returned from the 152 * memory system. */ 153 void completeDataAccess(PacketPtr pkt); 154 155 /** Clears all the entries in the LQ. */ 156 void clearLQ(); 157 158 /** Clears all the entries in the SQ. */ 159 void clearSQ(); 160 161 /** Resizes the LQ to a given size. */ 162 void resizeLQ(unsigned size); 163 164 /** Resizes the SQ to a given size. */ 165 void resizeSQ(unsigned size); 166 167 /** Squashes all instructions younger than a specific sequence number. */ 168 void squash(const InstSeqNum &squashed_num); 169 170 /** Returns if there is a memory ordering violation. Value is reset upon 171 * call to getMemDepViolator(). 172 */ 173 bool violation() { return memDepViolator; } 174 175 /** Returns the memory ordering violator. */ 176 DynInstPtr getMemDepViolator(); 177 178 /** Returns if a load became blocked due to the memory system. */ 179 bool loadBlocked() 180 { return isLoadBlocked; } 181 182 /** Clears the signal that a load became blocked. */ 183 void clearLoadBlocked() 184 { isLoadBlocked = false; } 185 186 /** Returns if the blocked load was handled. */ 187 bool isLoadBlockedHandled() 188 { return loadBlockedHandled; } 189 190 /** Records the blocked load as being handled. */ 191 void setLoadBlockedHandled() 192 { loadBlockedHandled = true; } 193 194 /** Returns the number of free entries (min of free LQ and SQ entries). */ 195 unsigned numFreeEntries(); 196 197 /** Returns the number of loads ready to execute. */ 198 int numLoadsReady(); 199 200 /** Returns the number of loads in the LQ. */ 201 int numLoads() { return loads; } 202 203 /** Returns the number of stores in the SQ. */ 204 int numStores() { return stores; } 205 206 /** Returns if either the LQ or SQ is full. */ 207 bool isFull() { return lqFull() || sqFull(); } 208 209 /** Returns if the LQ is full. */ 210 bool lqFull() { return loads >= (LQEntries - 1); } 211 212 /** Returns if the SQ is full. */ 213 bool sqFull() { return stores >= (SQEntries - 1); } 214 215 /** Returns the number of instructions in the LSQ. */ 216 unsigned getCount() { return loads + stores; } 217 218 /** Returns if there are any stores to writeback. */ 219 bool hasStoresToWB() { return storesToWB; } 220 221 /** Returns the number of stores to writeback. */ 222 int numStoresToWB() { return storesToWB; } 223 224 /** Returns if the LSQ unit will writeback on this cycle. */ 225 bool willWB() { return storeQueue[storeWBIdx].canWB && 226 !storeQueue[storeWBIdx].completed && 227 !isStoreBlocked; } 228 229 /** Handles doing the retry. */ 230 void recvRetry(); 231 232 private: 233 /** Writes back the instruction, sending it to IEW. */ 234 void writeback(DynInstPtr &inst, PacketPtr pkt); 235 236 /** Writes back a store that couldn't be completed the previous cycle. */ 237 void writebackPendingStore(); 238 239 /** Handles completing the send of a store to memory. */ 240 void storePostSend(PacketPtr pkt); 241 242 /** Completes the store at the specified index. */ 243 void completeStore(int store_idx); 244 245 /** Attempts to send a store to the cache. */ 246 bool sendStore(PacketPtr data_pkt); 247 248 /** Increments the given store index (circular queue). */ 249 inline void incrStIdx(int &store_idx); 250 /** Decrements the given store index (circular queue). */ 251 inline void decrStIdx(int &store_idx); 252 /** Increments the given load index (circular queue). */ 253 inline void incrLdIdx(int &load_idx); 254 /** Decrements the given load index (circular queue). */ 255 inline void decrLdIdx(int &load_idx); 256 257 public: 258 /** Debugging function to dump instructions in the LSQ. */ 259 void dumpInsts(); 260 261 private: 262 /** Pointer to the CPU. */ 263 O3CPU *cpu; 264 265 /** Pointer to the IEW stage. */ 266 IEW *iewStage; 267 268 /** Pointer to the LSQ. */ 269 LSQ *lsq; 270 271 /** Pointer to the dcache port. Used only for sending. */ 272 Port *dcachePort; 273 274 /** Derived class to hold any sender state the LSQ needs. */ 275 class LSQSenderState : public Packet::SenderState, public FastAlloc 276 { 277 public: 278 /** Default constructor. */ 279 LSQSenderState() 280 : noWB(false), isSplit(false), pktToSend(false), outstanding(1), 281 mainPkt(NULL), pendingPacket(NULL) 282 { } 283 284 /** Instruction who initiated the access to memory. */ 285 DynInstPtr inst; 286 /** Whether or not it is a load. */ 287 bool isLoad; 288 /** The LQ/SQ index of the instruction. */ 289 int idx; 290 /** Whether or not the instruction will need to writeback. */ 291 bool noWB; 292 /** Whether or not this access is split in two. */ 293 bool isSplit; 294 /** Whether or not there is a packet that needs sending. */ 295 bool pktToSend; 296 /** Number of outstanding packets to complete. */ 297 int outstanding; 298 /** The main packet from a split load, used during writeback. */ 299 PacketPtr mainPkt; 300 /** A second packet from a split store that needs sending. */ 301 PacketPtr pendingPacket; 302 303 /** Completes a packet and returns whether the access is finished. */ 304 inline bool complete() { return --outstanding == 0; } 305 }; 306 307 /** Writeback event, specifically for when stores forward data to loads. */ 308 class WritebackEvent : public Event { 309 public: 310 /** Constructs a writeback event. */ 311 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 312 313 /** Processes the writeback event. */ 314 void process(); 315 316 /** Returns the description of this event. */ 317 const char *description() const; 318 319 private: 320 /** Instruction whose results are being written back. */ 321 DynInstPtr inst; 322 323 /** The packet that would have been sent to memory. */ 324 PacketPtr pkt; 325 326 /** The pointer to the LSQ unit that issued the store. */ 327 LSQUnit<Impl> *lsqPtr; 328 }; 329 330 public: 331 struct SQEntry { 332 /** Constructs an empty store queue entry. */ 333 SQEntry() 334 : inst(NULL), req(NULL), size(0), 335 canWB(0), committed(0), completed(0) 336 { 337 std::memset(data, 0, sizeof(data)); 338 } 339 340 /** Constructs a store queue entry for a given instruction. */ 341 SQEntry(DynInstPtr &_inst) 342 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 343 isSplit(0), canWB(0), committed(0), completed(0) 344 { 345 std::memset(data, 0, sizeof(data)); 346 } 347 348 /** The store instruction. */ 349 DynInstPtr inst; 350 /** The request for the store. */ 351 RequestPtr req; 352 /** The split requests for the store. */ 353 RequestPtr sreqLow; 354 RequestPtr sreqHigh; 355 /** The size of the store. */ 356 int size; 357 /** The store data. */ 358 char data[16]; 359 /** Whether or not the store is split into two requests. */ 360 bool isSplit; 361 /** Whether or not the store can writeback. */ 362 bool canWB; 363 /** Whether or not the store is committed. */ 364 bool committed; 365 /** Whether or not the store is completed. */ 366 bool completed; 367 }; 368 369 private: 370 /** The LSQUnit thread id. */ 371 ThreadID lsqID; 372 373 /** The store queue. */ 374 std::vector<SQEntry> storeQueue; 375 376 /** The load queue. */ 377 std::vector<DynInstPtr> loadQueue; 378 379 /** The number of LQ entries, plus a sentinel entry (circular queue). 380 * @todo: Consider having var that records the true number of LQ entries. 381 */ 382 unsigned LQEntries; 383 /** The number of SQ entries, plus a sentinel entry (circular queue). 384 * @todo: Consider having var that records the true number of SQ entries. 385 */ 386 unsigned SQEntries; 387 388 /** The number of places to shift addresses in the LSQ before checking 389 * for dependency violations 390 */ 391 unsigned depCheckShift; 392 393 /** Should loads be checked for dependency issues */ 394 bool checkLoads; 395 396 /** The number of load instructions in the LQ. */ 397 int loads; 398 /** The number of store instructions in the SQ. */ 399 int stores; 400 /** The number of store instructions in the SQ waiting to writeback. */ 401 int storesToWB; 402 403 /** The index of the head instruction in the LQ. */ 404 int loadHead; 405 /** The index of the tail instruction in the LQ. */ 406 int loadTail; 407 408 /** The index of the head instruction in the SQ. */ 409 int storeHead; 410 /** The index of the first instruction that may be ready to be 411 * written back, and has not yet been written back. 412 */ 413 int storeWBIdx; 414 /** The index of the tail instruction in the SQ. */ 415 int storeTail; 416 417 /// @todo Consider moving to a more advanced model with write vs read ports 418 /** The number of cache ports available each cycle. */ 419 int cachePorts; 420 421 /** The number of used cache ports in this cycle. */ 422 int usedPorts; 423 424 /** Is the LSQ switched out. */ 425 bool switchedOut; 426 427 //list<InstSeqNum> mshrSeqNums; 428 429 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ 430 Addr cacheBlockMask; 431 432 /** Wire to read information from the issue stage time queue. */ 433 typename TimeBuffer<IssueStruct>::wire fromIssue; 434 435 /** Whether or not the LSQ is stalled. */ 436 bool stalled; 437 /** The store that causes the stall due to partial store to load 438 * forwarding. 439 */ 440 InstSeqNum stallingStoreIsn; 441 /** The index of the above store. */ 442 int stallingLoadIdx; 443 444 /** The packet that needs to be retried. */ 445 PacketPtr retryPkt; 446 447 /** Whehter or not a store is blocked due to the memory system. */ 448 bool isStoreBlocked; 449 450 /** Whether or not a load is blocked due to the memory system. */ 451 bool isLoadBlocked; 452 453 /** Has the blocked load been handled. */ 454 bool loadBlockedHandled; 455 456 /** Whether or not a store is in flight. */ 457 bool storeInFlight; 458 459 /** The sequence number of the blocked load. */ 460 InstSeqNum blockedLoadSeqNum; 461 462 /** The oldest load that caused a memory ordering violation. */ 463 DynInstPtr memDepViolator; 464 465 /** Whether or not there is a packet that couldn't be sent because of 466 * a lack of cache ports. */ 467 bool hasPendingPkt; 468 469 /** The packet that is pending free cache ports. */ 470 PacketPtr pendingPkt; 471 472 /** Flag for memory model. */ 473 bool needsTSO; 474 475 // Will also need how many read/write ports the Dcache has. Or keep track 476 // of that in stage that is one level up, and only call executeLoad/Store 477 // the appropriate number of times. 478 /** Total number of loads forwaded from LSQ stores. */ 479 Stats::Scalar lsqForwLoads; 480 481 /** Total number of loads ignored due to invalid addresses. */ 482 Stats::Scalar invAddrLoads; 483 484 /** Total number of squashed loads. */ 485 Stats::Scalar lsqSquashedLoads; 486 487 /** Total number of responses from the memory system that are 488 * ignored due to the instruction already being squashed. */ 489 Stats::Scalar lsqIgnoredResponses; 490 491 /** Tota number of memory ordering violations. */ 492 Stats::Scalar lsqMemOrderViolation; 493 494 /** Total number of squashed stores. */ 495 Stats::Scalar lsqSquashedStores; 496 497 /** Total number of software prefetches ignored due to invalid addresses. */ 498 Stats::Scalar invAddrSwpfs; 499 500 /** Ready loads blocked due to partial store-forwarding. */ 501 Stats::Scalar lsqBlockedLoads; 502 503 /** Number of loads that were rescheduled. */ 504 Stats::Scalar lsqRescheduledLoads; 505 506 /** Number of times the LSQ is blocked due to the cache. */ 507 Stats::Scalar lsqCacheBlocked; 508 509 public: 510 /** Executes the load at the given index. */ 511 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 512 uint8_t *data, int load_idx); 513 514 /** Executes the store at the given index. */ 515 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 516 uint8_t *data, int store_idx); 517 518 /** Returns the index of the head load instruction. */ 519 int getLoadHead() { return loadHead; } 520 /** Returns the sequence number of the head load instruction. */ 521 InstSeqNum getLoadHeadSeqNum() 522 { 523 if (loadQueue[loadHead]) { 524 return loadQueue[loadHead]->seqNum; 525 } else { 526 return 0; 527 } 528 529 } 530 531 /** Returns the index of the head store instruction. */ 532 int getStoreHead() { return storeHead; } 533 /** Returns the sequence number of the head store instruction. */ 534 InstSeqNum getStoreHeadSeqNum() 535 { 536 if (storeQueue[storeHead].inst) { 537 return storeQueue[storeHead].inst->seqNum; 538 } else { 539 return 0; 540 } 541 542 } 543 544 /** Returns whether or not the LSQ unit is stalled. */ 545 bool isStalled() { return stalled; } 546}; 547 548template <class Impl> 549Fault 550LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 551 uint8_t *data, int load_idx) 552{ 553 DynInstPtr load_inst = loadQueue[load_idx]; 554 555 assert(load_inst); 556 557 assert(!load_inst->isExecuted()); 558 559 // Make sure this isn't an uncacheable access 560 // A bit of a hackish way to get uncached accesses to work only if they're 561 // at the head of the LSQ and are ready to commit (at the head of the ROB 562 // too). 563 if (req->isUncacheable() && 564 (load_idx != loadHead || !load_inst->isAtCommit())) { 565 iewStage->rescheduleMemInst(load_inst); 566 ++lsqRescheduledLoads; 567 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 568 load_inst->seqNum, load_inst->pcState()); 569 570 // Must delete request now that it wasn't handed off to 571 // memory. This is quite ugly. @todo: Figure out the proper 572 // place to really handle request deletes. 573 delete req; 574 if (TheISA::HasUnalignedMemAcc && sreqLow) { 575 delete sreqLow; 576 delete sreqHigh; 577 } 578 return new GenericISA::M5PanicFault( 579 "Uncachable load [sn:%llx] PC %s\n", 580 load_inst->seqNum, load_inst->pcState()); 581 } 582 583 // Check the SQ for any previous stores that might lead to forwarding 584 int store_idx = load_inst->sqIdx; 585 586 int store_size = 0; 587 588 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 589 "storeHead: %i addr: %#x%s\n", 590 load_idx, store_idx, storeHead, req->getPaddr(), 591 sreqLow ? " split" : ""); 592 593 if (req->isLLSC()) { 594 assert(!sreqLow); 595 // Disable recording the result temporarily. Writing to misc 596 // regs normally updates the result, but this is not the 597 // desired behavior when handling store conditionals. 598 load_inst->recordResult = false; 599 TheISA::handleLockedRead(load_inst.get(), req); 600 load_inst->recordResult = true; 601 } 602 603 if (req->isMmappedIpr()) { 604 assert(!load_inst->memData); 605 load_inst->memData = new uint8_t[64]; 606 607 ThreadContext *thread = cpu->tcBase(lsqID); 608 Tick delay; 609 PacketPtr data_pkt = 610 new Packet(req, MemCmd::ReadReq, Packet::Broadcast); 611 612 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 613 data_pkt->dataStatic(load_inst->memData); 614 delay = TheISA::handleIprRead(thread, data_pkt); 615 } else { 616 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 617 PacketPtr fst_data_pkt = 618 new Packet(sreqLow, MemCmd::ReadReq, Packet::Broadcast); 619 PacketPtr snd_data_pkt = 620 new Packet(sreqHigh, MemCmd::ReadReq, Packet::Broadcast); 621 622 fst_data_pkt->dataStatic(load_inst->memData); 623 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 624 625 delay = TheISA::handleIprRead(thread, fst_data_pkt); 626 unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 627 if (delay2 > delay) 628 delay = delay2; 629 630 delete sreqLow; 631 delete sreqHigh; 632 delete fst_data_pkt; 633 delete snd_data_pkt; 634 } 635 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 636 cpu->schedule(wb, curTick() + delay); 637 return NoFault; 638 } 639 640 while (store_idx != -1) { 641 // End once we've reached the top of the LSQ 642 if (store_idx == storeWBIdx) { 643 break; 644 } 645 646 // Move the index to one younger 647 if (--store_idx < 0) 648 store_idx += SQEntries; 649 650 assert(storeQueue[store_idx].inst); 651 652 store_size = storeQueue[store_idx].size; 653 654 if (store_size == 0) 655 continue; 656 else if (storeQueue[store_idx].inst->uncacheable()) 657 continue; 658 659 assert(storeQueue[store_idx].inst->effAddrValid); 660 661 // Check if the store data is within the lower and upper bounds of 662 // addresses that the request needs. 663 bool store_has_lower_limit = 664 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 665 bool store_has_upper_limit = 666 (req->getVaddr() + req->getSize()) <= 667 (storeQueue[store_idx].inst->effAddr + store_size); 668 bool lower_load_has_store_part = 669 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 670 store_size); 671 bool upper_load_has_store_part = 672 (req->getVaddr() + req->getSize()) > 673 storeQueue[store_idx].inst->effAddr; 674 675 // If the store's data has all of the data needed, we can forward. 676 if ((store_has_lower_limit && store_has_upper_limit)) { 677 // Get shift amount for offset into the store's data. 678 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 679 680 memcpy(data, storeQueue[store_idx].data + shift_amt, 681 req->getSize()); 682 683 assert(!load_inst->memData); 684 load_inst->memData = new uint8_t[64]; 685 686 memcpy(load_inst->memData, 687 storeQueue[store_idx].data + shift_amt, req->getSize()); 688 689 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 690 "addr %#x, data %#x\n", 691 store_idx, req->getVaddr(), data); 692 693 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq, 694 Packet::Broadcast); 695 data_pkt->dataStatic(load_inst->memData); 696 697 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 698 699 // We'll say this has a 1 cycle load-store forwarding latency 700 // for now. 701 // @todo: Need to make this a parameter. 702 cpu->schedule(wb, curTick()); 703 704 // Don't need to do anything special for split loads. 705 if (TheISA::HasUnalignedMemAcc && sreqLow) { 706 delete sreqLow; 707 delete sreqHigh; 708 } 709 710 ++lsqForwLoads; 711 return NoFault; 712 } else if ((store_has_lower_limit && lower_load_has_store_part) || 713 (store_has_upper_limit && upper_load_has_store_part) || 714 (lower_load_has_store_part && upper_load_has_store_part)) { 715 // This is the partial store-load forwarding case where a store 716 // has only part of the load's data. 717 718 // If it's already been written back, then don't worry about 719 // stalling on it. 720 if (storeQueue[store_idx].completed) { 721 panic("Should not check one of these"); 722 continue; 723 } 724 725 // Must stall load and force it to retry, so long as it's the oldest 726 // load that needs to do so. 727 if (!stalled || 728 (stalled && 729 load_inst->seqNum < 730 loadQueue[stallingLoadIdx]->seqNum)) { 731 stalled = true; 732 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 733 stallingLoadIdx = load_idx; 734 } 735 736 // Tell IQ/mem dep unit that this instruction will need to be 737 // rescheduled eventually 738 iewStage->rescheduleMemInst(load_inst); 739 iewStage->decrWb(load_inst->seqNum); 740 load_inst->clearIssued(); 741 ++lsqRescheduledLoads; 742 743 // Do not generate a writeback event as this instruction is not 744 // complete. 745 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 746 "Store idx %i to load addr %#x\n", 747 store_idx, req->getVaddr()); 748 749 // Must delete request now that it wasn't handed off to 750 // memory. This is quite ugly. @todo: Figure out the 751 // proper place to really handle request deletes. 752 delete req; 753 if (TheISA::HasUnalignedMemAcc && sreqLow) { 754 delete sreqLow; 755 delete sreqHigh; 756 } 757 758 return NoFault; 759 } 760 } 761 762 // If there's no forwarding case, then go access memory 763 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 764 load_inst->seqNum, load_inst->pcState()); 765 766 assert(!load_inst->memData); 767 load_inst->memData = new uint8_t[64]; 768 769 ++usedPorts; 770 771 // if we the cache is not blocked, do cache access 772 bool completedFirst = false; 773 if (!lsq->cacheBlocked()) { 774 MemCmd command = 775 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 776 PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast); 777 PacketPtr fst_data_pkt = NULL; 778 PacketPtr snd_data_pkt = NULL; 779 780 data_pkt->dataStatic(load_inst->memData); 781 782 LSQSenderState *state = new LSQSenderState; 783 state->isLoad = true; 784 state->idx = load_idx; 785 state->inst = load_inst; 786 data_pkt->senderState = state; 787 788 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 789 790 // Point the first packet at the main data packet. 791 fst_data_pkt = data_pkt; 792 } else { 793 794 // Create the split packets. 795 fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast); 796 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast); 797 798 fst_data_pkt->dataStatic(load_inst->memData); 799 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 800 801 fst_data_pkt->senderState = state; 802 snd_data_pkt->senderState = state; 803 804 state->isSplit = true; 805 state->outstanding = 2; 806 state->mainPkt = data_pkt; 807 } 808 809 if (!dcachePort->sendTiming(fst_data_pkt)) { 810 // Delete state and data packet because a load retry 811 // initiates a pipeline restart; it does not retry. 812 delete state; 813 delete data_pkt->req; 814 delete data_pkt; 815 if (TheISA::HasUnalignedMemAcc && sreqLow) { 816 delete fst_data_pkt->req; 817 delete fst_data_pkt; 818 delete snd_data_pkt->req; 819 delete snd_data_pkt; 820 sreqLow = NULL; 821 sreqHigh = NULL; 822 } 823 824 req = NULL; 825 826 // If the access didn't succeed, tell the LSQ by setting 827 // the retry thread id. 828 lsq->setRetryTid(lsqID); 829 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 830 completedFirst = true; 831 832 // The first packet was sent without problems, so send this one 833 // too. If there is a problem with this packet then the whole 834 // load will be squashed, so indicate this to the state object. 835 // The first packet will return in completeDataAccess and be 836 // handled there. 837 ++usedPorts; 838 if (!dcachePort->sendTiming(snd_data_pkt)) { 839 840 // The main packet will be deleted in completeDataAccess. 841 delete snd_data_pkt->req; 842 delete snd_data_pkt; 843 844 state->complete(); 845 846 req = NULL; 847 sreqHigh = NULL; 848 849 lsq->setRetryTid(lsqID); 850 } 851 } 852 } 853 854 // If the cache was blocked, or has become blocked due to the access, 855 // handle it. 856 if (lsq->cacheBlocked()) { 857 if (req) 858 delete req; 859 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 860 delete sreqLow; 861 delete sreqHigh; 862 } 863 864 ++lsqCacheBlocked; 865 866 // If the first part of a split access succeeds, then let the LSQ 867 // handle the decrWb when completeDataAccess is called upon return 868 // of the requested first part of data 869 if (!completedFirst) 870 iewStage->decrWb(load_inst->seqNum); 871 872 // There's an older load that's already going to squash. 873 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 874 return NoFault; 875 876 // Record that the load was blocked due to memory. This 877 // load will squash all instructions after it, be 878 // refetched, and re-executed. 879 isLoadBlocked = true; 880 loadBlockedHandled = false; 881 blockedLoadSeqNum = load_inst->seqNum; 882 // No fault occurred, even though the interface is blocked. 883 return NoFault; 884 } 885 886 return NoFault; 887} 888 889template <class Impl> 890Fault 891LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 892 uint8_t *data, int store_idx) 893{ 894 assert(storeQueue[store_idx].inst); 895 896 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 897 " | storeHead:%i [sn:%i]\n", 898 store_idx, req->getPaddr(), data, storeHead, 899 storeQueue[store_idx].inst->seqNum); 900 901 storeQueue[store_idx].req = req; 902 storeQueue[store_idx].sreqLow = sreqLow; 903 storeQueue[store_idx].sreqHigh = sreqHigh; 904 unsigned size = req->getSize(); 905 storeQueue[store_idx].size = size; 906 assert(size <= sizeof(storeQueue[store_idx].data)); 907 908 // Split stores can only occur in ISAs with unaligned memory accesses. If 909 // a store request has been split, sreqLow and sreqHigh will be non-null. 910 if (TheISA::HasUnalignedMemAcc && sreqLow) { 911 storeQueue[store_idx].isSplit = true; 912 } 913 914 memcpy(storeQueue[store_idx].data, data, size); 915 916 // This function only writes the data to the store queue, so no fault 917 // can happen here. 918 return NoFault; 919} 920 921#endif // __CPU_O3_LSQ_UNIT_HH__ 922