lsq_unit.hh revision 8481
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/faults.hh" 41#include "arch/locked_mem.hh" 42#include "arch/mmapped_ipr.hh" 43#include "base/fast_alloc.hh" 44#include "base/hashmap.hh" 45#include "config/full_system.hh" 46#include "config/the_isa.hh" 47#include "cpu/inst_seq.hh" 48#include "cpu/timebuf.hh" 49#include "debug/LSQUnit.hh" 50#include "mem/packet.hh" 51#include "mem/port.hh" 52 53class DerivO3CPUParams; 54 55/** 56 * Class that implements the actual LQ and SQ for each specific 57 * thread. Both are circular queues; load entries are freed upon 58 * committing, while store entries are freed once they writeback. The 59 * LSQUnit tracks if there are memory ordering violations, and also 60 * detects partial load to store forwarding cases (a store only has 61 * part of a load's data) that requires the load to wait until the 62 * store writes back. In the former case it holds onto the instruction 63 * until the dependence unit looks at it, and in the latter it stalls 64 * the LSQ until the store writes back. At that point the load is 65 * replayed. 66 */ 67template <class Impl> 68class LSQUnit { 69 public: 70 typedef typename Impl::O3CPU O3CPU; 71 typedef typename Impl::DynInstPtr DynInstPtr; 72 typedef typename Impl::CPUPol::IEW IEW; 73 typedef typename Impl::CPUPol::LSQ LSQ; 74 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 75 76 public: 77 /** Constructs an LSQ unit. init() must be called prior to use. */ 78 LSQUnit(); 79 80 /** Initializes the LSQ unit with the specified number of entries. */ 81 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 82 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 83 unsigned id); 84 85 /** Returns the name of the LSQ unit. */ 86 std::string name() const; 87 88 /** Registers statistics. */ 89 void regStats(); 90 91 /** Sets the pointer to the dcache port. */ 92 void setDcachePort(Port *dcache_port); 93 94 /** Switches out LSQ unit. */ 95 void switchOut(); 96 97 /** Takes over from another CPU's thread. */ 98 void takeOverFrom(); 99 100 /** Returns if the LSQ is switched out. */ 101 bool isSwitchedOut() { return switchedOut; } 102 103 /** Ticks the LSQ unit, which in this case only resets the number of 104 * used cache ports. 105 * @todo: Move the number of used ports up to the LSQ level so it can 106 * be shared by all LSQ units. 107 */ 108 void tick() { usedPorts = 0; } 109 110 /** Inserts an instruction. */ 111 void insert(DynInstPtr &inst); 112 /** Inserts a load instruction. */ 113 void insertLoad(DynInstPtr &load_inst); 114 /** Inserts a store instruction. */ 115 void insertStore(DynInstPtr &store_inst); 116 117 /** Check for ordering violations in the LSQ 118 * @param load_idx index to start checking at 119 * @param inst the instruction to check 120 */ 121 Fault checkViolations(int load_idx, DynInstPtr &inst); 122 123 /** Executes a load instruction. */ 124 Fault executeLoad(DynInstPtr &inst); 125 126 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 127 /** Executes a store instruction. */ 128 Fault executeStore(DynInstPtr &inst); 129 130 /** Commits the head load. */ 131 void commitLoad(); 132 /** Commits loads older than a specific sequence number. */ 133 void commitLoads(InstSeqNum &youngest_inst); 134 135 /** Commits stores older than a specific sequence number. */ 136 void commitStores(InstSeqNum &youngest_inst); 137 138 /** Writes back stores. */ 139 void writebackStores(); 140 141 /** Completes the data access that has been returned from the 142 * memory system. */ 143 void completeDataAccess(PacketPtr pkt); 144 145 /** Clears all the entries in the LQ. */ 146 void clearLQ(); 147 148 /** Clears all the entries in the SQ. */ 149 void clearSQ(); 150 151 /** Resizes the LQ to a given size. */ 152 void resizeLQ(unsigned size); 153 154 /** Resizes the SQ to a given size. */ 155 void resizeSQ(unsigned size); 156 157 /** Squashes all instructions younger than a specific sequence number. */ 158 void squash(const InstSeqNum &squashed_num); 159 160 /** Returns if there is a memory ordering violation. Value is reset upon 161 * call to getMemDepViolator(). 162 */ 163 bool violation() { return memDepViolator; } 164 165 /** Returns the memory ordering violator. */ 166 DynInstPtr getMemDepViolator(); 167 168 /** Returns if a load became blocked due to the memory system. */ 169 bool loadBlocked() 170 { return isLoadBlocked; } 171 172 /** Clears the signal that a load became blocked. */ 173 void clearLoadBlocked() 174 { isLoadBlocked = false; } 175 176 /** Returns if the blocked load was handled. */ 177 bool isLoadBlockedHandled() 178 { return loadBlockedHandled; } 179 180 /** Records the blocked load as being handled. */ 181 void setLoadBlockedHandled() 182 { loadBlockedHandled = true; } 183 184 /** Returns the number of free entries (min of free LQ and SQ entries). */ 185 unsigned numFreeEntries(); 186 187 /** Returns the number of loads ready to execute. */ 188 int numLoadsReady(); 189 190 /** Returns the number of loads in the LQ. */ 191 int numLoads() { return loads; } 192 193 /** Returns the number of stores in the SQ. */ 194 int numStores() { return stores; } 195 196 /** Returns if either the LQ or SQ is full. */ 197 bool isFull() { return lqFull() || sqFull(); } 198 199 /** Returns if the LQ is full. */ 200 bool lqFull() { return loads >= (LQEntries - 1); } 201 202 /** Returns if the SQ is full. */ 203 bool sqFull() { return stores >= (SQEntries - 1); } 204 205 /** Returns the number of instructions in the LSQ. */ 206 unsigned getCount() { return loads + stores; } 207 208 /** Returns if there are any stores to writeback. */ 209 bool hasStoresToWB() { return storesToWB; } 210 211 /** Returns the number of stores to writeback. */ 212 int numStoresToWB() { return storesToWB; } 213 214 /** Returns if the LSQ unit will writeback on this cycle. */ 215 bool willWB() { return storeQueue[storeWBIdx].canWB && 216 !storeQueue[storeWBIdx].completed && 217 !isStoreBlocked; } 218 219 /** Handles doing the retry. */ 220 void recvRetry(); 221 222 private: 223 /** Writes back the instruction, sending it to IEW. */ 224 void writeback(DynInstPtr &inst, PacketPtr pkt); 225 226 /** Writes back a store that couldn't be completed the previous cycle. */ 227 void writebackPendingStore(); 228 229 /** Handles completing the send of a store to memory. */ 230 void storePostSend(PacketPtr pkt); 231 232 /** Completes the store at the specified index. */ 233 void completeStore(int store_idx); 234 235 /** Attempts to send a store to the cache. */ 236 bool sendStore(PacketPtr data_pkt); 237 238 /** Increments the given store index (circular queue). */ 239 inline void incrStIdx(int &store_idx); 240 /** Decrements the given store index (circular queue). */ 241 inline void decrStIdx(int &store_idx); 242 /** Increments the given load index (circular queue). */ 243 inline void incrLdIdx(int &load_idx); 244 /** Decrements the given load index (circular queue). */ 245 inline void decrLdIdx(int &load_idx); 246 247 public: 248 /** Debugging function to dump instructions in the LSQ. */ 249 void dumpInsts(); 250 251 private: 252 /** Pointer to the CPU. */ 253 O3CPU *cpu; 254 255 /** Pointer to the IEW stage. */ 256 IEW *iewStage; 257 258 /** Pointer to the LSQ. */ 259 LSQ *lsq; 260 261 /** Pointer to the dcache port. Used only for sending. */ 262 Port *dcachePort; 263 264 /** Derived class to hold any sender state the LSQ needs. */ 265 class LSQSenderState : public Packet::SenderState, public FastAlloc 266 { 267 public: 268 /** Default constructor. */ 269 LSQSenderState() 270 : noWB(false), isSplit(false), pktToSend(false), outstanding(1), 271 mainPkt(NULL), pendingPacket(NULL) 272 { } 273 274 /** Instruction who initiated the access to memory. */ 275 DynInstPtr inst; 276 /** Whether or not it is a load. */ 277 bool isLoad; 278 /** The LQ/SQ index of the instruction. */ 279 int idx; 280 /** Whether or not the instruction will need to writeback. */ 281 bool noWB; 282 /** Whether or not this access is split in two. */ 283 bool isSplit; 284 /** Whether or not there is a packet that needs sending. */ 285 bool pktToSend; 286 /** Number of outstanding packets to complete. */ 287 int outstanding; 288 /** The main packet from a split load, used during writeback. */ 289 PacketPtr mainPkt; 290 /** A second packet from a split store that needs sending. */ 291 PacketPtr pendingPacket; 292 293 /** Completes a packet and returns whether the access is finished. */ 294 inline bool complete() { return --outstanding == 0; } 295 }; 296 297 /** Writeback event, specifically for when stores forward data to loads. */ 298 class WritebackEvent : public Event { 299 public: 300 /** Constructs a writeback event. */ 301 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 302 303 /** Processes the writeback event. */ 304 void process(); 305 306 /** Returns the description of this event. */ 307 const char *description() const; 308 309 private: 310 /** Instruction whose results are being written back. */ 311 DynInstPtr inst; 312 313 /** The packet that would have been sent to memory. */ 314 PacketPtr pkt; 315 316 /** The pointer to the LSQ unit that issued the store. */ 317 LSQUnit<Impl> *lsqPtr; 318 }; 319 320 public: 321 struct SQEntry { 322 /** Constructs an empty store queue entry. */ 323 SQEntry() 324 : inst(NULL), req(NULL), size(0), 325 canWB(0), committed(0), completed(0) 326 { 327 std::memset(data, 0, sizeof(data)); 328 } 329 330 /** Constructs a store queue entry for a given instruction. */ 331 SQEntry(DynInstPtr &_inst) 332 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 333 isSplit(0), canWB(0), committed(0), completed(0) 334 { 335 std::memset(data, 0, sizeof(data)); 336 } 337 338 /** The store instruction. */ 339 DynInstPtr inst; 340 /** The request for the store. */ 341 RequestPtr req; 342 /** The split requests for the store. */ 343 RequestPtr sreqLow; 344 RequestPtr sreqHigh; 345 /** The size of the store. */ 346 int size; 347 /** The store data. */ 348 char data[16]; 349 /** Whether or not the store is split into two requests. */ 350 bool isSplit; 351 /** Whether or not the store can writeback. */ 352 bool canWB; 353 /** Whether or not the store is committed. */ 354 bool committed; 355 /** Whether or not the store is completed. */ 356 bool completed; 357 }; 358 359 private: 360 /** The LSQUnit thread id. */ 361 ThreadID lsqID; 362 363 /** The store queue. */ 364 std::vector<SQEntry> storeQueue; 365 366 /** The load queue. */ 367 std::vector<DynInstPtr> loadQueue; 368 369 /** The number of LQ entries, plus a sentinel entry (circular queue). 370 * @todo: Consider having var that records the true number of LQ entries. 371 */ 372 unsigned LQEntries; 373 /** The number of SQ entries, plus a sentinel entry (circular queue). 374 * @todo: Consider having var that records the true number of SQ entries. 375 */ 376 unsigned SQEntries; 377 378 /** The number of places to shift addresses in the LSQ before checking 379 * for dependency violations 380 */ 381 unsigned depCheckShift; 382 383 /** Should loads be checked for dependency issues */ 384 bool checkLoads; 385 386 /** The number of load instructions in the LQ. */ 387 int loads; 388 /** The number of store instructions in the SQ. */ 389 int stores; 390 /** The number of store instructions in the SQ waiting to writeback. */ 391 int storesToWB; 392 393 /** The index of the head instruction in the LQ. */ 394 int loadHead; 395 /** The index of the tail instruction in the LQ. */ 396 int loadTail; 397 398 /** The index of the head instruction in the SQ. */ 399 int storeHead; 400 /** The index of the first instruction that may be ready to be 401 * written back, and has not yet been written back. 402 */ 403 int storeWBIdx; 404 /** The index of the tail instruction in the SQ. */ 405 int storeTail; 406 407 /// @todo Consider moving to a more advanced model with write vs read ports 408 /** The number of cache ports available each cycle. */ 409 int cachePorts; 410 411 /** The number of used cache ports in this cycle. */ 412 int usedPorts; 413 414 /** Is the LSQ switched out. */ 415 bool switchedOut; 416 417 //list<InstSeqNum> mshrSeqNums; 418 419 /** Wire to read information from the issue stage time queue. */ 420 typename TimeBuffer<IssueStruct>::wire fromIssue; 421 422 /** Whether or not the LSQ is stalled. */ 423 bool stalled; 424 /** The store that causes the stall due to partial store to load 425 * forwarding. 426 */ 427 InstSeqNum stallingStoreIsn; 428 /** The index of the above store. */ 429 int stallingLoadIdx; 430 431 /** The packet that needs to be retried. */ 432 PacketPtr retryPkt; 433 434 /** Whehter or not a store is blocked due to the memory system. */ 435 bool isStoreBlocked; 436 437 /** Whether or not a load is blocked due to the memory system. */ 438 bool isLoadBlocked; 439 440 /** Has the blocked load been handled. */ 441 bool loadBlockedHandled; 442 443 /** The sequence number of the blocked load. */ 444 InstSeqNum blockedLoadSeqNum; 445 446 /** The oldest load that caused a memory ordering violation. */ 447 DynInstPtr memDepViolator; 448 449 /** Whether or not there is a packet that couldn't be sent because of 450 * a lack of cache ports. */ 451 bool hasPendingPkt; 452 453 /** The packet that is pending free cache ports. */ 454 PacketPtr pendingPkt; 455 456 // Will also need how many read/write ports the Dcache has. Or keep track 457 // of that in stage that is one level up, and only call executeLoad/Store 458 // the appropriate number of times. 459 /** Total number of loads forwaded from LSQ stores. */ 460 Stats::Scalar lsqForwLoads; 461 462 /** Total number of loads ignored due to invalid addresses. */ 463 Stats::Scalar invAddrLoads; 464 465 /** Total number of squashed loads. */ 466 Stats::Scalar lsqSquashedLoads; 467 468 /** Total number of responses from the memory system that are 469 * ignored due to the instruction already being squashed. */ 470 Stats::Scalar lsqIgnoredResponses; 471 472 /** Tota number of memory ordering violations. */ 473 Stats::Scalar lsqMemOrderViolation; 474 475 /** Total number of squashed stores. */ 476 Stats::Scalar lsqSquashedStores; 477 478 /** Total number of software prefetches ignored due to invalid addresses. */ 479 Stats::Scalar invAddrSwpfs; 480 481 /** Ready loads blocked due to partial store-forwarding. */ 482 Stats::Scalar lsqBlockedLoads; 483 484 /** Number of loads that were rescheduled. */ 485 Stats::Scalar lsqRescheduledLoads; 486 487 /** Number of times the LSQ is blocked due to the cache. */ 488 Stats::Scalar lsqCacheBlocked; 489 490 public: 491 /** Executes the load at the given index. */ 492 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 493 uint8_t *data, int load_idx); 494 495 /** Executes the store at the given index. */ 496 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 497 uint8_t *data, int store_idx); 498 499 /** Returns the index of the head load instruction. */ 500 int getLoadHead() { return loadHead; } 501 /** Returns the sequence number of the head load instruction. */ 502 InstSeqNum getLoadHeadSeqNum() 503 { 504 if (loadQueue[loadHead]) { 505 return loadQueue[loadHead]->seqNum; 506 } else { 507 return 0; 508 } 509 510 } 511 512 /** Returns the index of the head store instruction. */ 513 int getStoreHead() { return storeHead; } 514 /** Returns the sequence number of the head store instruction. */ 515 InstSeqNum getStoreHeadSeqNum() 516 { 517 if (storeQueue[storeHead].inst) { 518 return storeQueue[storeHead].inst->seqNum; 519 } else { 520 return 0; 521 } 522 523 } 524 525 /** Returns whether or not the LSQ unit is stalled. */ 526 bool isStalled() { return stalled; } 527}; 528 529template <class Impl> 530Fault 531LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 532 uint8_t *data, int load_idx) 533{ 534 DynInstPtr load_inst = loadQueue[load_idx]; 535 536 assert(load_inst); 537 538 assert(!load_inst->isExecuted()); 539 540 // Make sure this isn't an uncacheable access 541 // A bit of a hackish way to get uncached accesses to work only if they're 542 // at the head of the LSQ and are ready to commit (at the head of the ROB 543 // too). 544 if (req->isUncacheable() && 545 (load_idx != loadHead || !load_inst->isAtCommit())) { 546 iewStage->rescheduleMemInst(load_inst); 547 ++lsqRescheduledLoads; 548 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 549 load_inst->seqNum, load_inst->pcState()); 550 551 // Must delete request now that it wasn't handed off to 552 // memory. This is quite ugly. @todo: Figure out the proper 553 // place to really handle request deletes. 554 delete req; 555 if (TheISA::HasUnalignedMemAcc && sreqLow) { 556 delete sreqLow; 557 delete sreqHigh; 558 } 559 return TheISA::genMachineCheckFault(); 560 } 561 562 // Check the SQ for any previous stores that might lead to forwarding 563 int store_idx = load_inst->sqIdx; 564 565 int store_size = 0; 566 567 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 568 "storeHead: %i addr: %#x%s\n", 569 load_idx, store_idx, storeHead, req->getPaddr(), 570 sreqLow ? " split" : ""); 571 572 if (req->isLLSC()) { 573 assert(!sreqLow); 574 // Disable recording the result temporarily. Writing to misc 575 // regs normally updates the result, but this is not the 576 // desired behavior when handling store conditionals. 577 load_inst->recordResult = false; 578 TheISA::handleLockedRead(load_inst.get(), req); 579 load_inst->recordResult = true; 580 } 581 582 if (req->isMmappedIpr()) { 583 assert(!load_inst->memData); 584 load_inst->memData = new uint8_t[64]; 585 586 ThreadContext *thread = cpu->tcBase(lsqID); 587 Tick delay; 588 PacketPtr data_pkt = 589 new Packet(req, MemCmd::ReadReq, Packet::Broadcast); 590 591 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 592 data_pkt->dataStatic(load_inst->memData); 593 delay = TheISA::handleIprRead(thread, data_pkt); 594 } else { 595 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); 596 PacketPtr fst_data_pkt = 597 new Packet(sreqLow, MemCmd::ReadReq, Packet::Broadcast); 598 PacketPtr snd_data_pkt = 599 new Packet(sreqHigh, MemCmd::ReadReq, Packet::Broadcast); 600 601 fst_data_pkt->dataStatic(load_inst->memData); 602 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 603 604 delay = TheISA::handleIprRead(thread, fst_data_pkt); 605 unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt); 606 if (delay2 > delay) 607 delay = delay2; 608 609 delete sreqLow; 610 delete sreqHigh; 611 delete fst_data_pkt; 612 delete snd_data_pkt; 613 } 614 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 615 cpu->schedule(wb, curTick() + delay); 616 return NoFault; 617 } 618 619 while (store_idx != -1) { 620 // End once we've reached the top of the LSQ 621 if (store_idx == storeWBIdx) { 622 break; 623 } 624 625 // Move the index to one younger 626 if (--store_idx < 0) 627 store_idx += SQEntries; 628 629 assert(storeQueue[store_idx].inst); 630 631 store_size = storeQueue[store_idx].size; 632 633 if (store_size == 0) 634 continue; 635 else if (storeQueue[store_idx].inst->uncacheable()) 636 continue; 637 638 assert(storeQueue[store_idx].inst->effAddrValid); 639 640 // Check if the store data is within the lower and upper bounds of 641 // addresses that the request needs. 642 bool store_has_lower_limit = 643 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 644 bool store_has_upper_limit = 645 (req->getVaddr() + req->getSize()) <= 646 (storeQueue[store_idx].inst->effAddr + store_size); 647 bool lower_load_has_store_part = 648 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 649 store_size); 650 bool upper_load_has_store_part = 651 (req->getVaddr() + req->getSize()) > 652 storeQueue[store_idx].inst->effAddr; 653 654 // If the store's data has all of the data needed, we can forward. 655 if ((store_has_lower_limit && store_has_upper_limit)) { 656 // Get shift amount for offset into the store's data. 657 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; 658 659 memcpy(data, storeQueue[store_idx].data + shift_amt, 660 req->getSize()); 661 662 assert(!load_inst->memData); 663 load_inst->memData = new uint8_t[64]; 664 665 memcpy(load_inst->memData, 666 storeQueue[store_idx].data + shift_amt, req->getSize()); 667 668 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 669 "addr %#x, data %#x\n", 670 store_idx, req->getVaddr(), data); 671 672 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq, 673 Packet::Broadcast); 674 data_pkt->dataStatic(load_inst->memData); 675 676 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 677 678 // We'll say this has a 1 cycle load-store forwarding latency 679 // for now. 680 // @todo: Need to make this a parameter. 681 cpu->schedule(wb, curTick()); 682 683 // Don't need to do anything special for split loads. 684 if (TheISA::HasUnalignedMemAcc && sreqLow) { 685 delete sreqLow; 686 delete sreqHigh; 687 } 688 689 ++lsqForwLoads; 690 return NoFault; 691 } else if ((store_has_lower_limit && lower_load_has_store_part) || 692 (store_has_upper_limit && upper_load_has_store_part) || 693 (lower_load_has_store_part && upper_load_has_store_part)) { 694 // This is the partial store-load forwarding case where a store 695 // has only part of the load's data. 696 697 // If it's already been written back, then don't worry about 698 // stalling on it. 699 if (storeQueue[store_idx].completed) { 700 panic("Should not check one of these"); 701 continue; 702 } 703 704 // Must stall load and force it to retry, so long as it's the oldest 705 // load that needs to do so. 706 if (!stalled || 707 (stalled && 708 load_inst->seqNum < 709 loadQueue[stallingLoadIdx]->seqNum)) { 710 stalled = true; 711 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 712 stallingLoadIdx = load_idx; 713 } 714 715 // Tell IQ/mem dep unit that this instruction will need to be 716 // rescheduled eventually 717 iewStage->rescheduleMemInst(load_inst); 718 iewStage->decrWb(load_inst->seqNum); 719 load_inst->clearIssued(); 720 ++lsqRescheduledLoads; 721 722 // Do not generate a writeback event as this instruction is not 723 // complete. 724 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 725 "Store idx %i to load addr %#x\n", 726 store_idx, req->getVaddr()); 727 728 // Must delete request now that it wasn't handed off to 729 // memory. This is quite ugly. @todo: Figure out the 730 // proper place to really handle request deletes. 731 delete req; 732 if (TheISA::HasUnalignedMemAcc && sreqLow) { 733 delete sreqLow; 734 delete sreqHigh; 735 } 736 737 return NoFault; 738 } 739 } 740 741 // If there's no forwarding case, then go access memory 742 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 743 load_inst->seqNum, load_inst->pcState()); 744 745 assert(!load_inst->memData); 746 load_inst->memData = new uint8_t[64]; 747 748 ++usedPorts; 749 750 // if we the cache is not blocked, do cache access 751 bool completedFirst = false; 752 if (!lsq->cacheBlocked()) { 753 MemCmd command = 754 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 755 PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast); 756 PacketPtr fst_data_pkt = NULL; 757 PacketPtr snd_data_pkt = NULL; 758 759 data_pkt->dataStatic(load_inst->memData); 760 761 LSQSenderState *state = new LSQSenderState; 762 state->isLoad = true; 763 state->idx = load_idx; 764 state->inst = load_inst; 765 data_pkt->senderState = state; 766 767 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 768 769 // Point the first packet at the main data packet. 770 fst_data_pkt = data_pkt; 771 } else { 772 773 // Create the split packets. 774 fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast); 775 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast); 776 777 fst_data_pkt->dataStatic(load_inst->memData); 778 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 779 780 fst_data_pkt->senderState = state; 781 snd_data_pkt->senderState = state; 782 783 state->isSplit = true; 784 state->outstanding = 2; 785 state->mainPkt = data_pkt; 786 } 787 788 if (!dcachePort->sendTiming(fst_data_pkt)) { 789 // Delete state and data packet because a load retry 790 // initiates a pipeline restart; it does not retry. 791 delete state; 792 delete data_pkt->req; 793 delete data_pkt; 794 if (TheISA::HasUnalignedMemAcc && sreqLow) { 795 delete fst_data_pkt->req; 796 delete fst_data_pkt; 797 delete snd_data_pkt->req; 798 delete snd_data_pkt; 799 sreqLow = NULL; 800 sreqHigh = NULL; 801 } 802 803 req = NULL; 804 805 // If the access didn't succeed, tell the LSQ by setting 806 // the retry thread id. 807 lsq->setRetryTid(lsqID); 808 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 809 completedFirst = true; 810 811 // The first packet was sent without problems, so send this one 812 // too. If there is a problem with this packet then the whole 813 // load will be squashed, so indicate this to the state object. 814 // The first packet will return in completeDataAccess and be 815 // handled there. 816 ++usedPorts; 817 if (!dcachePort->sendTiming(snd_data_pkt)) { 818 819 // The main packet will be deleted in completeDataAccess. 820 delete snd_data_pkt->req; 821 delete snd_data_pkt; 822 823 state->complete(); 824 825 req = NULL; 826 sreqHigh = NULL; 827 828 lsq->setRetryTid(lsqID); 829 } 830 } 831 } 832 833 // If the cache was blocked, or has become blocked due to the access, 834 // handle it. 835 if (lsq->cacheBlocked()) { 836 if (req) 837 delete req; 838 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 839 delete sreqLow; 840 delete sreqHigh; 841 } 842 843 ++lsqCacheBlocked; 844 845 // If the first part of a split access succeeds, then let the LSQ 846 // handle the decrWb when completeDataAccess is called upon return 847 // of the requested first part of data 848 if (!completedFirst) 849 iewStage->decrWb(load_inst->seqNum); 850 851 // There's an older load that's already going to squash. 852 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 853 return NoFault; 854 855 // Record that the load was blocked due to memory. This 856 // load will squash all instructions after it, be 857 // refetched, and re-executed. 858 isLoadBlocked = true; 859 loadBlockedHandled = false; 860 blockedLoadSeqNum = load_inst->seqNum; 861 // No fault occurred, even though the interface is blocked. 862 return NoFault; 863 } 864 865 return NoFault; 866} 867 868template <class Impl> 869Fault 870LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 871 uint8_t *data, int store_idx) 872{ 873 assert(storeQueue[store_idx].inst); 874 875 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 876 " | storeHead:%i [sn:%i]\n", 877 store_idx, req->getPaddr(), data, storeHead, 878 storeQueue[store_idx].inst->seqNum); 879 880 storeQueue[store_idx].req = req; 881 storeQueue[store_idx].sreqLow = sreqLow; 882 storeQueue[store_idx].sreqHigh = sreqHigh; 883 unsigned size = req->getSize(); 884 storeQueue[store_idx].size = size; 885 assert(size <= sizeof(storeQueue[store_idx].data)); 886 887 // Split stores can only occur in ISAs with unaligned memory accesses. If 888 // a store request has been split, sreqLow and sreqHigh will be non-null. 889 if (TheISA::HasUnalignedMemAcc && sreqLow) { 890 storeQueue[store_idx].isSplit = true; 891 } 892 893 memcpy(storeQueue[store_idx].data, data, size); 894 895 // This function only writes the data to the store queue, so no fault 896 // can happen here. 897 return NoFault; 898} 899 900#endif // __CPU_O3_LSQ_UNIT_HH__ 901