lsq_unit.hh revision 8230:845c8eb5ac49
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/faults.hh" 41#include "arch/locked_mem.hh" 42#include "base/fast_alloc.hh" 43#include "base/hashmap.hh" 44#include "config/full_system.hh" 45#include "config/the_isa.hh" 46#include "cpu/inst_seq.hh" 47#include "cpu/timebuf.hh" 48#include "mem/packet.hh" 49#include "mem/port.hh" 50 51class DerivO3CPUParams; 52 53/** 54 * Class that implements the actual LQ and SQ for each specific 55 * thread. Both are circular queues; load entries are freed upon 56 * committing, while store entries are freed once they writeback. The 57 * LSQUnit tracks if there are memory ordering violations, and also 58 * detects partial load to store forwarding cases (a store only has 59 * part of a load's data) that requires the load to wait until the 60 * store writes back. In the former case it holds onto the instruction 61 * until the dependence unit looks at it, and in the latter it stalls 62 * the LSQ until the store writes back. At that point the load is 63 * replayed. 64 */ 65template <class Impl> 66class LSQUnit { 67 public: 68 typedef typename Impl::O3CPU O3CPU; 69 typedef typename Impl::DynInstPtr DynInstPtr; 70 typedef typename Impl::CPUPol::IEW IEW; 71 typedef typename Impl::CPUPol::LSQ LSQ; 72 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 73 74 public: 75 /** Constructs an LSQ unit. init() must be called prior to use. */ 76 LSQUnit(); 77 78 /** Initializes the LSQ unit with the specified number of entries. */ 79 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, 80 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, 81 unsigned id); 82 83 /** Returns the name of the LSQ unit. */ 84 std::string name() const; 85 86 /** Registers statistics. */ 87 void regStats(); 88 89 /** Sets the pointer to the dcache port. */ 90 void setDcachePort(Port *dcache_port); 91 92 /** Switches out LSQ unit. */ 93 void switchOut(); 94 95 /** Takes over from another CPU's thread. */ 96 void takeOverFrom(); 97 98 /** Returns if the LSQ is switched out. */ 99 bool isSwitchedOut() { return switchedOut; } 100 101 /** Ticks the LSQ unit, which in this case only resets the number of 102 * used cache ports. 103 * @todo: Move the number of used ports up to the LSQ level so it can 104 * be shared by all LSQ units. 105 */ 106 void tick() { usedPorts = 0; } 107 108 /** Inserts an instruction. */ 109 void insert(DynInstPtr &inst); 110 /** Inserts a load instruction. */ 111 void insertLoad(DynInstPtr &load_inst); 112 /** Inserts a store instruction. */ 113 void insertStore(DynInstPtr &store_inst); 114 115 /** Check for ordering violations in the LSQ 116 * @param load_idx index to start checking at 117 * @param inst the instruction to check 118 */ 119 Fault checkViolations(int load_idx, DynInstPtr &inst); 120 121 /** Executes a load instruction. */ 122 Fault executeLoad(DynInstPtr &inst); 123 124 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 125 /** Executes a store instruction. */ 126 Fault executeStore(DynInstPtr &inst); 127 128 /** Commits the head load. */ 129 void commitLoad(); 130 /** Commits loads older than a specific sequence number. */ 131 void commitLoads(InstSeqNum &youngest_inst); 132 133 /** Commits stores older than a specific sequence number. */ 134 void commitStores(InstSeqNum &youngest_inst); 135 136 /** Writes back stores. */ 137 void writebackStores(); 138 139 /** Completes the data access that has been returned from the 140 * memory system. */ 141 void completeDataAccess(PacketPtr pkt); 142 143 /** Clears all the entries in the LQ. */ 144 void clearLQ(); 145 146 /** Clears all the entries in the SQ. */ 147 void clearSQ(); 148 149 /** Resizes the LQ to a given size. */ 150 void resizeLQ(unsigned size); 151 152 /** Resizes the SQ to a given size. */ 153 void resizeSQ(unsigned size); 154 155 /** Squashes all instructions younger than a specific sequence number. */ 156 void squash(const InstSeqNum &squashed_num); 157 158 /** Returns if there is a memory ordering violation. Value is reset upon 159 * call to getMemDepViolator(). 160 */ 161 bool violation() { return memDepViolator; } 162 163 /** Returns the memory ordering violator. */ 164 DynInstPtr getMemDepViolator(); 165 166 /** Returns if a load became blocked due to the memory system. */ 167 bool loadBlocked() 168 { return isLoadBlocked; } 169 170 /** Clears the signal that a load became blocked. */ 171 void clearLoadBlocked() 172 { isLoadBlocked = false; } 173 174 /** Returns if the blocked load was handled. */ 175 bool isLoadBlockedHandled() 176 { return loadBlockedHandled; } 177 178 /** Records the blocked load as being handled. */ 179 void setLoadBlockedHandled() 180 { loadBlockedHandled = true; } 181 182 /** Returns the number of free entries (min of free LQ and SQ entries). */ 183 unsigned numFreeEntries(); 184 185 /** Returns the number of loads ready to execute. */ 186 int numLoadsReady(); 187 188 /** Returns the number of loads in the LQ. */ 189 int numLoads() { return loads; } 190 191 /** Returns the number of stores in the SQ. */ 192 int numStores() { return stores; } 193 194 /** Returns if either the LQ or SQ is full. */ 195 bool isFull() { return lqFull() || sqFull(); } 196 197 /** Returns if the LQ is full. */ 198 bool lqFull() { return loads >= (LQEntries - 1); } 199 200 /** Returns if the SQ is full. */ 201 bool sqFull() { return stores >= (SQEntries - 1); } 202 203 /** Returns the number of instructions in the LSQ. */ 204 unsigned getCount() { return loads + stores; } 205 206 /** Returns if there are any stores to writeback. */ 207 bool hasStoresToWB() { return storesToWB; } 208 209 /** Returns the number of stores to writeback. */ 210 int numStoresToWB() { return storesToWB; } 211 212 /** Returns if the LSQ unit will writeback on this cycle. */ 213 bool willWB() { return storeQueue[storeWBIdx].canWB && 214 !storeQueue[storeWBIdx].completed && 215 !isStoreBlocked; } 216 217 /** Handles doing the retry. */ 218 void recvRetry(); 219 220 private: 221 /** Writes back the instruction, sending it to IEW. */ 222 void writeback(DynInstPtr &inst, PacketPtr pkt); 223 224 /** Writes back a store that couldn't be completed the previous cycle. */ 225 void writebackPendingStore(); 226 227 /** Handles completing the send of a store to memory. */ 228 void storePostSend(PacketPtr pkt); 229 230 /** Completes the store at the specified index. */ 231 void completeStore(int store_idx); 232 233 /** Attempts to send a store to the cache. */ 234 bool sendStore(PacketPtr data_pkt); 235 236 /** Increments the given store index (circular queue). */ 237 inline void incrStIdx(int &store_idx); 238 /** Decrements the given store index (circular queue). */ 239 inline void decrStIdx(int &store_idx); 240 /** Increments the given load index (circular queue). */ 241 inline void incrLdIdx(int &load_idx); 242 /** Decrements the given load index (circular queue). */ 243 inline void decrLdIdx(int &load_idx); 244 245 public: 246 /** Debugging function to dump instructions in the LSQ. */ 247 void dumpInsts(); 248 249 private: 250 /** Pointer to the CPU. */ 251 O3CPU *cpu; 252 253 /** Pointer to the IEW stage. */ 254 IEW *iewStage; 255 256 /** Pointer to the LSQ. */ 257 LSQ *lsq; 258 259 /** Pointer to the dcache port. Used only for sending. */ 260 Port *dcachePort; 261 262 /** Derived class to hold any sender state the LSQ needs. */ 263 class LSQSenderState : public Packet::SenderState, public FastAlloc 264 { 265 public: 266 /** Default constructor. */ 267 LSQSenderState() 268 : noWB(false), isSplit(false), pktToSend(false), outstanding(1), 269 mainPkt(NULL), pendingPacket(NULL) 270 { } 271 272 /** Instruction who initiated the access to memory. */ 273 DynInstPtr inst; 274 /** Whether or not it is a load. */ 275 bool isLoad; 276 /** The LQ/SQ index of the instruction. */ 277 int idx; 278 /** Whether or not the instruction will need to writeback. */ 279 bool noWB; 280 /** Whether or not this access is split in two. */ 281 bool isSplit; 282 /** Whether or not there is a packet that needs sending. */ 283 bool pktToSend; 284 /** Number of outstanding packets to complete. */ 285 int outstanding; 286 /** The main packet from a split load, used during writeback. */ 287 PacketPtr mainPkt; 288 /** A second packet from a split store that needs sending. */ 289 PacketPtr pendingPacket; 290 291 /** Completes a packet and returns whether the access is finished. */ 292 inline bool complete() { return --outstanding == 0; } 293 }; 294 295 /** Writeback event, specifically for when stores forward data to loads. */ 296 class WritebackEvent : public Event { 297 public: 298 /** Constructs a writeback event. */ 299 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 300 301 /** Processes the writeback event. */ 302 void process(); 303 304 /** Returns the description of this event. */ 305 const char *description() const; 306 307 private: 308 /** Instruction whose results are being written back. */ 309 DynInstPtr inst; 310 311 /** The packet that would have been sent to memory. */ 312 PacketPtr pkt; 313 314 /** The pointer to the LSQ unit that issued the store. */ 315 LSQUnit<Impl> *lsqPtr; 316 }; 317 318 public: 319 struct SQEntry { 320 /** Constructs an empty store queue entry. */ 321 SQEntry() 322 : inst(NULL), req(NULL), size(0), 323 canWB(0), committed(0), completed(0) 324 { 325 std::memset(data, 0, sizeof(data)); 326 } 327 328 /** Constructs a store queue entry for a given instruction. */ 329 SQEntry(DynInstPtr &_inst) 330 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), 331 isSplit(0), canWB(0), committed(0), completed(0) 332 { 333 std::memset(data, 0, sizeof(data)); 334 } 335 336 /** The store instruction. */ 337 DynInstPtr inst; 338 /** The request for the store. */ 339 RequestPtr req; 340 /** The split requests for the store. */ 341 RequestPtr sreqLow; 342 RequestPtr sreqHigh; 343 /** The size of the store. */ 344 int size; 345 /** The store data. */ 346 char data[16]; 347 /** Whether or not the store is split into two requests. */ 348 bool isSplit; 349 /** Whether or not the store can writeback. */ 350 bool canWB; 351 /** Whether or not the store is committed. */ 352 bool committed; 353 /** Whether or not the store is completed. */ 354 bool completed; 355 }; 356 357 private: 358 /** The LSQUnit thread id. */ 359 ThreadID lsqID; 360 361 /** The store queue. */ 362 std::vector<SQEntry> storeQueue; 363 364 /** The load queue. */ 365 std::vector<DynInstPtr> loadQueue; 366 367 /** The number of LQ entries, plus a sentinel entry (circular queue). 368 * @todo: Consider having var that records the true number of LQ entries. 369 */ 370 unsigned LQEntries; 371 /** The number of SQ entries, plus a sentinel entry (circular queue). 372 * @todo: Consider having var that records the true number of SQ entries. 373 */ 374 unsigned SQEntries; 375 376 /** The number of places to shift addresses in the LSQ before checking 377 * for dependency violations 378 */ 379 unsigned depCheckShift; 380 381 /** Should loads be checked for dependency issues */ 382 bool checkLoads; 383 384 /** The number of load instructions in the LQ. */ 385 int loads; 386 /** The number of store instructions in the SQ. */ 387 int stores; 388 /** The number of store instructions in the SQ waiting to writeback. */ 389 int storesToWB; 390 391 /** The index of the head instruction in the LQ. */ 392 int loadHead; 393 /** The index of the tail instruction in the LQ. */ 394 int loadTail; 395 396 /** The index of the head instruction in the SQ. */ 397 int storeHead; 398 /** The index of the first instruction that may be ready to be 399 * written back, and has not yet been written back. 400 */ 401 int storeWBIdx; 402 /** The index of the tail instruction in the SQ. */ 403 int storeTail; 404 405 /// @todo Consider moving to a more advanced model with write vs read ports 406 /** The number of cache ports available each cycle. */ 407 int cachePorts; 408 409 /** The number of used cache ports in this cycle. */ 410 int usedPorts; 411 412 /** Is the LSQ switched out. */ 413 bool switchedOut; 414 415 //list<InstSeqNum> mshrSeqNums; 416 417 /** Wire to read information from the issue stage time queue. */ 418 typename TimeBuffer<IssueStruct>::wire fromIssue; 419 420 /** Whether or not the LSQ is stalled. */ 421 bool stalled; 422 /** The store that causes the stall due to partial store to load 423 * forwarding. 424 */ 425 InstSeqNum stallingStoreIsn; 426 /** The index of the above store. */ 427 int stallingLoadIdx; 428 429 /** The packet that needs to be retried. */ 430 PacketPtr retryPkt; 431 432 /** Whehter or not a store is blocked due to the memory system. */ 433 bool isStoreBlocked; 434 435 /** Whether or not a load is blocked due to the memory system. */ 436 bool isLoadBlocked; 437 438 /** Has the blocked load been handled. */ 439 bool loadBlockedHandled; 440 441 /** The sequence number of the blocked load. */ 442 InstSeqNum blockedLoadSeqNum; 443 444 /** The oldest load that caused a memory ordering violation. */ 445 DynInstPtr memDepViolator; 446 447 /** Whether or not there is a packet that couldn't be sent because of 448 * a lack of cache ports. */ 449 bool hasPendingPkt; 450 451 /** The packet that is pending free cache ports. */ 452 PacketPtr pendingPkt; 453 454 // Will also need how many read/write ports the Dcache has. Or keep track 455 // of that in stage that is one level up, and only call executeLoad/Store 456 // the appropriate number of times. 457 /** Total number of loads forwaded from LSQ stores. */ 458 Stats::Scalar lsqForwLoads; 459 460 /** Total number of loads ignored due to invalid addresses. */ 461 Stats::Scalar invAddrLoads; 462 463 /** Total number of squashed loads. */ 464 Stats::Scalar lsqSquashedLoads; 465 466 /** Total number of responses from the memory system that are 467 * ignored due to the instruction already being squashed. */ 468 Stats::Scalar lsqIgnoredResponses; 469 470 /** Tota number of memory ordering violations. */ 471 Stats::Scalar lsqMemOrderViolation; 472 473 /** Total number of squashed stores. */ 474 Stats::Scalar lsqSquashedStores; 475 476 /** Total number of software prefetches ignored due to invalid addresses. */ 477 Stats::Scalar invAddrSwpfs; 478 479 /** Ready loads blocked due to partial store-forwarding. */ 480 Stats::Scalar lsqBlockedLoads; 481 482 /** Number of loads that were rescheduled. */ 483 Stats::Scalar lsqRescheduledLoads; 484 485 /** Number of times the LSQ is blocked due to the cache. */ 486 Stats::Scalar lsqCacheBlocked; 487 488 public: 489 /** Executes the load at the given index. */ 490 Fault read(Request *req, Request *sreqLow, Request *sreqHigh, 491 uint8_t *data, int load_idx); 492 493 /** Executes the store at the given index. */ 494 Fault write(Request *req, Request *sreqLow, Request *sreqHigh, 495 uint8_t *data, int store_idx); 496 497 /** Returns the index of the head load instruction. */ 498 int getLoadHead() { return loadHead; } 499 /** Returns the sequence number of the head load instruction. */ 500 InstSeqNum getLoadHeadSeqNum() 501 { 502 if (loadQueue[loadHead]) { 503 return loadQueue[loadHead]->seqNum; 504 } else { 505 return 0; 506 } 507 508 } 509 510 /** Returns the index of the head store instruction. */ 511 int getStoreHead() { return storeHead; } 512 /** Returns the sequence number of the head store instruction. */ 513 InstSeqNum getStoreHeadSeqNum() 514 { 515 if (storeQueue[storeHead].inst) { 516 return storeQueue[storeHead].inst->seqNum; 517 } else { 518 return 0; 519 } 520 521 } 522 523 /** Returns whether or not the LSQ unit is stalled. */ 524 bool isStalled() { return stalled; } 525}; 526 527template <class Impl> 528Fault 529LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh, 530 uint8_t *data, int load_idx) 531{ 532 DynInstPtr load_inst = loadQueue[load_idx]; 533 534 assert(load_inst); 535 536 assert(!load_inst->isExecuted()); 537 538 // Make sure this isn't an uncacheable access 539 // A bit of a hackish way to get uncached accesses to work only if they're 540 // at the head of the LSQ and are ready to commit (at the head of the ROB 541 // too). 542 if (req->isUncacheable() && 543 (load_idx != loadHead || !load_inst->isAtCommit())) { 544 iewStage->rescheduleMemInst(load_inst); 545 ++lsqRescheduledLoads; 546 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n", 547 load_inst->seqNum, load_inst->pcState()); 548 549 // Must delete request now that it wasn't handed off to 550 // memory. This is quite ugly. @todo: Figure out the proper 551 // place to really handle request deletes. 552 delete req; 553 if (TheISA::HasUnalignedMemAcc && sreqLow) { 554 delete sreqLow; 555 delete sreqHigh; 556 } 557 return TheISA::genMachineCheckFault(); 558 } 559 560 // Check the SQ for any previous stores that might lead to forwarding 561 int store_idx = load_inst->sqIdx; 562 563 int store_size = 0; 564 565 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 566 "storeHead: %i addr: %#x%s\n", 567 load_idx, store_idx, storeHead, req->getPaddr(), 568 sreqLow ? " split" : ""); 569 570 if (req->isLLSC()) { 571 assert(!sreqLow); 572 // Disable recording the result temporarily. Writing to misc 573 // regs normally updates the result, but this is not the 574 // desired behavior when handling store conditionals. 575 load_inst->recordResult = false; 576 TheISA::handleLockedRead(load_inst.get(), req); 577 load_inst->recordResult = true; 578 } 579 580 while (store_idx != -1) { 581 // End once we've reached the top of the LSQ 582 if (store_idx == storeWBIdx) { 583 break; 584 } 585 586 // Move the index to one younger 587 if (--store_idx < 0) 588 store_idx += SQEntries; 589 590 assert(storeQueue[store_idx].inst); 591 592 store_size = storeQueue[store_idx].size; 593 594 if (store_size == 0) 595 continue; 596 else if (storeQueue[store_idx].inst->uncacheable()) 597 continue; 598 599 assert(storeQueue[store_idx].inst->effAddrValid); 600 601 // Check if the store data is within the lower and upper bounds of 602 // addresses that the request needs. 603 bool store_has_lower_limit = 604 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 605 bool store_has_upper_limit = 606 (req->getVaddr() + req->getSize()) <= 607 (storeQueue[store_idx].inst->effAddr + store_size); 608 bool lower_load_has_store_part = 609 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 610 store_size); 611 bool upper_load_has_store_part = 612 (req->getVaddr() + req->getSize()) > 613 storeQueue[store_idx].inst->effAddr; 614 615 // If the store's data has all of the data needed, we can forward. 616 if ((store_has_lower_limit && store_has_upper_limit)) { 617 // Get shift amount for offset into the store's data. 618 int shift_amt = req->getVaddr() & (store_size - 1); 619 620 memcpy(data, storeQueue[store_idx].data + shift_amt, 621 req->getSize()); 622 623 assert(!load_inst->memData); 624 load_inst->memData = new uint8_t[64]; 625 626 memcpy(load_inst->memData, 627 storeQueue[store_idx].data + shift_amt, req->getSize()); 628 629 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 630 "addr %#x, data %#x\n", 631 store_idx, req->getVaddr(), data); 632 633 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq, 634 Packet::Broadcast); 635 data_pkt->dataStatic(load_inst->memData); 636 637 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 638 639 // We'll say this has a 1 cycle load-store forwarding latency 640 // for now. 641 // @todo: Need to make this a parameter. 642 cpu->schedule(wb, curTick()); 643 644 // Don't need to do anything special for split loads. 645 if (TheISA::HasUnalignedMemAcc && sreqLow) { 646 delete sreqLow; 647 delete sreqHigh; 648 } 649 650 ++lsqForwLoads; 651 return NoFault; 652 } else if ((store_has_lower_limit && lower_load_has_store_part) || 653 (store_has_upper_limit && upper_load_has_store_part) || 654 (lower_load_has_store_part && upper_load_has_store_part)) { 655 // This is the partial store-load forwarding case where a store 656 // has only part of the load's data. 657 658 // If it's already been written back, then don't worry about 659 // stalling on it. 660 if (storeQueue[store_idx].completed) { 661 panic("Should not check one of these"); 662 continue; 663 } 664 665 // Must stall load and force it to retry, so long as it's the oldest 666 // load that needs to do so. 667 if (!stalled || 668 (stalled && 669 load_inst->seqNum < 670 loadQueue[stallingLoadIdx]->seqNum)) { 671 stalled = true; 672 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 673 stallingLoadIdx = load_idx; 674 } 675 676 // Tell IQ/mem dep unit that this instruction will need to be 677 // rescheduled eventually 678 iewStage->rescheduleMemInst(load_inst); 679 iewStage->decrWb(load_inst->seqNum); 680 load_inst->clearIssued(); 681 ++lsqRescheduledLoads; 682 683 // Do not generate a writeback event as this instruction is not 684 // complete. 685 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 686 "Store idx %i to load addr %#x\n", 687 store_idx, req->getVaddr()); 688 689 // Must delete request now that it wasn't handed off to 690 // memory. This is quite ugly. @todo: Figure out the 691 // proper place to really handle request deletes. 692 delete req; 693 if (TheISA::HasUnalignedMemAcc && sreqLow) { 694 delete sreqLow; 695 delete sreqHigh; 696 } 697 698 return NoFault; 699 } 700 } 701 702 // If there's no forwarding case, then go access memory 703 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", 704 load_inst->seqNum, load_inst->pcState()); 705 706 assert(!load_inst->memData); 707 load_inst->memData = new uint8_t[64]; 708 709 ++usedPorts; 710 711 // if we the cache is not blocked, do cache access 712 bool completedFirst = false; 713 if (!lsq->cacheBlocked()) { 714 MemCmd command = 715 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq; 716 PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast); 717 PacketPtr fst_data_pkt = NULL; 718 PacketPtr snd_data_pkt = NULL; 719 720 data_pkt->dataStatic(load_inst->memData); 721 722 LSQSenderState *state = new LSQSenderState; 723 state->isLoad = true; 724 state->idx = load_idx; 725 state->inst = load_inst; 726 data_pkt->senderState = state; 727 728 if (!TheISA::HasUnalignedMemAcc || !sreqLow) { 729 730 // Point the first packet at the main data packet. 731 fst_data_pkt = data_pkt; 732 } else { 733 734 // Create the split packets. 735 fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast); 736 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast); 737 738 fst_data_pkt->dataStatic(load_inst->memData); 739 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); 740 741 fst_data_pkt->senderState = state; 742 snd_data_pkt->senderState = state; 743 744 state->isSplit = true; 745 state->outstanding = 2; 746 state->mainPkt = data_pkt; 747 } 748 749 if (!dcachePort->sendTiming(fst_data_pkt)) { 750 // Delete state and data packet because a load retry 751 // initiates a pipeline restart; it does not retry. 752 delete state; 753 delete data_pkt->req; 754 delete data_pkt; 755 if (TheISA::HasUnalignedMemAcc && sreqLow) { 756 delete fst_data_pkt->req; 757 delete fst_data_pkt; 758 delete snd_data_pkt->req; 759 delete snd_data_pkt; 760 sreqLow = NULL; 761 sreqHigh = NULL; 762 } 763 764 req = NULL; 765 766 // If the access didn't succeed, tell the LSQ by setting 767 // the retry thread id. 768 lsq->setRetryTid(lsqID); 769 } else if (TheISA::HasUnalignedMemAcc && sreqLow) { 770 completedFirst = true; 771 772 // The first packet was sent without problems, so send this one 773 // too. If there is a problem with this packet then the whole 774 // load will be squashed, so indicate this to the state object. 775 // The first packet will return in completeDataAccess and be 776 // handled there. 777 ++usedPorts; 778 if (!dcachePort->sendTiming(snd_data_pkt)) { 779 780 // The main packet will be deleted in completeDataAccess. 781 delete snd_data_pkt->req; 782 delete snd_data_pkt; 783 784 state->complete(); 785 786 req = NULL; 787 sreqHigh = NULL; 788 789 lsq->setRetryTid(lsqID); 790 } 791 } 792 } 793 794 // If the cache was blocked, or has become blocked due to the access, 795 // handle it. 796 if (lsq->cacheBlocked()) { 797 if (req) 798 delete req; 799 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) { 800 delete sreqLow; 801 delete sreqHigh; 802 } 803 804 ++lsqCacheBlocked; 805 806 iewStage->decrWb(load_inst->seqNum); 807 // There's an older load that's already going to squash. 808 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 809 return NoFault; 810 811 // Record that the load was blocked due to memory. This 812 // load will squash all instructions after it, be 813 // refetched, and re-executed. 814 isLoadBlocked = true; 815 loadBlockedHandled = false; 816 blockedLoadSeqNum = load_inst->seqNum; 817 // No fault occurred, even though the interface is blocked. 818 return NoFault; 819 } 820 821 return NoFault; 822} 823 824template <class Impl> 825Fault 826LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh, 827 uint8_t *data, int store_idx) 828{ 829 assert(storeQueue[store_idx].inst); 830 831 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 832 " | storeHead:%i [sn:%i]\n", 833 store_idx, req->getPaddr(), data, storeHead, 834 storeQueue[store_idx].inst->seqNum); 835 836 storeQueue[store_idx].req = req; 837 storeQueue[store_idx].sreqLow = sreqLow; 838 storeQueue[store_idx].sreqHigh = sreqHigh; 839 unsigned size = req->getSize(); 840 storeQueue[store_idx].size = size; 841 assert(size <= sizeof(storeQueue[store_idx].data)); 842 843 // Split stores can only occur in ISAs with unaligned memory accesses. If 844 // a store request has been split, sreqLow and sreqHigh will be non-null. 845 if (TheISA::HasUnalignedMemAcc && sreqLow) { 846 storeQueue[store_idx].isSplit = true; 847 } 848 849 memcpy(storeQueue[store_idx].data, data, size); 850 851 // This function only writes the data to the store queue, so no fault 852 // can happen here. 853 return NoFault; 854} 855 856#endif // __CPU_O3_LSQ_UNIT_HH__ 857