lsq_unit.hh revision 4878
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#ifndef __CPU_O3_LSQ_UNIT_HH__ 33#define __CPU_O3_LSQ_UNIT_HH__ 34 35#include <algorithm> 36#include <cstring> 37#include <map> 38#include <queue> 39 40#include "arch/faults.hh" 41#include "arch/locked_mem.hh" 42#include "config/full_system.hh" 43#include "base/hashmap.hh" 44#include "cpu/inst_seq.hh" 45#include "mem/packet.hh" 46#include "mem/port.hh" 47 48/** 49 * Class that implements the actual LQ and SQ for each specific 50 * thread. Both are circular queues; load entries are freed upon 51 * committing, while store entries are freed once they writeback. The 52 * LSQUnit tracks if there are memory ordering violations, and also 53 * detects partial load to store forwarding cases (a store only has 54 * part of a load's data) that requires the load to wait until the 55 * store writes back. In the former case it holds onto the instruction 56 * until the dependence unit looks at it, and in the latter it stalls 57 * the LSQ until the store writes back. At that point the load is 58 * replayed. 59 */ 60template <class Impl> 61class LSQUnit { 62 protected: 63 typedef TheISA::IntReg IntReg; 64 public: 65 typedef typename Impl::Params Params; 66 typedef typename Impl::O3CPU O3CPU; 67 typedef typename Impl::DynInstPtr DynInstPtr; 68 typedef typename Impl::CPUPol::IEW IEW; 69 typedef typename Impl::CPUPol::LSQ LSQ; 70 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 71 72 public: 73 /** Constructs an LSQ unit. init() must be called prior to use. */ 74 LSQUnit(); 75 76 /** Initializes the LSQ unit with the specified number of entries. */ 77 void init(O3CPU *cpu_ptr, IEW *iew_ptr, Params *params, LSQ *lsq_ptr, 78 unsigned maxLQEntries, unsigned maxSQEntries, unsigned id); 79 80 /** Returns the name of the LSQ unit. */ 81 std::string name() const; 82 83 /** Registers statistics. */ 84 void regStats(); 85 86 /** Sets the pointer to the dcache port. */ 87 void setDcachePort(Port *dcache_port); 88 89 /** Switches out LSQ unit. */ 90 void switchOut(); 91 92 /** Takes over from another CPU's thread. */ 93 void takeOverFrom(); 94 95 /** Returns if the LSQ is switched out. */ 96 bool isSwitchedOut() { return switchedOut; } 97 98 /** Ticks the LSQ unit, which in this case only resets the number of 99 * used cache ports. 100 * @todo: Move the number of used ports up to the LSQ level so it can 101 * be shared by all LSQ units. 102 */ 103 void tick() { usedPorts = 0; } 104 105 /** Inserts an instruction. */ 106 void insert(DynInstPtr &inst); 107 /** Inserts a load instruction. */ 108 void insertLoad(DynInstPtr &load_inst); 109 /** Inserts a store instruction. */ 110 void insertStore(DynInstPtr &store_inst); 111 112 /** Executes a load instruction. */ 113 Fault executeLoad(DynInstPtr &inst); 114 115 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } 116 /** Executes a store instruction. */ 117 Fault executeStore(DynInstPtr &inst); 118 119 /** Commits the head load. */ 120 void commitLoad(); 121 /** Commits loads older than a specific sequence number. */ 122 void commitLoads(InstSeqNum &youngest_inst); 123 124 /** Commits stores older than a specific sequence number. */ 125 void commitStores(InstSeqNum &youngest_inst); 126 127 /** Writes back stores. */ 128 void writebackStores(); 129 130 /** Completes the data access that has been returned from the 131 * memory system. */ 132 void completeDataAccess(PacketPtr pkt); 133 134 /** Clears all the entries in the LQ. */ 135 void clearLQ(); 136 137 /** Clears all the entries in the SQ. */ 138 void clearSQ(); 139 140 /** Resizes the LQ to a given size. */ 141 void resizeLQ(unsigned size); 142 143 /** Resizes the SQ to a given size. */ 144 void resizeSQ(unsigned size); 145 146 /** Squashes all instructions younger than a specific sequence number. */ 147 void squash(const InstSeqNum &squashed_num); 148 149 /** Returns if there is a memory ordering violation. Value is reset upon 150 * call to getMemDepViolator(). 151 */ 152 bool violation() { return memDepViolator; } 153 154 /** Returns the memory ordering violator. */ 155 DynInstPtr getMemDepViolator(); 156 157 /** Returns if a load became blocked due to the memory system. */ 158 bool loadBlocked() 159 { return isLoadBlocked; } 160 161 /** Clears the signal that a load became blocked. */ 162 void clearLoadBlocked() 163 { isLoadBlocked = false; } 164 165 /** Returns if the blocked load was handled. */ 166 bool isLoadBlockedHandled() 167 { return loadBlockedHandled; } 168 169 /** Records the blocked load as being handled. */ 170 void setLoadBlockedHandled() 171 { loadBlockedHandled = true; } 172 173 /** Returns the number of free entries (min of free LQ and SQ entries). */ 174 unsigned numFreeEntries(); 175 176 /** Returns the number of loads ready to execute. */ 177 int numLoadsReady(); 178 179 /** Returns the number of loads in the LQ. */ 180 int numLoads() { return loads; } 181 182 /** Returns the number of stores in the SQ. */ 183 int numStores() { return stores; } 184 185 /** Returns if either the LQ or SQ is full. */ 186 bool isFull() { return lqFull() || sqFull(); } 187 188 /** Returns if the LQ is full. */ 189 bool lqFull() { return loads >= (LQEntries - 1); } 190 191 /** Returns if the SQ is full. */ 192 bool sqFull() { return stores >= (SQEntries - 1); } 193 194 /** Returns the number of instructions in the LSQ. */ 195 unsigned getCount() { return loads + stores; } 196 197 /** Returns if there are any stores to writeback. */ 198 bool hasStoresToWB() { return storesToWB; } 199 200 /** Returns the number of stores to writeback. */ 201 int numStoresToWB() { return storesToWB; } 202 203 /** Returns if the LSQ unit will writeback on this cycle. */ 204 bool willWB() { return storeQueue[storeWBIdx].canWB && 205 !storeQueue[storeWBIdx].completed && 206 !isStoreBlocked; } 207 208 /** Handles doing the retry. */ 209 void recvRetry(); 210 211 private: 212 /** Writes back the instruction, sending it to IEW. */ 213 void writeback(DynInstPtr &inst, PacketPtr pkt); 214 215 /** Handles completing the send of a store to memory. */ 216 void storePostSend(PacketPtr pkt); 217 218 /** Completes the store at the specified index. */ 219 void completeStore(int store_idx); 220 221 /** Increments the given store index (circular queue). */ 222 inline void incrStIdx(int &store_idx); 223 /** Decrements the given store index (circular queue). */ 224 inline void decrStIdx(int &store_idx); 225 /** Increments the given load index (circular queue). */ 226 inline void incrLdIdx(int &load_idx); 227 /** Decrements the given load index (circular queue). */ 228 inline void decrLdIdx(int &load_idx); 229 230 public: 231 /** Debugging function to dump instructions in the LSQ. */ 232 void dumpInsts(); 233 234 private: 235 /** Pointer to the CPU. */ 236 O3CPU *cpu; 237 238 /** Pointer to the IEW stage. */ 239 IEW *iewStage; 240 241 /** Pointer to the LSQ. */ 242 LSQ *lsq; 243 244 /** Pointer to the dcache port. Used only for sending. */ 245 Port *dcachePort; 246 247 /** Derived class to hold any sender state the LSQ needs. */ 248 class LSQSenderState : public Packet::SenderState 249 { 250 public: 251 /** Default constructor. */ 252 LSQSenderState() 253 : noWB(false) 254 { } 255 256 /** Instruction who initiated the access to memory. */ 257 DynInstPtr inst; 258 /** Whether or not it is a load. */ 259 bool isLoad; 260 /** The LQ/SQ index of the instruction. */ 261 int idx; 262 /** Whether or not the instruction will need to writeback. */ 263 bool noWB; 264 }; 265 266 /** Writeback event, specifically for when stores forward data to loads. */ 267 class WritebackEvent : public Event { 268 public: 269 /** Constructs a writeback event. */ 270 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); 271 272 /** Processes the writeback event. */ 273 void process(); 274 275 /** Returns the description of this event. */ 276 const char *description(); 277 278 private: 279 /** Instruction whose results are being written back. */ 280 DynInstPtr inst; 281 282 /** The packet that would have been sent to memory. */ 283 PacketPtr pkt; 284 285 /** The pointer to the LSQ unit that issued the store. */ 286 LSQUnit<Impl> *lsqPtr; 287 }; 288 289 public: 290 struct SQEntry { 291 /** Constructs an empty store queue entry. */ 292 SQEntry() 293 : inst(NULL), req(NULL), size(0), 294 canWB(0), committed(0), completed(0) 295 { 296 std::memset(data, 0, sizeof(data)); 297 } 298 299 /** Constructs a store queue entry for a given instruction. */ 300 SQEntry(DynInstPtr &_inst) 301 : inst(_inst), req(NULL), size(0), 302 canWB(0), committed(0), completed(0) 303 { 304 std::memset(data, 0, sizeof(data)); 305 } 306 307 /** The store instruction. */ 308 DynInstPtr inst; 309 /** The request for the store. */ 310 RequestPtr req; 311 /** The size of the store. */ 312 int size; 313 /** The store data. */ 314 char data[sizeof(IntReg)]; 315 /** Whether or not the store can writeback. */ 316 bool canWB; 317 /** Whether or not the store is committed. */ 318 bool committed; 319 /** Whether or not the store is completed. */ 320 bool completed; 321 }; 322 323 private: 324 /** The LSQUnit thread id. */ 325 unsigned lsqID; 326 327 /** The store queue. */ 328 std::vector<SQEntry> storeQueue; 329 330 /** The load queue. */ 331 std::vector<DynInstPtr> loadQueue; 332 333 /** The number of LQ entries, plus a sentinel entry (circular queue). 334 * @todo: Consider having var that records the true number of LQ entries. 335 */ 336 unsigned LQEntries; 337 /** The number of SQ entries, plus a sentinel entry (circular queue). 338 * @todo: Consider having var that records the true number of SQ entries. 339 */ 340 unsigned SQEntries; 341 342 /** The number of load instructions in the LQ. */ 343 int loads; 344 /** The number of store instructions in the SQ. */ 345 int stores; 346 /** The number of store instructions in the SQ waiting to writeback. */ 347 int storesToWB; 348 349 /** The index of the head instruction in the LQ. */ 350 int loadHead; 351 /** The index of the tail instruction in the LQ. */ 352 int loadTail; 353 354 /** The index of the head instruction in the SQ. */ 355 int storeHead; 356 /** The index of the first instruction that may be ready to be 357 * written back, and has not yet been written back. 358 */ 359 int storeWBIdx; 360 /** The index of the tail instruction in the SQ. */ 361 int storeTail; 362 363 /// @todo Consider moving to a more advanced model with write vs read ports 364 /** The number of cache ports available each cycle. */ 365 int cachePorts; 366 367 /** The number of used cache ports in this cycle. */ 368 int usedPorts; 369 370 /** Is the LSQ switched out. */ 371 bool switchedOut; 372 373 //list<InstSeqNum> mshrSeqNums; 374 375 /** Wire to read information from the issue stage time queue. */ 376 typename TimeBuffer<IssueStruct>::wire fromIssue; 377 378 /** Whether or not the LSQ is stalled. */ 379 bool stalled; 380 /** The store that causes the stall due to partial store to load 381 * forwarding. 382 */ 383 InstSeqNum stallingStoreIsn; 384 /** The index of the above store. */ 385 int stallingLoadIdx; 386 387 /** The packet that needs to be retried. */ 388 PacketPtr retryPkt; 389 390 /** Whehter or not a store is blocked due to the memory system. */ 391 bool isStoreBlocked; 392 393 /** Whether or not a load is blocked due to the memory system. */ 394 bool isLoadBlocked; 395 396 /** Has the blocked load been handled. */ 397 bool loadBlockedHandled; 398 399 /** The sequence number of the blocked load. */ 400 InstSeqNum blockedLoadSeqNum; 401 402 /** The oldest load that caused a memory ordering violation. */ 403 DynInstPtr memDepViolator; 404 405 // Will also need how many read/write ports the Dcache has. Or keep track 406 // of that in stage that is one level up, and only call executeLoad/Store 407 // the appropriate number of times. 408 /** Total number of loads forwaded from LSQ stores. */ 409 Stats::Scalar<> lsqForwLoads; 410 411 /** Total number of loads ignored due to invalid addresses. */ 412 Stats::Scalar<> invAddrLoads; 413 414 /** Total number of squashed loads. */ 415 Stats::Scalar<> lsqSquashedLoads; 416 417 /** Total number of responses from the memory system that are 418 * ignored due to the instruction already being squashed. */ 419 Stats::Scalar<> lsqIgnoredResponses; 420 421 /** Tota number of memory ordering violations. */ 422 Stats::Scalar<> lsqMemOrderViolation; 423 424 /** Total number of squashed stores. */ 425 Stats::Scalar<> lsqSquashedStores; 426 427 /** Total number of software prefetches ignored due to invalid addresses. */ 428 Stats::Scalar<> invAddrSwpfs; 429 430 /** Ready loads blocked due to partial store-forwarding. */ 431 Stats::Scalar<> lsqBlockedLoads; 432 433 /** Number of loads that were rescheduled. */ 434 Stats::Scalar<> lsqRescheduledLoads; 435 436 /** Number of times the LSQ is blocked due to the cache. */ 437 Stats::Scalar<> lsqCacheBlocked; 438 439 public: 440 /** Executes the load at the given index. */ 441 template <class T> 442 Fault read(Request *req, T &data, int load_idx); 443 444 /** Executes the store at the given index. */ 445 template <class T> 446 Fault write(Request *req, T &data, int store_idx); 447 448 /** Returns the index of the head load instruction. */ 449 int getLoadHead() { return loadHead; } 450 /** Returns the sequence number of the head load instruction. */ 451 InstSeqNum getLoadHeadSeqNum() 452 { 453 if (loadQueue[loadHead]) { 454 return loadQueue[loadHead]->seqNum; 455 } else { 456 return 0; 457 } 458 459 } 460 461 /** Returns the index of the head store instruction. */ 462 int getStoreHead() { return storeHead; } 463 /** Returns the sequence number of the head store instruction. */ 464 InstSeqNum getStoreHeadSeqNum() 465 { 466 if (storeQueue[storeHead].inst) { 467 return storeQueue[storeHead].inst->seqNum; 468 } else { 469 return 0; 470 } 471 472 } 473 474 /** Returns whether or not the LSQ unit is stalled. */ 475 bool isStalled() { return stalled; } 476}; 477 478template <class Impl> 479template <class T> 480Fault 481LSQUnit<Impl>::read(Request *req, T &data, int load_idx) 482{ 483 DynInstPtr load_inst = loadQueue[load_idx]; 484 485 assert(load_inst); 486 487 assert(!load_inst->isExecuted()); 488 489 // Make sure this isn't an uncacheable access 490 // A bit of a hackish way to get uncached accesses to work only if they're 491 // at the head of the LSQ and are ready to commit (at the head of the ROB 492 // too). 493 if (req->isUncacheable() && 494 (load_idx != loadHead || !load_inst->isAtCommit())) { 495 iewStage->rescheduleMemInst(load_inst); 496 ++lsqRescheduledLoads; 497 498 // Must delete request now that it wasn't handed off to 499 // memory. This is quite ugly. @todo: Figure out the proper 500 // place to really handle request deletes. 501 delete req; 502 return TheISA::genMachineCheckFault(); 503 } 504 505 // Check the SQ for any previous stores that might lead to forwarding 506 int store_idx = load_inst->sqIdx; 507 508 int store_size = 0; 509 510 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " 511 "storeHead: %i addr: %#x\n", 512 load_idx, store_idx, storeHead, req->getPaddr()); 513 514 if (req->isLocked()) { 515 // Disable recording the result temporarily. Writing to misc 516 // regs normally updates the result, but this is not the 517 // desired behavior when handling store conditionals. 518 load_inst->recordResult = false; 519 TheISA::handleLockedRead(load_inst.get(), req); 520 load_inst->recordResult = true; 521 } 522 523 while (store_idx != -1) { 524 // End once we've reached the top of the LSQ 525 if (store_idx == storeWBIdx) { 526 break; 527 } 528 529 // Move the index to one younger 530 if (--store_idx < 0) 531 store_idx += SQEntries; 532 533 assert(storeQueue[store_idx].inst); 534 535 store_size = storeQueue[store_idx].size; 536 537 if (store_size == 0) 538 continue; 539 else if (storeQueue[store_idx].inst->uncacheable()) 540 continue; 541 542 assert(storeQueue[store_idx].inst->effAddrValid); 543 544 // Check if the store data is within the lower and upper bounds of 545 // addresses that the request needs. 546 bool store_has_lower_limit = 547 req->getVaddr() >= storeQueue[store_idx].inst->effAddr; 548 bool store_has_upper_limit = 549 (req->getVaddr() + req->getSize()) <= 550 (storeQueue[store_idx].inst->effAddr + store_size); 551 bool lower_load_has_store_part = 552 req->getVaddr() < (storeQueue[store_idx].inst->effAddr + 553 store_size); 554 bool upper_load_has_store_part = 555 (req->getVaddr() + req->getSize()) > 556 storeQueue[store_idx].inst->effAddr; 557 558 // If the store's data has all of the data needed, we can forward. 559 if ((store_has_lower_limit && store_has_upper_limit)) { 560 // Get shift amount for offset into the store's data. 561 int shift_amt = req->getVaddr() & (store_size - 1); 562 563 memcpy(&data, storeQueue[store_idx].data + shift_amt, sizeof(T)); 564 565 assert(!load_inst->memData); 566 load_inst->memData = new uint8_t[64]; 567 568 memcpy(load_inst->memData, 569 storeQueue[store_idx].data + shift_amt, req->getSize()); 570 571 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " 572 "addr %#x, data %#x\n", 573 store_idx, req->getVaddr(), data); 574 575 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq, 576 Packet::Broadcast); 577 data_pkt->dataStatic(load_inst->memData); 578 579 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); 580 581 // We'll say this has a 1 cycle load-store forwarding latency 582 // for now. 583 // @todo: Need to make this a parameter. 584 wb->schedule(curTick); 585 586 ++lsqForwLoads; 587 return NoFault; 588 } else if ((store_has_lower_limit && lower_load_has_store_part) || 589 (store_has_upper_limit && upper_load_has_store_part) || 590 (lower_load_has_store_part && upper_load_has_store_part)) { 591 // This is the partial store-load forwarding case where a store 592 // has only part of the load's data. 593 594 // If it's already been written back, then don't worry about 595 // stalling on it. 596 if (storeQueue[store_idx].completed) { 597 panic("Should not check one of these"); 598 continue; 599 } 600 601 // Must stall load and force it to retry, so long as it's the oldest 602 // load that needs to do so. 603 if (!stalled || 604 (stalled && 605 load_inst->seqNum < 606 loadQueue[stallingLoadIdx]->seqNum)) { 607 stalled = true; 608 stallingStoreIsn = storeQueue[store_idx].inst->seqNum; 609 stallingLoadIdx = load_idx; 610 } 611 612 // Tell IQ/mem dep unit that this instruction will need to be 613 // rescheduled eventually 614 iewStage->rescheduleMemInst(load_inst); 615 iewStage->decrWb(load_inst->seqNum); 616 load_inst->clearIssued(); 617 ++lsqRescheduledLoads; 618 619 // Do not generate a writeback event as this instruction is not 620 // complete. 621 DPRINTF(LSQUnit, "Load-store forwarding mis-match. " 622 "Store idx %i to load addr %#x\n", 623 store_idx, req->getVaddr()); 624 625 // Must delete request now that it wasn't handed off to 626 // memory. This is quite ugly. @todo: Figure out the 627 // proper place to really handle request deletes. 628 delete req; 629 630 return NoFault; 631 } 632 } 633 634 // If there's no forwarding case, then go access memory 635 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n", 636 load_inst->seqNum, load_inst->readPC()); 637 638 assert(!load_inst->memData); 639 load_inst->memData = new uint8_t[64]; 640 641 ++usedPorts; 642 643 // if we the cache is not blocked, do cache access 644 if (!lsq->cacheBlocked()) { 645 PacketPtr data_pkt = 646 new Packet(req, 647 (req->isLocked() ? 648 MemCmd::LoadLockedReq : MemCmd::ReadReq), 649 Packet::Broadcast); 650 data_pkt->dataStatic(load_inst->memData); 651 652 LSQSenderState *state = new LSQSenderState; 653 state->isLoad = true; 654 state->idx = load_idx; 655 state->inst = load_inst; 656 data_pkt->senderState = state; 657 658 if (!dcachePort->sendTiming(data_pkt)) { 659 // Delete state and data packet because a load retry 660 // initiates a pipeline restart; it does not retry. 661 delete state; 662 delete data_pkt->req; 663 delete data_pkt; 664 665 req = NULL; 666 667 // If the access didn't succeed, tell the LSQ by setting 668 // the retry thread id. 669 lsq->setRetryTid(lsqID); 670 } 671 } 672 673 // If the cache was blocked, or has become blocked due to the access, 674 // handle it. 675 if (lsq->cacheBlocked()) { 676 if (req) 677 delete req; 678 679 ++lsqCacheBlocked; 680 681 iewStage->decrWb(load_inst->seqNum); 682 // There's an older load that's already going to squash. 683 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum) 684 return NoFault; 685 686 // Record that the load was blocked due to memory. This 687 // load will squash all instructions after it, be 688 // refetched, and re-executed. 689 isLoadBlocked = true; 690 loadBlockedHandled = false; 691 blockedLoadSeqNum = load_inst->seqNum; 692 // No fault occurred, even though the interface is blocked. 693 return NoFault; 694 } 695 696 return NoFault; 697} 698 699template <class Impl> 700template <class T> 701Fault 702LSQUnit<Impl>::write(Request *req, T &data, int store_idx) 703{ 704 assert(storeQueue[store_idx].inst); 705 706 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x" 707 " | storeHead:%i [sn:%i]\n", 708 store_idx, req->getPaddr(), data, storeHead, 709 storeQueue[store_idx].inst->seqNum); 710 711 storeQueue[store_idx].req = req; 712 storeQueue[store_idx].size = sizeof(T); 713 assert(sizeof(T) <= sizeof(storeQueue[store_idx].data)); 714 715 T gData = htog(data); 716 memcpy(storeQueue[store_idx].data, &gData, sizeof(T)); 717 718 // This function only writes the data to the store queue, so no fault 719 // can happen here. 720 return NoFault; 721} 722 723#endif // __CPU_O3_LSQ_UNIT_HH__ 724