lsq_unit.hh revision 2871:7ed5c9ef3eb6
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "config/full_system.hh"
41#include "base/hashmap.hh"
42#include "cpu/inst_seq.hh"
43#include "mem/packet_impl.hh"
44#include "mem/port.hh"
45
46/**
47 * Class that implements the actual LQ and SQ for each specific
48 * thread.  Both are circular queues; load entries are freed upon
49 * committing, while store entries are freed once they writeback. The
50 * LSQUnit tracks if there are memory ordering violations, and also
51 * detects partial load to store forwarding cases (a store only has
52 * part of a load's data) that requires the load to wait until the
53 * store writes back. In the former case it holds onto the instruction
54 * until the dependence unit looks at it, and in the latter it stalls
55 * the LSQ until the store writes back. At that point the load is
56 * replayed.
57 */
58template <class Impl>
59class LSQUnit {
60  protected:
61    typedef TheISA::IntReg IntReg;
62  public:
63    typedef typename Impl::Params Params;
64    typedef typename Impl::O3CPU O3CPU;
65    typedef typename Impl::DynInstPtr DynInstPtr;
66    typedef typename Impl::CPUPol::IEW IEW;
67    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
68
69  public:
70    /** Constructs an LSQ unit. init() must be called prior to use. */
71    LSQUnit();
72
73    /** Initializes the LSQ unit with the specified number of entries. */
74    void init(Params *params, unsigned maxLQEntries,
75              unsigned maxSQEntries, unsigned id);
76
77    /** Returns the name of the LSQ unit. */
78    std::string name() const;
79
80    /** Returns the dcache port.
81     *  @todo: Remove this once the port moves up to the LSQ level.
82     */
83    Port *getDcachePort() { return dcachePort; }
84
85    /** Registers statistics. */
86    void regStats();
87
88    /** Sets the CPU pointer. */
89    void setCPU(O3CPU *cpu_ptr);
90
91    /** Sets the IEW stage pointer. */
92    void setIEW(IEW *iew_ptr)
93    { iewStage = iew_ptr; }
94
95    /** Switches out LSQ unit. */
96    void switchOut();
97
98    /** Takes over from another CPU's thread. */
99    void takeOverFrom();
100
101    /** Returns if the LSQ is switched out. */
102    bool isSwitchedOut() { return switchedOut; }
103
104    /** Ticks the LSQ unit, which in this case only resets the number of
105     * used cache ports.
106     * @todo: Move the number of used ports up to the LSQ level so it can
107     * be shared by all LSQ units.
108     */
109    void tick() { usedPorts = 0; }
110
111    /** Inserts an instruction. */
112    void insert(DynInstPtr &inst);
113    /** Inserts a load instruction. */
114    void insertLoad(DynInstPtr &load_inst);
115    /** Inserts a store instruction. */
116    void insertStore(DynInstPtr &store_inst);
117
118    /** Executes a load instruction. */
119    Fault executeLoad(DynInstPtr &inst);
120
121    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
122    /** Executes a store instruction. */
123    Fault executeStore(DynInstPtr &inst);
124
125    /** Commits the head load. */
126    void commitLoad();
127    /** Commits loads older than a specific sequence number. */
128    void commitLoads(InstSeqNum &youngest_inst);
129
130    /** Commits stores older than a specific sequence number. */
131    void commitStores(InstSeqNum &youngest_inst);
132
133    /** Writes back stores. */
134    void writebackStores();
135
136    /** Completes the data access that has been returned from the
137     * memory system. */
138    void completeDataAccess(PacketPtr pkt);
139
140    /** Clears all the entries in the LQ. */
141    void clearLQ();
142
143    /** Clears all the entries in the SQ. */
144    void clearSQ();
145
146    /** Resizes the LQ to a given size. */
147    void resizeLQ(unsigned size);
148
149    /** Resizes the SQ to a given size. */
150    void resizeSQ(unsigned size);
151
152    /** Squashes all instructions younger than a specific sequence number. */
153    void squash(const InstSeqNum &squashed_num);
154
155    /** Returns if there is a memory ordering violation. Value is reset upon
156     * call to getMemDepViolator().
157     */
158    bool violation() { return memDepViolator; }
159
160    /** Returns the memory ordering violator. */
161    DynInstPtr getMemDepViolator();
162
163    /** Returns if a load became blocked due to the memory system. */
164    bool loadBlocked()
165    { return isLoadBlocked; }
166
167    /** Clears the signal that a load became blocked. */
168    void clearLoadBlocked()
169    { isLoadBlocked = false; }
170
171    /** Returns if the blocked load was handled. */
172    bool isLoadBlockedHandled()
173    { return loadBlockedHandled; }
174
175    /** Records the blocked load as being handled. */
176    void setLoadBlockedHandled()
177    { loadBlockedHandled = true; }
178
179    /** Returns the number of free entries (min of free LQ and SQ entries). */
180    unsigned numFreeEntries();
181
182    /** Returns the number of loads ready to execute. */
183    int numLoadsReady();
184
185    /** Returns the number of loads in the LQ. */
186    int numLoads() { return loads; }
187
188    /** Returns the number of stores in the SQ. */
189    int numStores() { return stores; }
190
191    /** Returns if either the LQ or SQ is full. */
192    bool isFull() { return lqFull() || sqFull(); }
193
194    /** Returns if the LQ is full. */
195    bool lqFull() { return loads >= (LQEntries - 1); }
196
197    /** Returns if the SQ is full. */
198    bool sqFull() { return stores >= (SQEntries - 1); }
199
200    /** Returns the number of instructions in the LSQ. */
201    unsigned getCount() { return loads + stores; }
202
203    /** Returns if there are any stores to writeback. */
204    bool hasStoresToWB() { return storesToWB; }
205
206    /** Returns the number of stores to writeback. */
207    int numStoresToWB() { return storesToWB; }
208
209    /** Returns if the LSQ unit will writeback on this cycle. */
210    bool willWB() { return storeQueue[storeWBIdx].canWB &&
211                        !storeQueue[storeWBIdx].completed &&
212                        !isStoreBlocked; }
213
214  private:
215    /** Writes back the instruction, sending it to IEW. */
216    void writeback(DynInstPtr &inst, PacketPtr pkt);
217
218    /** Handles completing the send of a store to memory. */
219    void storePostSend(Packet *pkt);
220
221    /** Completes the store at the specified index. */
222    void completeStore(int store_idx);
223
224    /** Handles doing the retry. */
225    void recvRetry();
226
227    /** Increments the given store index (circular queue). */
228    inline void incrStIdx(int &store_idx);
229    /** Decrements the given store index (circular queue). */
230    inline void decrStIdx(int &store_idx);
231    /** Increments the given load index (circular queue). */
232    inline void incrLdIdx(int &load_idx);
233    /** Decrements the given load index (circular queue). */
234    inline void decrLdIdx(int &load_idx);
235
236  public:
237    /** Debugging function to dump instructions in the LSQ. */
238    void dumpInsts();
239
240  private:
241    /** Pointer to the CPU. */
242    O3CPU *cpu;
243
244    /** Pointer to the IEW stage. */
245    IEW *iewStage;
246
247    /** Pointer to memory object. */
248    MemObject *mem;
249
250    /** DcachePort class for this LSQ Unit.  Handles doing the
251     * communication with the cache/memory.
252     * @todo: Needs to be moved to the LSQ level and have some sort
253     * of arbitration.
254     */
255    class DcachePort : public Port
256    {
257      protected:
258        /** Pointer to CPU. */
259        O3CPU *cpu;
260        /** Pointer to LSQ. */
261        LSQUnit *lsq;
262
263      public:
264        /** Default constructor. */
265        DcachePort(O3CPU *_cpu, LSQUnit *_lsq)
266            : Port(_lsq->name() + "-dport"), cpu(_cpu), lsq(_lsq)
267        { }
268
269      protected:
270        /** Atomic version of receive.  Panics. */
271        virtual Tick recvAtomic(PacketPtr pkt);
272
273        /** Functional version of receive.  Panics. */
274        virtual void recvFunctional(PacketPtr pkt);
275
276        /** Receives status change.  Other than range changing, panics. */
277        virtual void recvStatusChange(Status status);
278
279        /** Returns the address ranges of this device. */
280        virtual void getDeviceAddressRanges(AddrRangeList &resp,
281                                            AddrRangeList &snoop)
282        { resp.clear(); snoop.clear(); }
283
284        /** Timing version of receive.  Handles writing back and
285         * completing the load or store that has returned from
286         * memory. */
287        virtual bool recvTiming(PacketPtr pkt);
288
289        /** Handles doing a retry of the previous send. */
290        virtual void recvRetry();
291    };
292
293    /** Pointer to the D-cache. */
294    DcachePort *dcachePort;
295
296    /** Derived class to hold any sender state the LSQ needs. */
297    class LSQSenderState : public Packet::SenderState
298    {
299      public:
300        /** Default constructor. */
301        LSQSenderState()
302            : noWB(false)
303        { }
304
305        /** Instruction who initiated the access to memory. */
306        DynInstPtr inst;
307        /** Whether or not it is a load. */
308        bool isLoad;
309        /** The LQ/SQ index of the instruction. */
310        int idx;
311        /** Whether or not the instruction will need to writeback. */
312        bool noWB;
313    };
314
315    /** Writeback event, specifically for when stores forward data to loads. */
316    class WritebackEvent : public Event {
317      public:
318        /** Constructs a writeback event. */
319        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
320
321        /** Processes the writeback event. */
322        void process();
323
324        /** Returns the description of this event. */
325        const char *description();
326
327      private:
328        /** Instruction whose results are being written back. */
329        DynInstPtr inst;
330
331        /** The packet that would have been sent to memory. */
332        PacketPtr pkt;
333
334        /** The pointer to the LSQ unit that issued the store. */
335        LSQUnit<Impl> *lsqPtr;
336    };
337
338  public:
339    struct SQEntry {
340        /** Constructs an empty store queue entry. */
341        SQEntry()
342            : inst(NULL), req(NULL), size(0), data(0),
343              canWB(0), committed(0), completed(0)
344        { }
345
346        /** Constructs a store queue entry for a given instruction. */
347        SQEntry(DynInstPtr &_inst)
348            : inst(_inst), req(NULL), size(0), data(0),
349              canWB(0), committed(0), completed(0)
350        { }
351
352        /** The store instruction. */
353        DynInstPtr inst;
354        /** The request for the store. */
355        RequestPtr req;
356        /** The size of the store. */
357        int size;
358        /** The store data. */
359        IntReg data;
360        /** Whether or not the store can writeback. */
361        bool canWB;
362        /** Whether or not the store is committed. */
363        bool committed;
364        /** Whether or not the store is completed. */
365        bool completed;
366    };
367
368  private:
369    /** The LSQUnit thread id. */
370    unsigned lsqID;
371
372    /** The store queue. */
373    std::vector<SQEntry> storeQueue;
374
375    /** The load queue. */
376    std::vector<DynInstPtr> loadQueue;
377
378    /** The number of LQ entries, plus a sentinel entry (circular queue).
379     *  @todo: Consider having var that records the true number of LQ entries.
380     */
381    unsigned LQEntries;
382    /** The number of SQ entries, plus a sentinel entry (circular queue).
383     *  @todo: Consider having var that records the true number of SQ entries.
384     */
385    unsigned SQEntries;
386
387    /** The number of load instructions in the LQ. */
388    int loads;
389    /** The number of store instructions in the SQ. */
390    int stores;
391    /** The number of store instructions in the SQ waiting to writeback. */
392    int storesToWB;
393
394    /** The index of the head instruction in the LQ. */
395    int loadHead;
396    /** The index of the tail instruction in the LQ. */
397    int loadTail;
398
399    /** The index of the head instruction in the SQ. */
400    int storeHead;
401    /** The index of the first instruction that may be ready to be
402     * written back, and has not yet been written back.
403     */
404    int storeWBIdx;
405    /** The index of the tail instruction in the SQ. */
406    int storeTail;
407
408    /// @todo Consider moving to a more advanced model with write vs read ports
409    /** The number of cache ports available each cycle. */
410    int cachePorts;
411
412    /** The number of used cache ports in this cycle. */
413    int usedPorts;
414
415    /** Is the LSQ switched out. */
416    bool switchedOut;
417
418    //list<InstSeqNum> mshrSeqNums;
419
420    /** Wire to read information from the issue stage time queue. */
421    typename TimeBuffer<IssueStruct>::wire fromIssue;
422
423    /** Whether or not the LSQ is stalled. */
424    bool stalled;
425    /** The store that causes the stall due to partial store to load
426     * forwarding.
427     */
428    InstSeqNum stallingStoreIsn;
429    /** The index of the above store. */
430    int stallingLoadIdx;
431
432    /** The packet that needs to be retried. */
433    PacketPtr retryPkt;
434
435    /** Whehter or not a store is blocked due to the memory system. */
436    bool isStoreBlocked;
437
438    /** Whether or not a load is blocked due to the memory system. */
439    bool isLoadBlocked;
440
441    /** Has the blocked load been handled. */
442    bool loadBlockedHandled;
443
444    /** The sequence number of the blocked load. */
445    InstSeqNum blockedLoadSeqNum;
446
447    /** The oldest load that caused a memory ordering violation. */
448    DynInstPtr memDepViolator;
449
450    // Will also need how many read/write ports the Dcache has.  Or keep track
451    // of that in stage that is one level up, and only call executeLoad/Store
452    // the appropriate number of times.
453
454    /** Total number of loads forwaded from LSQ stores. */
455    Stats::Scalar<> lsqForwLoads;
456
457    /** Total number of loads ignored due to invalid addresses. */
458    Stats::Scalar<> invAddrLoads;
459
460    /** Total number of squashed loads. */
461    Stats::Scalar<> lsqSquashedLoads;
462
463    /** Total number of responses from the memory system that are
464     * ignored due to the instruction already being squashed. */
465    Stats::Scalar<> lsqIgnoredResponses;
466
467    /** Total number of squashed stores. */
468    Stats::Scalar<> lsqSquashedStores;
469
470    /** Total number of software prefetches ignored due to invalid addresses. */
471    Stats::Scalar<> invAddrSwpfs;
472
473    /** Ready loads blocked due to partial store-forwarding. */
474    Stats::Scalar<> lsqBlockedLoads;
475
476    /** Number of loads that were rescheduled. */
477    Stats::Scalar<> lsqRescheduledLoads;
478
479    /** Number of times the LSQ is blocked due to the cache. */
480    Stats::Scalar<> lsqCacheBlocked;
481
482  public:
483    /** Executes the load at the given index. */
484    template <class T>
485    Fault read(Request *req, T &data, int load_idx);
486
487    /** Executes the store at the given index. */
488    template <class T>
489    Fault write(Request *req, T &data, int store_idx);
490
491    /** Returns the index of the head load instruction. */
492    int getLoadHead() { return loadHead; }
493    /** Returns the sequence number of the head load instruction. */
494    InstSeqNum getLoadHeadSeqNum()
495    {
496        if (loadQueue[loadHead]) {
497            return loadQueue[loadHead]->seqNum;
498        } else {
499            return 0;
500        }
501
502    }
503
504    /** Returns the index of the head store instruction. */
505    int getStoreHead() { return storeHead; }
506    /** Returns the sequence number of the head store instruction. */
507    InstSeqNum getStoreHeadSeqNum()
508    {
509        if (storeQueue[storeHead].inst) {
510            return storeQueue[storeHead].inst->seqNum;
511        } else {
512            return 0;
513        }
514
515    }
516
517    /** Returns whether or not the LSQ unit is stalled. */
518    bool isStalled()  { return stalled; }
519};
520
521template <class Impl>
522template <class T>
523Fault
524LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
525{
526    DynInstPtr load_inst = loadQueue[load_idx];
527
528    assert(load_inst);
529
530    assert(!load_inst->isExecuted());
531
532    // Make sure this isn't an uncacheable access
533    // A bit of a hackish way to get uncached accesses to work only if they're
534    // at the head of the LSQ and are ready to commit (at the head of the ROB
535    // too).
536    if (req->getFlags() & UNCACHEABLE &&
537        (load_idx != loadHead || !load_inst->isAtCommit())) {
538        iewStage->rescheduleMemInst(load_inst);
539        ++lsqRescheduledLoads;
540        return TheISA::genMachineCheckFault();
541    }
542
543    // Check the SQ for any previous stores that might lead to forwarding
544    int store_idx = load_inst->sqIdx;
545
546    int store_size = 0;
547
548    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
549            "storeHead: %i addr: %#x\n",
550            load_idx, store_idx, storeHead, req->getPaddr());
551
552#if FULL_SYSTEM
553    if (req->getFlags() & LOCKED) {
554        cpu->lockAddr = req->getPaddr();
555        cpu->lockFlag = true;
556    }
557#endif
558
559    while (store_idx != -1) {
560        // End once we've reached the top of the LSQ
561        if (store_idx == storeWBIdx) {
562            break;
563        }
564
565        // Move the index to one younger
566        if (--store_idx < 0)
567            store_idx += SQEntries;
568
569        assert(storeQueue[store_idx].inst);
570
571        store_size = storeQueue[store_idx].size;
572
573        if (store_size == 0)
574            continue;
575
576        // Check if the store data is within the lower and upper bounds of
577        // addresses that the request needs.
578        bool store_has_lower_limit =
579            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
580        bool store_has_upper_limit =
581            (req->getVaddr() + req->getSize()) <=
582            (storeQueue[store_idx].inst->effAddr + store_size);
583        bool lower_load_has_store_part =
584            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
585                           store_size);
586        bool upper_load_has_store_part =
587            (req->getVaddr() + req->getSize()) >
588            storeQueue[store_idx].inst->effAddr;
589
590        // If the store's data has all of the data needed, we can forward.
591        if (store_has_lower_limit && store_has_upper_limit) {
592            // Get shift amount for offset into the store's data.
593            int shift_amt = req->getVaddr() & (store_size - 1);
594            // @todo: Magic number, assumes byte addressing
595            shift_amt = shift_amt << 3;
596
597            // Cast this to type T?
598            data = storeQueue[store_idx].data >> shift_amt;
599
600            assert(!load_inst->memData);
601            load_inst->memData = new uint8_t[64];
602
603            memcpy(load_inst->memData, &data, req->getSize());
604
605            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
606                    "addr %#x, data %#x\n",
607                    store_idx, req->getVaddr(), data);
608
609            PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
610            data_pkt->dataStatic(load_inst->memData);
611
612            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
613
614            // We'll say this has a 1 cycle load-store forwarding latency
615            // for now.
616            // @todo: Need to make this a parameter.
617            wb->schedule(curTick);
618
619            ++lsqForwLoads;
620            return NoFault;
621        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
622                   (store_has_upper_limit && upper_load_has_store_part) ||
623                   (lower_load_has_store_part && upper_load_has_store_part)) {
624            // This is the partial store-load forwarding case where a store
625            // has only part of the load's data.
626
627            // If it's already been written back, then don't worry about
628            // stalling on it.
629            if (storeQueue[store_idx].completed) {
630                continue;
631            }
632
633            // Must stall load and force it to retry, so long as it's the oldest
634            // load that needs to do so.
635            if (!stalled ||
636                (stalled &&
637                 load_inst->seqNum <
638                 loadQueue[stallingLoadIdx]->seqNum)) {
639                stalled = true;
640                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
641                stallingLoadIdx = load_idx;
642            }
643
644            // Tell IQ/mem dep unit that this instruction will need to be
645            // rescheduled eventually
646            iewStage->rescheduleMemInst(load_inst);
647            ++lsqRescheduledLoads;
648
649            // Do not generate a writeback event as this instruction is not
650            // complete.
651            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
652                    "Store idx %i to load addr %#x\n",
653                    store_idx, req->getVaddr());
654
655            ++lsqBlockedLoads;
656            return NoFault;
657        }
658    }
659
660    // If there's no forwarding case, then go access memory
661    DPRINTF(LSQUnit, "Doing functional access for inst [sn:%lli] PC %#x\n",
662            load_inst->seqNum, load_inst->readPC());
663
664    assert(!load_inst->memData);
665    load_inst->memData = new uint8_t[64];
666
667    ++usedPorts;
668
669    DPRINTF(LSQUnit, "Doing timing access for inst PC %#x\n",
670            load_inst->readPC());
671
672    PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
673    data_pkt->dataStatic(load_inst->memData);
674
675    LSQSenderState *state = new LSQSenderState;
676    state->isLoad = true;
677    state->idx = load_idx;
678    state->inst = load_inst;
679    data_pkt->senderState = state;
680
681    // if we have a cache, do cache access too
682    if (!dcachePort->sendTiming(data_pkt)) {
683        ++lsqCacheBlocked;
684        // There's an older load that's already going to squash.
685        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
686            return NoFault;
687
688        // Record that the load was blocked due to memory.  This
689        // load will squash all instructions after it, be
690        // refetched, and re-executed.
691        isLoadBlocked = true;
692        loadBlockedHandled = false;
693        blockedLoadSeqNum = load_inst->seqNum;
694        // No fault occurred, even though the interface is blocked.
695        return NoFault;
696    }
697
698    if (data_pkt->result != Packet::Success) {
699        DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
700        DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
701                load_inst->seqNum);
702    } else {
703        DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
704        DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
705                load_inst->seqNum);
706    }
707
708    return NoFault;
709}
710
711template <class Impl>
712template <class T>
713Fault
714LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
715{
716    assert(storeQueue[store_idx].inst);
717
718    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
719            " | storeHead:%i [sn:%i]\n",
720            store_idx, req->getPaddr(), data, storeHead,
721            storeQueue[store_idx].inst->seqNum);
722
723    storeQueue[store_idx].req = req;
724    storeQueue[store_idx].size = sizeof(T);
725    storeQueue[store_idx].data = data;
726
727    // This function only writes the data to the store queue, so no fault
728    // can happen here.
729    return NoFault;
730}
731
732#endif // __CPU_O3_LSQ_UNIT_HH__
733