lsq_unit.hh revision 2689
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "config/full_system.hh"
41#include "base/hashmap.hh"
42#include "cpu/inst_seq.hh"
43#include "mem/packet.hh"
44#include "mem/port.hh"
45//#include "mem/page_table.hh"
46//#include "sim/debug.hh"
47//#include "sim/sim_object.hh"
48
49/**
50 * Class that implements the actual LQ and SQ for each specific
51 * thread.  Both are circular queues; load entries are freed upon
52 * committing, while store entries are freed once they writeback. The
53 * LSQUnit tracks if there are memory ordering violations, and also
54 * detects partial load to store forwarding cases (a store only has
55 * part of a load's data) that requires the load to wait until the
56 * store writes back. In the former case it holds onto the instruction
57 * until the dependence unit looks at it, and in the latter it stalls
58 * the LSQ until the store writes back. At that point the load is
59 * replayed.
60 */
61template <class Impl>
62class LSQUnit {
63  protected:
64    typedef TheISA::IntReg IntReg;
65  public:
66    typedef typename Impl::Params Params;
67    typedef typename Impl::FullCPU FullCPU;
68    typedef typename Impl::DynInstPtr DynInstPtr;
69    typedef typename Impl::CPUPol::IEW IEW;
70    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
71
72  public:
73    /** Constructs an LSQ unit. init() must be called prior to use. */
74    LSQUnit();
75
76    /** Initializes the LSQ unit with the specified number of entries. */
77    void init(Params *params, unsigned maxLQEntries,
78              unsigned maxSQEntries, unsigned id);
79
80    /** Returns the name of the LSQ unit. */
81    std::string name() const;
82
83    /** Sets the CPU pointer. */
84    void setCPU(FullCPU *cpu_ptr);
85
86    /** Sets the IEW stage pointer. */
87    void setIEW(IEW *iew_ptr)
88    { iewStage = iew_ptr; }
89
90    /** Sets the page table pointer. */
91//    void setPageTable(PageTable *pt_ptr);
92
93    /** Switches out LSQ unit. */
94    void switchOut();
95
96    /** Takes over from another CPU's thread. */
97    void takeOverFrom();
98
99    /** Returns if the LSQ is switched out. */
100    bool isSwitchedOut() { return switchedOut; }
101
102    /** Ticks the LSQ unit, which in this case only resets the number of
103     * used cache ports.
104     * @todo: Move the number of used ports up to the LSQ level so it can
105     * be shared by all LSQ units.
106     */
107    void tick() { usedPorts = 0; }
108
109    /** Inserts an instruction. */
110    void insert(DynInstPtr &inst);
111    /** Inserts a load instruction. */
112    void insertLoad(DynInstPtr &load_inst);
113    /** Inserts a store instruction. */
114    void insertStore(DynInstPtr &store_inst);
115
116    /** Executes a load instruction. */
117    Fault executeLoad(DynInstPtr &inst);
118
119    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
120    /** Executes a store instruction. */
121    Fault executeStore(DynInstPtr &inst);
122
123    /** Commits the head load. */
124    void commitLoad();
125    /** Commits loads older than a specific sequence number. */
126    void commitLoads(InstSeqNum &youngest_inst);
127
128    /** Commits stores older than a specific sequence number. */
129    void commitStores(InstSeqNum &youngest_inst);
130
131    /** Writes back stores. */
132    void writebackStores();
133
134    void completeDataAccess(PacketPtr pkt);
135
136    // @todo: Include stats in the LSQ unit.
137    //void regStats();
138
139    /** Clears all the entries in the LQ. */
140    void clearLQ();
141
142    /** Clears all the entries in the SQ. */
143    void clearSQ();
144
145    /** Resizes the LQ to a given size. */
146    void resizeLQ(unsigned size);
147
148    /** Resizes the SQ to a given size. */
149    void resizeSQ(unsigned size);
150
151    /** Squashes all instructions younger than a specific sequence number. */
152    void squash(const InstSeqNum &squashed_num);
153
154    /** Returns if there is a memory ordering violation. Value is reset upon
155     * call to getMemDepViolator().
156     */
157    bool violation() { return memDepViolator; }
158
159    /** Returns the memory ordering violator. */
160    DynInstPtr getMemDepViolator();
161
162    /** Returns if a load became blocked due to the memory system. */
163    bool loadBlocked()
164    { return isLoadBlocked; }
165
166    /** Clears the signal that a load became blocked. */
167    void clearLoadBlocked()
168    { isLoadBlocked = false; }
169
170    /** Returns if the blocked load was handled. */
171    bool isLoadBlockedHandled()
172    { return loadBlockedHandled; }
173
174    /** Records the blocked load as being handled. */
175    void setLoadBlockedHandled()
176    { loadBlockedHandled = true; }
177
178    /** Returns the number of free entries (min of free LQ and SQ entries). */
179    unsigned numFreeEntries();
180
181    /** Returns the number of loads ready to execute. */
182    int numLoadsReady();
183
184    /** Returns the number of loads in the LQ. */
185    int numLoads() { return loads; }
186
187    /** Returns the number of stores in the SQ. */
188    int numStores() { return stores; }
189
190    /** Returns if either the LQ or SQ is full. */
191    bool isFull() { return lqFull() || sqFull(); }
192
193    /** Returns if the LQ is full. */
194    bool lqFull() { return loads >= (LQEntries - 1); }
195
196    /** Returns if the SQ is full. */
197    bool sqFull() { return stores >= (SQEntries - 1); }
198
199    /** Returns the number of instructions in the LSQ. */
200    unsigned getCount() { return loads + stores; }
201
202    /** Returns if there are any stores to writeback. */
203    bool hasStoresToWB() { return storesToWB; }
204
205    /** Returns the number of stores to writeback. */
206    int numStoresToWB() { return storesToWB; }
207
208    /** Returns if the LSQ unit will writeback on this cycle. */
209    bool willWB() { return storeQueue[storeWBIdx].canWB &&
210                        !storeQueue[storeWBIdx].completed &&
211                        !isStoreBlocked; }
212
213  private:
214    void writeback(DynInstPtr &inst, PacketPtr pkt);
215
216    /** Completes the store at the specified index. */
217    void completeStore(int store_idx);
218
219    /** Increments the given store index (circular queue). */
220    inline void incrStIdx(int &store_idx);
221    /** Decrements the given store index (circular queue). */
222    inline void decrStIdx(int &store_idx);
223    /** Increments the given load index (circular queue). */
224    inline void incrLdIdx(int &load_idx);
225    /** Decrements the given load index (circular queue). */
226    inline void decrLdIdx(int &load_idx);
227
228  public:
229    /** Debugging function to dump instructions in the LSQ. */
230    void dumpInsts();
231
232  private:
233    /** Pointer to the CPU. */
234    FullCPU *cpu;
235
236    /** Pointer to the IEW stage. */
237    IEW *iewStage;
238
239    MemObject *mem;
240
241    class DcachePort : public Port
242    {
243      protected:
244        FullCPU *cpu;
245        LSQUnit *lsq;
246
247      public:
248        DcachePort(FullCPU *_cpu, LSQUnit *_lsq)
249            : Port(_lsq->name() + "-dport"), cpu(_cpu), lsq(_lsq)
250        { }
251
252      protected:
253        virtual Tick recvAtomic(PacketPtr pkt);
254
255        virtual void recvFunctional(PacketPtr pkt);
256
257        virtual void recvStatusChange(Status status);
258
259        virtual void getDeviceAddressRanges(AddrRangeList &resp,
260                                            AddrRangeList &snoop)
261        { resp.clear(); snoop.clear(); }
262
263        virtual bool recvTiming(PacketPtr pkt);
264
265        virtual void recvRetry();
266    };
267
268    /** Pointer to the D-cache. */
269    DcachePort *dcachePort;
270
271    class LSQSenderState : public Packet::SenderState
272    {
273      public:
274        LSQSenderState()
275            : noWB(false)
276        { }
277
278//      protected:
279        DynInstPtr inst;
280        bool isLoad;
281        int idx;
282        bool noWB;
283    };
284
285    /** Pointer to the page table. */
286//    PageTable *pTable;
287
288    class WritebackEvent : public Event {
289      public:
290        /** Constructs a writeback event. */
291        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
292
293        /** Processes the writeback event. */
294        void process();
295
296        /** Returns the description of this event. */
297        const char *description();
298
299      private:
300        DynInstPtr inst;
301
302        PacketPtr pkt;
303
304        /** The pointer to the LSQ unit that issued the store. */
305        LSQUnit<Impl> *lsqPtr;
306    };
307
308  public:
309    struct SQEntry {
310        /** Constructs an empty store queue entry. */
311        SQEntry()
312            : inst(NULL), req(NULL), size(0), data(0),
313              canWB(0), committed(0), completed(0)
314        { }
315
316        /** Constructs a store queue entry for a given instruction. */
317        SQEntry(DynInstPtr &_inst)
318            : inst(_inst), req(NULL), size(0), data(0),
319              canWB(0), committed(0), completed(0)
320        { }
321
322        /** The store instruction. */
323        DynInstPtr inst;
324        /** The request for the store. */
325        RequestPtr req;
326        /** The size of the store. */
327        int size;
328        /** The store data. */
329        IntReg data;
330        /** Whether or not the store can writeback. */
331        bool canWB;
332        /** Whether or not the store is committed. */
333        bool committed;
334        /** Whether or not the store is completed. */
335        bool completed;
336    };
337
338  private:
339    /** The LSQUnit thread id. */
340    unsigned lsqID;
341
342    /** The store queue. */
343    std::vector<SQEntry> storeQueue;
344
345    /** The load queue. */
346    std::vector<DynInstPtr> loadQueue;
347
348    /** The number of LQ entries, plus a sentinel entry (circular queue).
349     *  @todo: Consider having var that records the true number of LQ entries.
350     */
351    unsigned LQEntries;
352    /** The number of SQ entries, plus a sentinel entry (circular queue).
353     *  @todo: Consider having var that records the true number of SQ entries.
354     */
355    unsigned SQEntries;
356
357    /** The number of load instructions in the LQ. */
358    int loads;
359    /** The number of store instructions in the SQ. */
360    int stores;
361    /** The number of store instructions in the SQ waiting to writeback. */
362    int storesToWB;
363
364    /** The index of the head instruction in the LQ. */
365    int loadHead;
366    /** The index of the tail instruction in the LQ. */
367    int loadTail;
368
369    /** The index of the head instruction in the SQ. */
370    int storeHead;
371    /** The index of the first instruction that may be ready to be
372     * written back, and has not yet been written back.
373     */
374    int storeWBIdx;
375    /** The index of the tail instruction in the SQ. */
376    int storeTail;
377
378    /// @todo Consider moving to a more advanced model with write vs read ports
379    /** The number of cache ports available each cycle. */
380    int cachePorts;
381
382    /** The number of used cache ports in this cycle. */
383    int usedPorts;
384
385    /** Is the LSQ switched out. */
386    bool switchedOut;
387
388    //list<InstSeqNum> mshrSeqNums;
389
390    /** Wire to read information from the issue stage time queue. */
391    typename TimeBuffer<IssueStruct>::wire fromIssue;
392
393    /** Whether or not the LSQ is stalled. */
394    bool stalled;
395    /** The store that causes the stall due to partial store to load
396     * forwarding.
397     */
398    InstSeqNum stallingStoreIsn;
399    /** The index of the above store. */
400    int stallingLoadIdx;
401
402    bool isStoreBlocked;
403
404    /** Whether or not a load is blocked due to the memory system. */
405    bool isLoadBlocked;
406
407    /** Has the blocked load been handled. */
408    bool loadBlockedHandled;
409
410    /** The sequence number of the blocked load. */
411    InstSeqNum blockedLoadSeqNum;
412
413    /** The oldest load that caused a memory ordering violation. */
414    DynInstPtr memDepViolator;
415
416    // Will also need how many read/write ports the Dcache has.  Or keep track
417    // of that in stage that is one level up, and only call executeLoad/Store
418    // the appropriate number of times.
419/*
420    // total number of loads forwaded from LSQ stores
421    Stats::Vector<> lsq_forw_loads;
422
423    // total number of loads ignored due to invalid addresses
424    Stats::Vector<> inv_addr_loads;
425
426    // total number of software prefetches ignored due to invalid addresses
427    Stats::Vector<> inv_addr_swpfs;
428
429    // total non-speculative bogus addresses seen (debug var)
430    Counter sim_invalid_addrs;
431    Stats::Vector<> fu_busy;  //cumulative fu busy
432
433    // ready loads blocked due to memory disambiguation
434    Stats::Vector<> lsq_blocked_loads;
435
436    Stats::Scalar<> lsqInversion;
437*/
438  public:
439    /** Executes the load at the given index. */
440    template <class T>
441    Fault read(Request *req, T &data, int load_idx);
442
443    /** Executes the store at the given index. */
444    template <class T>
445    Fault write(Request *req, T &data, int store_idx);
446
447    /** Returns the index of the head load instruction. */
448    int getLoadHead() { return loadHead; }
449    /** Returns the sequence number of the head load instruction. */
450    InstSeqNum getLoadHeadSeqNum()
451    {
452        if (loadQueue[loadHead]) {
453            return loadQueue[loadHead]->seqNum;
454        } else {
455            return 0;
456        }
457
458    }
459
460    /** Returns the index of the head store instruction. */
461    int getStoreHead() { return storeHead; }
462    /** Returns the sequence number of the head store instruction. */
463    InstSeqNum getStoreHeadSeqNum()
464    {
465        if (storeQueue[storeHead].inst) {
466            return storeQueue[storeHead].inst->seqNum;
467        } else {
468            return 0;
469        }
470
471    }
472
473    /** Returns whether or not the LSQ unit is stalled. */
474    bool isStalled()  { return stalled; }
475};
476
477template <class Impl>
478template <class T>
479Fault
480LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
481{
482    DynInstPtr load_inst = loadQueue[load_idx];
483
484    assert(load_inst);
485
486    assert(!load_inst->isExecuted());
487
488    // Make sure this isn't an uncacheable access
489    // A bit of a hackish way to get uncached accesses to work only if they're
490    // at the head of the LSQ and are ready to commit (at the head of the ROB
491    // too).
492    if (req->getFlags() & UNCACHEABLE &&
493        (load_idx != loadHead || !load_inst->reachedCommit)) {
494        iewStage->rescheduleMemInst(load_inst);
495        return TheISA::genMachineCheckFault();
496    }
497
498    // Check the SQ for any previous stores that might lead to forwarding
499    int store_idx = load_inst->sqIdx;
500
501    int store_size = 0;
502
503    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
504            "storeHead: %i addr: %#x\n",
505            load_idx, store_idx, storeHead, req->getPaddr());
506
507#if 0
508    if (req->getFlags() & LOCKED) {
509        cpu->lockAddr = req->getPaddr();
510        cpu->lockFlag = true;
511    }
512#endif
513
514    while (store_idx != -1) {
515        // End once we've reached the top of the LSQ
516        if (store_idx == storeWBIdx) {
517            break;
518        }
519
520        // Move the index to one younger
521        if (--store_idx < 0)
522            store_idx += SQEntries;
523
524        assert(storeQueue[store_idx].inst);
525
526        store_size = storeQueue[store_idx].size;
527
528        if (store_size == 0)
529            continue;
530
531        // Check if the store data is within the lower and upper bounds of
532        // addresses that the request needs.
533        bool store_has_lower_limit =
534            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
535        bool store_has_upper_limit =
536            (req->getVaddr() + req->getSize()) <=
537            (storeQueue[store_idx].inst->effAddr + store_size);
538        bool lower_load_has_store_part =
539            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
540                           store_size);
541        bool upper_load_has_store_part =
542            (req->getVaddr() + req->getSize()) >
543            storeQueue[store_idx].inst->effAddr;
544
545        // If the store's data has all of the data needed, we can forward.
546        if (store_has_lower_limit && store_has_upper_limit) {
547            // Get shift amount for offset into the store's data.
548            int shift_amt = req->getVaddr() & (store_size - 1);
549            // @todo: Magic number, assumes byte addressing
550            shift_amt = shift_amt << 3;
551
552            // Cast this to type T?
553            data = storeQueue[store_idx].data >> shift_amt;
554
555            assert(!load_inst->memData);
556            load_inst->memData = new uint8_t[64];
557
558            memcpy(load_inst->memData, &data, req->getSize());
559
560            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
561                    "addr %#x, data %#x\n",
562                    store_idx, req->getVaddr(), *(load_inst->memData));
563
564            PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
565            data_pkt->dataStatic(load_inst->memData);
566
567            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
568
569            // We'll say this has a 1 cycle load-store forwarding latency
570            // for now.
571            // @todo: Need to make this a parameter.
572            wb->schedule(curTick);
573
574            // Should keep track of stat for forwarded data
575            return NoFault;
576        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
577                   (store_has_upper_limit && upper_load_has_store_part) ||
578                   (lower_load_has_store_part && upper_load_has_store_part)) {
579            // This is the partial store-load forwarding case where a store
580            // has only part of the load's data.
581
582            // If it's already been written back, then don't worry about
583            // stalling on it.
584            if (storeQueue[store_idx].completed) {
585                continue;
586            }
587
588            // Must stall load and force it to retry, so long as it's the oldest
589            // load that needs to do so.
590            if (!stalled ||
591                (stalled &&
592                 load_inst->seqNum <
593                 loadQueue[stallingLoadIdx]->seqNum)) {
594                stalled = true;
595                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
596                stallingLoadIdx = load_idx;
597            }
598
599            // Tell IQ/mem dep unit that this instruction will need to be
600            // rescheduled eventually
601            iewStage->rescheduleMemInst(load_inst);
602
603            // Do not generate a writeback event as this instruction is not
604            // complete.
605            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
606                    "Store idx %i to load addr %#x\n",
607                    store_idx, req->getVaddr());
608
609            return NoFault;
610        }
611    }
612
613    // If there's no forwarding case, then go access memory
614    DPRINTF(LSQUnit, "Doing functional access for inst [sn:%lli] PC %#x\n",
615            load_inst->seqNum, load_inst->readPC());
616
617    assert(!load_inst->memData);
618    load_inst->memData = new uint8_t[64];
619
620    ++usedPorts;
621
622    DPRINTF(LSQUnit, "Doing timing access for inst PC %#x\n",
623            load_inst->readPC());
624
625    PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
626    data_pkt->dataStatic(load_inst->memData);
627
628    LSQSenderState *state = new LSQSenderState;
629    state->isLoad = true;
630    state->idx = load_idx;
631    state->inst = load_inst;
632    data_pkt->senderState = state;
633
634    // if we have a cache, do cache access too
635    if (!dcachePort->sendTiming(data_pkt)) {
636        // There's an older load that's already going to squash.
637        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
638            return NoFault;
639
640        // Record that the load was blocked due to memory.  This
641        // load will squash all instructions after it, be
642        // refetched, and re-executed.
643        isLoadBlocked = true;
644        loadBlockedHandled = false;
645        blockedLoadSeqNum = load_inst->seqNum;
646        // No fault occurred, even though the interface is blocked.
647        return NoFault;
648    }
649
650    if (data_pkt->result != Packet::Success) {
651        DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
652        DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
653                load_inst->seqNum);
654    } else {
655        DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
656        DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
657                load_inst->seqNum);
658    }
659
660    return NoFault;
661}
662
663template <class Impl>
664template <class T>
665Fault
666LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
667{
668    assert(storeQueue[store_idx].inst);
669
670    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
671            " | storeHead:%i [sn:%i]\n",
672            store_idx, req->getPaddr(), data, storeHead,
673            storeQueue[store_idx].inst->seqNum);
674
675    storeQueue[store_idx].req = req;
676    storeQueue[store_idx].size = sizeof(T);
677    storeQueue[store_idx].data = data;
678
679    // This function only writes the data to the store queue, so no fault
680    // can happen here.
681    return NoFault;
682}
683
684#endif // __CPU_O3_LSQ_UNIT_HH__
685