lsq_unit.hh revision 10031
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#ifndef __CPU_O3_LSQ_UNIT_HH__
45#define __CPU_O3_LSQ_UNIT_HH__
46
47#include <algorithm>
48#include <cstring>
49#include <map>
50#include <queue>
51
52#include "arch/generic/debugfaults.hh"
53#include "arch/isa_traits.hh"
54#include "arch/locked_mem.hh"
55#include "arch/mmapped_ipr.hh"
56#include "base/hashmap.hh"
57#include "config/the_isa.hh"
58#include "cpu/inst_seq.hh"
59#include "cpu/timebuf.hh"
60#include "debug/LSQUnit.hh"
61#include "mem/packet.hh"
62#include "mem/port.hh"
63#include "sim/fault_fwd.hh"
64
65struct DerivO3CPUParams;
66
67/**
68 * Class that implements the actual LQ and SQ for each specific
69 * thread.  Both are circular queues; load entries are freed upon
70 * committing, while store entries are freed once they writeback. The
71 * LSQUnit tracks if there are memory ordering violations, and also
72 * detects partial load to store forwarding cases (a store only has
73 * part of a load's data) that requires the load to wait until the
74 * store writes back. In the former case it holds onto the instruction
75 * until the dependence unit looks at it, and in the latter it stalls
76 * the LSQ until the store writes back. At that point the load is
77 * replayed.
78 */
79template <class Impl>
80class LSQUnit {
81  public:
82    typedef typename Impl::O3CPU O3CPU;
83    typedef typename Impl::DynInstPtr DynInstPtr;
84    typedef typename Impl::CPUPol::IEW IEW;
85    typedef typename Impl::CPUPol::LSQ LSQ;
86    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
87
88  public:
89    /** Constructs an LSQ unit. init() must be called prior to use. */
90    LSQUnit();
91
92    /** Initializes the LSQ unit with the specified number of entries. */
93    void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
94            LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
95            unsigned id);
96
97    /** Returns the name of the LSQ unit. */
98    std::string name() const;
99
100    /** Registers statistics. */
101    void regStats();
102
103    /** Sets the pointer to the dcache port. */
104    void setDcachePort(MasterPort *dcache_port);
105
106    /** Perform sanity checks after a drain. */
107    void drainSanityCheck() const;
108
109    /** Takes over from another CPU's thread. */
110    void takeOverFrom();
111
112    /** Ticks the LSQ unit, which in this case only resets the number of
113     * used cache ports.
114     * @todo: Move the number of used ports up to the LSQ level so it can
115     * be shared by all LSQ units.
116     */
117    void tick() { usedPorts = 0; }
118
119    /** Inserts an instruction. */
120    void insert(DynInstPtr &inst);
121    /** Inserts a load instruction. */
122    void insertLoad(DynInstPtr &load_inst);
123    /** Inserts a store instruction. */
124    void insertStore(DynInstPtr &store_inst);
125
126    /** Check for ordering violations in the LSQ. For a store squash if we
127     * ever find a conflicting load. For a load, only squash if we
128     * an external snoop invalidate has been seen for that load address
129     * @param load_idx index to start checking at
130     * @param inst the instruction to check
131     */
132    Fault checkViolations(int load_idx, DynInstPtr &inst);
133
134    /** Check if an incoming invalidate hits in the lsq on a load
135     * that might have issued out of order wrt another load beacuse
136     * of the intermediate invalidate.
137     */
138    void checkSnoop(PacketPtr pkt);
139
140    /** Executes a load instruction. */
141    Fault executeLoad(DynInstPtr &inst);
142
143    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
144    /** Executes a store instruction. */
145    Fault executeStore(DynInstPtr &inst);
146
147    /** Commits the head load. */
148    void commitLoad();
149    /** Commits loads older than a specific sequence number. */
150    void commitLoads(InstSeqNum &youngest_inst);
151
152    /** Commits stores older than a specific sequence number. */
153    void commitStores(InstSeqNum &youngest_inst);
154
155    /** Writes back stores. */
156    void writebackStores();
157
158    /** Completes the data access that has been returned from the
159     * memory system. */
160    void completeDataAccess(PacketPtr pkt);
161
162    /** Clears all the entries in the LQ. */
163    void clearLQ();
164
165    /** Clears all the entries in the SQ. */
166    void clearSQ();
167
168    /** Resizes the LQ to a given size. */
169    void resizeLQ(unsigned size);
170
171    /** Resizes the SQ to a given size. */
172    void resizeSQ(unsigned size);
173
174    /** Squashes all instructions younger than a specific sequence number. */
175    void squash(const InstSeqNum &squashed_num);
176
177    /** Returns if there is a memory ordering violation. Value is reset upon
178     * call to getMemDepViolator().
179     */
180    bool violation() { return memDepViolator; }
181
182    /** Returns the memory ordering violator. */
183    DynInstPtr getMemDepViolator();
184
185    /** Returns if a load became blocked due to the memory system. */
186    bool loadBlocked()
187    { return isLoadBlocked; }
188
189    /** Clears the signal that a load became blocked. */
190    void clearLoadBlocked()
191    { isLoadBlocked = false; }
192
193    /** Returns if the blocked load was handled. */
194    bool isLoadBlockedHandled()
195    { return loadBlockedHandled; }
196
197    /** Records the blocked load as being handled. */
198    void setLoadBlockedHandled()
199    { loadBlockedHandled = true; }
200
201    /** Returns the number of free entries (min of free LQ and SQ entries). */
202    unsigned numFreeEntries();
203
204    /** Returns the number of loads in the LQ. */
205    int numLoads() { return loads; }
206
207    /** Returns the number of stores in the SQ. */
208    int numStores() { return stores; }
209
210    /** Returns if either the LQ or SQ is full. */
211    bool isFull() { return lqFull() || sqFull(); }
212
213    /** Returns if both the LQ and SQ are empty. */
214    bool isEmpty() const { return lqEmpty() && sqEmpty(); }
215
216    /** Returns if the LQ is full. */
217    bool lqFull() { return loads >= (LQEntries - 1); }
218
219    /** Returns if the SQ is full. */
220    bool sqFull() { return stores >= (SQEntries - 1); }
221
222    /** Returns if the LQ is empty. */
223    bool lqEmpty() const { return loads == 0; }
224
225    /** Returns if the SQ is empty. */
226    bool sqEmpty() const { return stores == 0; }
227
228    /** Returns the number of instructions in the LSQ. */
229    unsigned getCount() { return loads + stores; }
230
231    /** Returns if there are any stores to writeback. */
232    bool hasStoresToWB() { return storesToWB; }
233
234    /** Returns the number of stores to writeback. */
235    int numStoresToWB() { return storesToWB; }
236
237    /** Returns if the LSQ unit will writeback on this cycle. */
238    bool willWB() { return storeQueue[storeWBIdx].canWB &&
239                        !storeQueue[storeWBIdx].completed &&
240                        !isStoreBlocked; }
241
242    /** Handles doing the retry. */
243    void recvRetry();
244
245  private:
246    /** Reset the LSQ state */
247    void resetState();
248
249    /** Writes back the instruction, sending it to IEW. */
250    void writeback(DynInstPtr &inst, PacketPtr pkt);
251
252    /** Writes back a store that couldn't be completed the previous cycle. */
253    void writebackPendingStore();
254
255    /** Handles completing the send of a store to memory. */
256    void storePostSend(PacketPtr pkt);
257
258    /** Completes the store at the specified index. */
259    void completeStore(int store_idx);
260
261    /** Attempts to send a store to the cache. */
262    bool sendStore(PacketPtr data_pkt);
263
264    /** Increments the given store index (circular queue). */
265    inline void incrStIdx(int &store_idx) const;
266    /** Decrements the given store index (circular queue). */
267    inline void decrStIdx(int &store_idx) const;
268    /** Increments the given load index (circular queue). */
269    inline void incrLdIdx(int &load_idx) const;
270    /** Decrements the given load index (circular queue). */
271    inline void decrLdIdx(int &load_idx) const;
272
273  public:
274    /** Debugging function to dump instructions in the LSQ. */
275    void dumpInsts() const;
276
277  private:
278    /** Pointer to the CPU. */
279    O3CPU *cpu;
280
281    /** Pointer to the IEW stage. */
282    IEW *iewStage;
283
284    /** Pointer to the LSQ. */
285    LSQ *lsq;
286
287    /** Pointer to the dcache port.  Used only for sending. */
288    MasterPort *dcachePort;
289
290    /** Derived class to hold any sender state the LSQ needs. */
291    class LSQSenderState : public Packet::SenderState
292    {
293      public:
294        /** Default constructor. */
295        LSQSenderState()
296            : mainPkt(NULL), pendingPacket(NULL), outstanding(1),
297              noWB(false), isSplit(false), pktToSend(false)
298          { }
299
300        /** Instruction who initiated the access to memory. */
301        DynInstPtr inst;
302        /** The main packet from a split load, used during writeback. */
303        PacketPtr mainPkt;
304        /** A second packet from a split store that needs sending. */
305        PacketPtr pendingPacket;
306        /** The LQ/SQ index of the instruction. */
307        uint8_t idx;
308        /** Number of outstanding packets to complete. */
309        uint8_t outstanding;
310        /** Whether or not it is a load. */
311        bool isLoad;
312        /** Whether or not the instruction will need to writeback. */
313        bool noWB;
314        /** Whether or not this access is split in two. */
315        bool isSplit;
316        /** Whether or not there is a packet that needs sending. */
317        bool pktToSend;
318
319        /** Completes a packet and returns whether the access is finished. */
320        inline bool complete() { return --outstanding == 0; }
321    };
322
323    /** Writeback event, specifically for when stores forward data to loads. */
324    class WritebackEvent : public Event {
325      public:
326        /** Constructs a writeback event. */
327        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
328
329        /** Processes the writeback event. */
330        void process();
331
332        /** Returns the description of this event. */
333        const char *description() const;
334
335      private:
336        /** Instruction whose results are being written back. */
337        DynInstPtr inst;
338
339        /** The packet that would have been sent to memory. */
340        PacketPtr pkt;
341
342        /** The pointer to the LSQ unit that issued the store. */
343        LSQUnit<Impl> *lsqPtr;
344    };
345
346  public:
347    struct SQEntry {
348        /** Constructs an empty store queue entry. */
349        SQEntry()
350            : inst(NULL), req(NULL), size(0),
351              canWB(0), committed(0), completed(0)
352        {
353            std::memset(data, 0, sizeof(data));
354        }
355
356        ~SQEntry()
357        {
358            inst = NULL;
359        }
360
361        /** Constructs a store queue entry for a given instruction. */
362        SQEntry(DynInstPtr &_inst)
363            : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
364              isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0)
365        {
366            std::memset(data, 0, sizeof(data));
367        }
368        /** The store data. */
369        char data[16];
370        /** The store instruction. */
371        DynInstPtr inst;
372        /** The request for the store. */
373        RequestPtr req;
374        /** The split requests for the store. */
375        RequestPtr sreqLow;
376        RequestPtr sreqHigh;
377        /** The size of the store. */
378        uint8_t size;
379        /** Whether or not the store is split into two requests. */
380        bool isSplit;
381        /** Whether or not the store can writeback. */
382        bool canWB;
383        /** Whether or not the store is committed. */
384        bool committed;
385        /** Whether or not the store is completed. */
386        bool completed;
387        /** Does this request write all zeros and thus doesn't
388         * have any data attached to it. Used for cache block zero
389         * style instructs (ARM DC ZVA; ALPHA WH64)
390         */
391        bool isAllZeros;
392    };
393
394  private:
395    /** The LSQUnit thread id. */
396    ThreadID lsqID;
397
398    /** The store queue. */
399    std::vector<SQEntry> storeQueue;
400
401    /** The load queue. */
402    std::vector<DynInstPtr> loadQueue;
403
404    /** The number of LQ entries, plus a sentinel entry (circular queue).
405     *  @todo: Consider having var that records the true number of LQ entries.
406     */
407    unsigned LQEntries;
408    /** The number of SQ entries, plus a sentinel entry (circular queue).
409     *  @todo: Consider having var that records the true number of SQ entries.
410     */
411    unsigned SQEntries;
412
413    /** The number of places to shift addresses in the LSQ before checking
414     * for dependency violations
415     */
416    unsigned depCheckShift;
417
418    /** Should loads be checked for dependency issues */
419    bool checkLoads;
420
421    /** The number of load instructions in the LQ. */
422    int loads;
423    /** The number of store instructions in the SQ. */
424    int stores;
425    /** The number of store instructions in the SQ waiting to writeback. */
426    int storesToWB;
427
428    /** The index of the head instruction in the LQ. */
429    int loadHead;
430    /** The index of the tail instruction in the LQ. */
431    int loadTail;
432
433    /** The index of the head instruction in the SQ. */
434    int storeHead;
435    /** The index of the first instruction that may be ready to be
436     * written back, and has not yet been written back.
437     */
438    int storeWBIdx;
439    /** The index of the tail instruction in the SQ. */
440    int storeTail;
441
442    /// @todo Consider moving to a more advanced model with write vs read ports
443    /** The number of cache ports available each cycle. */
444    int cachePorts;
445
446    /** The number of used cache ports in this cycle. */
447    int usedPorts;
448
449    //list<InstSeqNum> mshrSeqNums;
450
451    /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
452    Addr cacheBlockMask;
453
454    /** Wire to read information from the issue stage time queue. */
455    typename TimeBuffer<IssueStruct>::wire fromIssue;
456
457    /** Whether or not the LSQ is stalled. */
458    bool stalled;
459    /** The store that causes the stall due to partial store to load
460     * forwarding.
461     */
462    InstSeqNum stallingStoreIsn;
463    /** The index of the above store. */
464    int stallingLoadIdx;
465
466    /** The packet that needs to be retried. */
467    PacketPtr retryPkt;
468
469    /** Whehter or not a store is blocked due to the memory system. */
470    bool isStoreBlocked;
471
472    /** Whether or not a load is blocked due to the memory system. */
473    bool isLoadBlocked;
474
475    /** Has the blocked load been handled. */
476    bool loadBlockedHandled;
477
478    /** Whether or not a store is in flight. */
479    bool storeInFlight;
480
481    /** The sequence number of the blocked load. */
482    InstSeqNum blockedLoadSeqNum;
483
484    /** The oldest load that caused a memory ordering violation. */
485    DynInstPtr memDepViolator;
486
487    /** Whether or not there is a packet that couldn't be sent because of
488     * a lack of cache ports. */
489    bool hasPendingPkt;
490
491    /** The packet that is pending free cache ports. */
492    PacketPtr pendingPkt;
493
494    /** Flag for memory model. */
495    bool needsTSO;
496
497    // Will also need how many read/write ports the Dcache has.  Or keep track
498    // of that in stage that is one level up, and only call executeLoad/Store
499    // the appropriate number of times.
500    /** Total number of loads forwaded from LSQ stores. */
501    Stats::Scalar lsqForwLoads;
502
503    /** Total number of loads ignored due to invalid addresses. */
504    Stats::Scalar invAddrLoads;
505
506    /** Total number of squashed loads. */
507    Stats::Scalar lsqSquashedLoads;
508
509    /** Total number of responses from the memory system that are
510     * ignored due to the instruction already being squashed. */
511    Stats::Scalar lsqIgnoredResponses;
512
513    /** Tota number of memory ordering violations. */
514    Stats::Scalar lsqMemOrderViolation;
515
516    /** Total number of squashed stores. */
517    Stats::Scalar lsqSquashedStores;
518
519    /** Total number of software prefetches ignored due to invalid addresses. */
520    Stats::Scalar invAddrSwpfs;
521
522    /** Ready loads blocked due to partial store-forwarding. */
523    Stats::Scalar lsqBlockedLoads;
524
525    /** Number of loads that were rescheduled. */
526    Stats::Scalar lsqRescheduledLoads;
527
528    /** Number of times the LSQ is blocked due to the cache. */
529    Stats::Scalar lsqCacheBlocked;
530
531  public:
532    /** Executes the load at the given index. */
533    Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
534               uint8_t *data, int load_idx);
535
536    /** Executes the store at the given index. */
537    Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
538                uint8_t *data, int store_idx);
539
540    /** Returns the index of the head load instruction. */
541    int getLoadHead() { return loadHead; }
542    /** Returns the sequence number of the head load instruction. */
543    InstSeqNum getLoadHeadSeqNum()
544    {
545        if (loadQueue[loadHead]) {
546            return loadQueue[loadHead]->seqNum;
547        } else {
548            return 0;
549        }
550
551    }
552
553    /** Returns the index of the head store instruction. */
554    int getStoreHead() { return storeHead; }
555    /** Returns the sequence number of the head store instruction. */
556    InstSeqNum getStoreHeadSeqNum()
557    {
558        if (storeQueue[storeHead].inst) {
559            return storeQueue[storeHead].inst->seqNum;
560        } else {
561            return 0;
562        }
563
564    }
565
566    /** Returns whether or not the LSQ unit is stalled. */
567    bool isStalled()  { return stalled; }
568};
569
570template <class Impl>
571Fault
572LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
573                    uint8_t *data, int load_idx)
574{
575    DynInstPtr load_inst = loadQueue[load_idx];
576
577    assert(load_inst);
578
579    assert(!load_inst->isExecuted());
580
581    // Make sure this isn't an uncacheable access
582    // A bit of a hackish way to get uncached accesses to work only if they're
583    // at the head of the LSQ and are ready to commit (at the head of the ROB
584    // too).
585    if (req->isUncacheable() &&
586        (load_idx != loadHead || !load_inst->isAtCommit())) {
587        iewStage->rescheduleMemInst(load_inst);
588        ++lsqRescheduledLoads;
589        DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
590                load_inst->seqNum, load_inst->pcState());
591
592        // Must delete request now that it wasn't handed off to
593        // memory.  This is quite ugly.  @todo: Figure out the proper
594        // place to really handle request deletes.
595        delete req;
596        if (TheISA::HasUnalignedMemAcc && sreqLow) {
597            delete sreqLow;
598            delete sreqHigh;
599        }
600        return new GenericISA::M5PanicFault(
601                "Uncachable load [sn:%llx] PC %s\n",
602                load_inst->seqNum, load_inst->pcState());
603    }
604
605    // Check the SQ for any previous stores that might lead to forwarding
606    int store_idx = load_inst->sqIdx;
607
608    int store_size = 0;
609
610    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
611            "storeHead: %i addr: %#x%s\n",
612            load_idx, store_idx, storeHead, req->getPaddr(),
613            sreqLow ? " split" : "");
614
615    if (req->isLLSC()) {
616        assert(!sreqLow);
617        // Disable recording the result temporarily.  Writing to misc
618        // regs normally updates the result, but this is not the
619        // desired behavior when handling store conditionals.
620        load_inst->recordResult(false);
621        TheISA::handleLockedRead(load_inst.get(), req);
622        load_inst->recordResult(true);
623    }
624
625    if (req->isMmappedIpr()) {
626        assert(!load_inst->memData);
627        load_inst->memData = new uint8_t[64];
628
629        ThreadContext *thread = cpu->tcBase(lsqID);
630        Cycles delay(0);
631        PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
632
633        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
634            data_pkt->dataStatic(load_inst->memData);
635            delay = TheISA::handleIprRead(thread, data_pkt);
636        } else {
637            assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr());
638            PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq);
639            PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq);
640
641            fst_data_pkt->dataStatic(load_inst->memData);
642            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
643
644            delay = TheISA::handleIprRead(thread, fst_data_pkt);
645            Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt);
646            if (delay2 > delay)
647                delay = delay2;
648
649            delete sreqLow;
650            delete sreqHigh;
651            delete fst_data_pkt;
652            delete snd_data_pkt;
653        }
654        WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
655        cpu->schedule(wb, cpu->clockEdge(delay));
656        return NoFault;
657    }
658
659    while (store_idx != -1) {
660        // End once we've reached the top of the LSQ
661        if (store_idx == storeWBIdx) {
662            break;
663        }
664
665        // Move the index to one younger
666        if (--store_idx < 0)
667            store_idx += SQEntries;
668
669        assert(storeQueue[store_idx].inst);
670
671        store_size = storeQueue[store_idx].size;
672
673        if (store_size == 0)
674            continue;
675        else if (storeQueue[store_idx].inst->uncacheable())
676            continue;
677
678        assert(storeQueue[store_idx].inst->effAddrValid());
679
680        // Check if the store data is within the lower and upper bounds of
681        // addresses that the request needs.
682        bool store_has_lower_limit =
683            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
684        bool store_has_upper_limit =
685            (req->getVaddr() + req->getSize()) <=
686            (storeQueue[store_idx].inst->effAddr + store_size);
687        bool lower_load_has_store_part =
688            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
689                           store_size);
690        bool upper_load_has_store_part =
691            (req->getVaddr() + req->getSize()) >
692            storeQueue[store_idx].inst->effAddr;
693
694        // If the store's data has all of the data needed, we can forward.
695        if ((store_has_lower_limit && store_has_upper_limit)) {
696            // Get shift amount for offset into the store's data.
697            int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr;
698
699            if (storeQueue[store_idx].isAllZeros)
700                memset(data, 0, req->getSize());
701            else
702                memcpy(data, storeQueue[store_idx].data + shift_amt,
703                   req->getSize());
704
705            assert(!load_inst->memData);
706            load_inst->memData = new uint8_t[req->getSize()];
707            if (storeQueue[store_idx].isAllZeros)
708                memset(load_inst->memData, 0, req->getSize());
709            else
710                memcpy(load_inst->memData,
711                    storeQueue[store_idx].data + shift_amt, req->getSize());
712
713            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
714                    "addr %#x, data %#x\n",
715                    store_idx, req->getVaddr(), data);
716
717            PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
718            data_pkt->dataStatic(load_inst->memData);
719
720            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
721
722            // We'll say this has a 1 cycle load-store forwarding latency
723            // for now.
724            // @todo: Need to make this a parameter.
725            cpu->schedule(wb, curTick());
726
727            // Don't need to do anything special for split loads.
728            if (TheISA::HasUnalignedMemAcc && sreqLow) {
729                delete sreqLow;
730                delete sreqHigh;
731            }
732
733            ++lsqForwLoads;
734            return NoFault;
735        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
736                   (store_has_upper_limit && upper_load_has_store_part) ||
737                   (lower_load_has_store_part && upper_load_has_store_part)) {
738            // This is the partial store-load forwarding case where a store
739            // has only part of the load's data.
740
741            // If it's already been written back, then don't worry about
742            // stalling on it.
743            if (storeQueue[store_idx].completed) {
744                panic("Should not check one of these");
745                continue;
746            }
747
748            // Must stall load and force it to retry, so long as it's the oldest
749            // load that needs to do so.
750            if (!stalled ||
751                (stalled &&
752                 load_inst->seqNum <
753                 loadQueue[stallingLoadIdx]->seqNum)) {
754                stalled = true;
755                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
756                stallingLoadIdx = load_idx;
757            }
758
759            // Tell IQ/mem dep unit that this instruction will need to be
760            // rescheduled eventually
761            iewStage->rescheduleMemInst(load_inst);
762            iewStage->decrWb(load_inst->seqNum);
763            load_inst->clearIssued();
764            ++lsqRescheduledLoads;
765
766            // Do not generate a writeback event as this instruction is not
767            // complete.
768            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
769                    "Store idx %i to load addr %#x\n",
770                    store_idx, req->getVaddr());
771
772            // Must delete request now that it wasn't handed off to
773            // memory.  This is quite ugly.  @todo: Figure out the
774            // proper place to really handle request deletes.
775            delete req;
776            if (TheISA::HasUnalignedMemAcc && sreqLow) {
777                delete sreqLow;
778                delete sreqHigh;
779            }
780
781            return NoFault;
782        }
783    }
784
785    // If there's no forwarding case, then go access memory
786    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
787            load_inst->seqNum, load_inst->pcState());
788
789    assert(!load_inst->memData);
790    load_inst->memData = new uint8_t[req->getSize()];
791
792    ++usedPorts;
793
794    // if we the cache is not blocked, do cache access
795    bool completedFirst = false;
796    if (!lsq->cacheBlocked()) {
797        MemCmd command =
798            req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
799        PacketPtr data_pkt = new Packet(req, command);
800        PacketPtr fst_data_pkt = NULL;
801        PacketPtr snd_data_pkt = NULL;
802
803        data_pkt->dataStatic(load_inst->memData);
804
805        LSQSenderState *state = new LSQSenderState;
806        state->isLoad = true;
807        state->idx = load_idx;
808        state->inst = load_inst;
809        data_pkt->senderState = state;
810
811        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
812
813            // Point the first packet at the main data packet.
814            fst_data_pkt = data_pkt;
815        } else {
816
817            // Create the split packets.
818            fst_data_pkt = new Packet(sreqLow, command);
819            snd_data_pkt = new Packet(sreqHigh, command);
820
821            fst_data_pkt->dataStatic(load_inst->memData);
822            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
823
824            fst_data_pkt->senderState = state;
825            snd_data_pkt->senderState = state;
826
827            state->isSplit = true;
828            state->outstanding = 2;
829            state->mainPkt = data_pkt;
830        }
831
832        if (!dcachePort->sendTimingReq(fst_data_pkt)) {
833            // Delete state and data packet because a load retry
834            // initiates a pipeline restart; it does not retry.
835            delete state;
836            delete data_pkt->req;
837            delete data_pkt;
838            if (TheISA::HasUnalignedMemAcc && sreqLow) {
839                delete fst_data_pkt->req;
840                delete fst_data_pkt;
841                delete snd_data_pkt->req;
842                delete snd_data_pkt;
843                sreqLow = NULL;
844                sreqHigh = NULL;
845            }
846
847            req = NULL;
848
849            // If the access didn't succeed, tell the LSQ by setting
850            // the retry thread id.
851            lsq->setRetryTid(lsqID);
852        } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
853            completedFirst = true;
854
855            // The first packet was sent without problems, so send this one
856            // too. If there is a problem with this packet then the whole
857            // load will be squashed, so indicate this to the state object.
858            // The first packet will return in completeDataAccess and be
859            // handled there.
860            ++usedPorts;
861            if (!dcachePort->sendTimingReq(snd_data_pkt)) {
862
863                // The main packet will be deleted in completeDataAccess.
864                delete snd_data_pkt->req;
865                delete snd_data_pkt;
866
867                state->complete();
868
869                req = NULL;
870                sreqHigh = NULL;
871
872                lsq->setRetryTid(lsqID);
873            }
874        }
875    }
876
877    // If the cache was blocked, or has become blocked due to the access,
878    // handle it.
879    if (lsq->cacheBlocked()) {
880        if (req)
881            delete req;
882        if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
883            delete sreqLow;
884            delete sreqHigh;
885        }
886
887        ++lsqCacheBlocked;
888
889        // If the first part of a split access succeeds, then let the LSQ
890        // handle the decrWb when completeDataAccess is called upon return
891        // of the requested first part of data
892        if (!completedFirst)
893            iewStage->decrWb(load_inst->seqNum);
894
895        // There's an older load that's already going to squash.
896        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
897            return NoFault;
898
899        // Record that the load was blocked due to memory.  This
900        // load will squash all instructions after it, be
901        // refetched, and re-executed.
902        isLoadBlocked = true;
903        loadBlockedHandled = false;
904        blockedLoadSeqNum = load_inst->seqNum;
905        // No fault occurred, even though the interface is blocked.
906        return NoFault;
907    }
908
909    return NoFault;
910}
911
912template <class Impl>
913Fault
914LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
915                     uint8_t *data, int store_idx)
916{
917    assert(storeQueue[store_idx].inst);
918
919    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
920            " | storeHead:%i [sn:%i]\n",
921            store_idx, req->getPaddr(), data, storeHead,
922            storeQueue[store_idx].inst->seqNum);
923
924    storeQueue[store_idx].req = req;
925    storeQueue[store_idx].sreqLow = sreqLow;
926    storeQueue[store_idx].sreqHigh = sreqHigh;
927    unsigned size = req->getSize();
928    storeQueue[store_idx].size = size;
929    storeQueue[store_idx].isAllZeros = req->getFlags() & Request::CACHE_BLOCK_ZERO;
930    assert(size <= sizeof(storeQueue[store_idx].data) ||
931            (req->getFlags() & Request::CACHE_BLOCK_ZERO));
932
933    // Split stores can only occur in ISAs with unaligned memory accesses.  If
934    // a store request has been split, sreqLow and sreqHigh will be non-null.
935    if (TheISA::HasUnalignedMemAcc && sreqLow) {
936        storeQueue[store_idx].isSplit = true;
937    }
938
939    if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO))
940        memcpy(storeQueue[store_idx].data, data, size);
941
942    // This function only writes the data to the store queue, so no fault
943    // can happen here.
944    return NoFault;
945}
946
947#endif // __CPU_O3_LSQ_UNIT_HH__
948