inst_queue_impl.hh revision 8581
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <limits>
45#include <vector>
46
47#include "cpu/o3/fu_pool.hh"
48#include "cpu/o3/inst_queue.hh"
49#include "debug/IQ.hh"
50#include "enums/OpClass.hh"
51#include "params/DerivO3CPU.hh"
52#include "sim/core.hh"
53
54using namespace std;
55
56template <class Impl>
57InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
58    int fu_idx, InstructionQueue<Impl> *iq_ptr)
59    : Event(Stat_Event_Pri, AutoDelete),
60      inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false)
61{
62}
63
64template <class Impl>
65void
66InstructionQueue<Impl>::FUCompletion::process()
67{
68    iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
69    inst = NULL;
70}
71
72
73template <class Impl>
74const char *
75InstructionQueue<Impl>::FUCompletion::description() const
76{
77    return "Functional unit completion";
78}
79
80template <class Impl>
81InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr,
82                                         DerivO3CPUParams *params)
83    : cpu(cpu_ptr),
84      iewStage(iew_ptr),
85      fuPool(params->fuPool),
86      numEntries(params->numIQEntries),
87      totalWidth(params->issueWidth),
88      numPhysIntRegs(params->numPhysIntRegs),
89      numPhysFloatRegs(params->numPhysFloatRegs),
90      commitToIEWDelay(params->commitToIEWDelay)
91{
92    assert(fuPool);
93
94    switchedOut = false;
95
96    numThreads = params->numThreads;
97
98    // Set the number of physical registers as the number of int + float
99    numPhysRegs = numPhysIntRegs + numPhysFloatRegs;
100
101    //Create an entry for each physical register within the
102    //dependency graph.
103    dependGraph.resize(numPhysRegs);
104
105    // Resize the register scoreboard.
106    regScoreboard.resize(numPhysRegs);
107
108    //Initialize Mem Dependence Units
109    for (ThreadID tid = 0; tid < numThreads; tid++) {
110        memDepUnit[tid].init(params, tid);
111        memDepUnit[tid].setIQ(this);
112    }
113
114    resetState();
115
116    std::string policy = params->smtIQPolicy;
117
118    //Convert string to lowercase
119    std::transform(policy.begin(), policy.end(), policy.begin(),
120                   (int(*)(int)) tolower);
121
122    //Figure out resource sharing policy
123    if (policy == "dynamic") {
124        iqPolicy = Dynamic;
125
126        //Set Max Entries to Total ROB Capacity
127        for (ThreadID tid = 0; tid < numThreads; tid++) {
128            maxEntries[tid] = numEntries;
129        }
130
131    } else if (policy == "partitioned") {
132        iqPolicy = Partitioned;
133
134        //@todo:make work if part_amt doesnt divide evenly.
135        int part_amt = numEntries / numThreads;
136
137        //Divide ROB up evenly
138        for (ThreadID tid = 0; tid < numThreads; tid++) {
139            maxEntries[tid] = part_amt;
140        }
141
142        DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
143                "%i entries per thread.\n",part_amt);
144    } else if (policy == "threshold") {
145        iqPolicy = Threshold;
146
147        double threshold =  (double)params->smtIQThreshold / 100;
148
149        int thresholdIQ = (int)((double)threshold * numEntries);
150
151        //Divide up by threshold amount
152        for (ThreadID tid = 0; tid < numThreads; tid++) {
153            maxEntries[tid] = thresholdIQ;
154        }
155
156        DPRINTF(IQ, "IQ sharing policy set to Threshold:"
157                "%i entries per thread.\n",thresholdIQ);
158   } else {
159       assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
160              "Partitioned, Threshold}");
161   }
162}
163
164template <class Impl>
165InstructionQueue<Impl>::~InstructionQueue()
166{
167    dependGraph.reset();
168#ifdef DEBUG
169    cprintf("Nodes traversed: %i, removed: %i\n",
170            dependGraph.nodesTraversed, dependGraph.nodesRemoved);
171#endif
172}
173
174template <class Impl>
175std::string
176InstructionQueue<Impl>::name() const
177{
178    return cpu->name() + ".iq";
179}
180
181template <class Impl>
182void
183InstructionQueue<Impl>::regStats()
184{
185    using namespace Stats;
186    iqInstsAdded
187        .name(name() + ".iqInstsAdded")
188        .desc("Number of instructions added to the IQ (excludes non-spec)")
189        .prereq(iqInstsAdded);
190
191    iqNonSpecInstsAdded
192        .name(name() + ".iqNonSpecInstsAdded")
193        .desc("Number of non-speculative instructions added to the IQ")
194        .prereq(iqNonSpecInstsAdded);
195
196    iqInstsIssued
197        .name(name() + ".iqInstsIssued")
198        .desc("Number of instructions issued")
199        .prereq(iqInstsIssued);
200
201    iqIntInstsIssued
202        .name(name() + ".iqIntInstsIssued")
203        .desc("Number of integer instructions issued")
204        .prereq(iqIntInstsIssued);
205
206    iqFloatInstsIssued
207        .name(name() + ".iqFloatInstsIssued")
208        .desc("Number of float instructions issued")
209        .prereq(iqFloatInstsIssued);
210
211    iqBranchInstsIssued
212        .name(name() + ".iqBranchInstsIssued")
213        .desc("Number of branch instructions issued")
214        .prereq(iqBranchInstsIssued);
215
216    iqMemInstsIssued
217        .name(name() + ".iqMemInstsIssued")
218        .desc("Number of memory instructions issued")
219        .prereq(iqMemInstsIssued);
220
221    iqMiscInstsIssued
222        .name(name() + ".iqMiscInstsIssued")
223        .desc("Number of miscellaneous instructions issued")
224        .prereq(iqMiscInstsIssued);
225
226    iqSquashedInstsIssued
227        .name(name() + ".iqSquashedInstsIssued")
228        .desc("Number of squashed instructions issued")
229        .prereq(iqSquashedInstsIssued);
230
231    iqSquashedInstsExamined
232        .name(name() + ".iqSquashedInstsExamined")
233        .desc("Number of squashed instructions iterated over during squash;"
234              " mainly for profiling")
235        .prereq(iqSquashedInstsExamined);
236
237    iqSquashedOperandsExamined
238        .name(name() + ".iqSquashedOperandsExamined")
239        .desc("Number of squashed operands that are examined and possibly "
240              "removed from graph")
241        .prereq(iqSquashedOperandsExamined);
242
243    iqSquashedNonSpecRemoved
244        .name(name() + ".iqSquashedNonSpecRemoved")
245        .desc("Number of squashed non-spec instructions that were removed")
246        .prereq(iqSquashedNonSpecRemoved);
247/*
248    queueResDist
249        .init(Num_OpClasses, 0, 99, 2)
250        .name(name() + ".IQ:residence:")
251        .desc("cycles from dispatch to issue")
252        .flags(total | pdf | cdf )
253        ;
254    for (int i = 0; i < Num_OpClasses; ++i) {
255        queueResDist.subname(i, opClassStrings[i]);
256    }
257*/
258    numIssuedDist
259        .init(0,totalWidth,1)
260        .name(name() + ".issued_per_cycle")
261        .desc("Number of insts issued each cycle")
262        .flags(pdf)
263        ;
264/*
265    dist_unissued
266        .init(Num_OpClasses+2)
267        .name(name() + ".unissued_cause")
268        .desc("Reason ready instruction not issued")
269        .flags(pdf | dist)
270        ;
271    for (int i=0; i < (Num_OpClasses + 2); ++i) {
272        dist_unissued.subname(i, unissued_names[i]);
273    }
274*/
275    statIssuedInstType
276        .init(numThreads,Enums::Num_OpClass)
277        .name(name() + ".FU_type")
278        .desc("Type of FU issued")
279        .flags(total | pdf | dist)
280        ;
281    statIssuedInstType.ysubnames(Enums::OpClassStrings);
282
283    //
284    //  How long did instructions for a particular FU type wait prior to issue
285    //
286/*
287    issueDelayDist
288        .init(Num_OpClasses,0,99,2)
289        .name(name() + ".")
290        .desc("cycles from operands ready to issue")
291        .flags(pdf | cdf)
292        ;
293
294    for (int i=0; i<Num_OpClasses; ++i) {
295        std::stringstream subname;
296        subname << opClassStrings[i] << "_delay";
297        issueDelayDist.subname(i, subname.str());
298    }
299*/
300    issueRate
301        .name(name() + ".rate")
302        .desc("Inst issue rate")
303        .flags(total)
304        ;
305    issueRate = iqInstsIssued / cpu->numCycles;
306
307    statFuBusy
308        .init(Num_OpClasses)
309        .name(name() + ".fu_full")
310        .desc("attempts to use FU when none available")
311        .flags(pdf | dist)
312        ;
313    for (int i=0; i < Num_OpClasses; ++i) {
314        statFuBusy.subname(i, Enums::OpClassStrings[i]);
315    }
316
317    fuBusy
318        .init(numThreads)
319        .name(name() + ".fu_busy_cnt")
320        .desc("FU busy when requested")
321        .flags(total)
322        ;
323
324    fuBusyRate
325        .name(name() + ".fu_busy_rate")
326        .desc("FU busy rate (busy events/executed inst)")
327        .flags(total)
328        ;
329    fuBusyRate = fuBusy / iqInstsIssued;
330
331    for (ThreadID tid = 0; tid < numThreads; tid++) {
332        // Tell mem dependence unit to reg stats as well.
333        memDepUnit[tid].regStats();
334    }
335
336    intInstQueueReads
337        .name(name() + ".int_inst_queue_reads")
338        .desc("Number of integer instruction queue reads")
339        .flags(total);
340
341    intInstQueueWrites
342        .name(name() + ".int_inst_queue_writes")
343        .desc("Number of integer instruction queue writes")
344        .flags(total);
345
346    intInstQueueWakeupAccesses
347        .name(name() + ".int_inst_queue_wakeup_accesses")
348        .desc("Number of integer instruction queue wakeup accesses")
349        .flags(total);
350
351    fpInstQueueReads
352        .name(name() + ".fp_inst_queue_reads")
353        .desc("Number of floating instruction queue reads")
354        .flags(total);
355
356    fpInstQueueWrites
357        .name(name() + ".fp_inst_queue_writes")
358        .desc("Number of floating instruction queue writes")
359        .flags(total);
360
361    fpInstQueueWakeupQccesses
362        .name(name() + ".fp_inst_queue_wakeup_accesses")
363        .desc("Number of floating instruction queue wakeup accesses")
364        .flags(total);
365
366    intAluAccesses
367        .name(name() + ".int_alu_accesses")
368        .desc("Number of integer alu accesses")
369        .flags(total);
370
371    fpAluAccesses
372        .name(name() + ".fp_alu_accesses")
373        .desc("Number of floating point alu accesses")
374        .flags(total);
375
376}
377
378template <class Impl>
379void
380InstructionQueue<Impl>::resetState()
381{
382    //Initialize thread IQ counts
383    for (ThreadID tid = 0; tid <numThreads; tid++) {
384        count[tid] = 0;
385        instList[tid].clear();
386    }
387
388    // Initialize the number of free IQ entries.
389    freeEntries = numEntries;
390
391    // Note that in actuality, the registers corresponding to the logical
392    // registers start off as ready.  However this doesn't matter for the
393    // IQ as the instruction should have been correctly told if those
394    // registers are ready in rename.  Thus it can all be initialized as
395    // unready.
396    for (int i = 0; i < numPhysRegs; ++i) {
397        regScoreboard[i] = false;
398    }
399
400    for (ThreadID tid = 0; tid < numThreads; ++tid) {
401        squashedSeqNum[tid] = 0;
402    }
403
404    for (int i = 0; i < Num_OpClasses; ++i) {
405        while (!readyInsts[i].empty())
406            readyInsts[i].pop();
407        queueOnList[i] = false;
408        readyIt[i] = listOrder.end();
409    }
410    nonSpecInsts.clear();
411    listOrder.clear();
412    deferredMemInsts.clear();
413}
414
415template <class Impl>
416void
417InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
418{
419    activeThreads = at_ptr;
420}
421
422template <class Impl>
423void
424InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
425{
426      issueToExecuteQueue = i2e_ptr;
427}
428
429template <class Impl>
430void
431InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
432{
433    timeBuffer = tb_ptr;
434
435    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
436}
437
438template <class Impl>
439void
440InstructionQueue<Impl>::switchOut()
441{
442/*
443    if (!instList[0].empty() || (numEntries != freeEntries) ||
444        !readyInsts[0].empty() || !nonSpecInsts.empty() || !listOrder.empty()) {
445        dumpInsts();
446//        assert(0);
447    }
448*/
449    resetState();
450    dependGraph.reset();
451    instsToExecute.clear();
452    switchedOut = true;
453    for (ThreadID tid = 0; tid < numThreads; ++tid) {
454        memDepUnit[tid].switchOut();
455    }
456}
457
458template <class Impl>
459void
460InstructionQueue<Impl>::takeOverFrom()
461{
462    switchedOut = false;
463}
464
465template <class Impl>
466int
467InstructionQueue<Impl>::entryAmount(ThreadID num_threads)
468{
469    if (iqPolicy == Partitioned) {
470        return numEntries / num_threads;
471    } else {
472        return 0;
473    }
474}
475
476
477template <class Impl>
478void
479InstructionQueue<Impl>::resetEntries()
480{
481    if (iqPolicy != Dynamic || numThreads > 1) {
482        int active_threads = activeThreads->size();
483
484        list<ThreadID>::iterator threads = activeThreads->begin();
485        list<ThreadID>::iterator end = activeThreads->end();
486
487        while (threads != end) {
488            ThreadID tid = *threads++;
489
490            if (iqPolicy == Partitioned) {
491                maxEntries[tid] = numEntries / active_threads;
492            } else if(iqPolicy == Threshold && active_threads == 1) {
493                maxEntries[tid] = numEntries;
494            }
495        }
496    }
497}
498
499template <class Impl>
500unsigned
501InstructionQueue<Impl>::numFreeEntries()
502{
503    return freeEntries;
504}
505
506template <class Impl>
507unsigned
508InstructionQueue<Impl>::numFreeEntries(ThreadID tid)
509{
510    return maxEntries[tid] - count[tid];
511}
512
513// Might want to do something more complex if it knows how many instructions
514// will be issued this cycle.
515template <class Impl>
516bool
517InstructionQueue<Impl>::isFull()
518{
519    if (freeEntries == 0) {
520        return(true);
521    } else {
522        return(false);
523    }
524}
525
526template <class Impl>
527bool
528InstructionQueue<Impl>::isFull(ThreadID tid)
529{
530    if (numFreeEntries(tid) == 0) {
531        return(true);
532    } else {
533        return(false);
534    }
535}
536
537template <class Impl>
538bool
539InstructionQueue<Impl>::hasReadyInsts()
540{
541    if (!listOrder.empty()) {
542        return true;
543    }
544
545    for (int i = 0; i < Num_OpClasses; ++i) {
546        if (!readyInsts[i].empty()) {
547            return true;
548        }
549    }
550
551    return false;
552}
553
554template <class Impl>
555void
556InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
557{
558    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
559    // Make sure the instruction is valid
560    assert(new_inst);
561
562    DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
563            new_inst->seqNum, new_inst->pcState());
564
565    assert(freeEntries != 0);
566
567    instList[new_inst->threadNumber].push_back(new_inst);
568
569    --freeEntries;
570
571    new_inst->setInIQ();
572
573    // Look through its source registers (physical regs), and mark any
574    // dependencies.
575    addToDependents(new_inst);
576
577    // Have this instruction set itself as the producer of its destination
578    // register(s).
579    addToProducers(new_inst);
580
581    if (new_inst->isMemRef()) {
582        memDepUnit[new_inst->threadNumber].insert(new_inst);
583    } else {
584        addIfReady(new_inst);
585    }
586
587    ++iqInstsAdded;
588
589    count[new_inst->threadNumber]++;
590
591    assert(freeEntries == (numEntries - countInsts()));
592}
593
594template <class Impl>
595void
596InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
597{
598    // @todo: Clean up this code; can do it by setting inst as unable
599    // to issue, then calling normal insert on the inst.
600    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
601
602    assert(new_inst);
603
604    nonSpecInsts[new_inst->seqNum] = new_inst;
605
606    DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
607            "to the IQ.\n",
608            new_inst->seqNum, new_inst->pcState());
609
610    assert(freeEntries != 0);
611
612    instList[new_inst->threadNumber].push_back(new_inst);
613
614    --freeEntries;
615
616    new_inst->setInIQ();
617
618    // Have this instruction set itself as the producer of its destination
619    // register(s).
620    addToProducers(new_inst);
621
622    // If it's a memory instruction, add it to the memory dependency
623    // unit.
624    if (new_inst->isMemRef()) {
625        memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
626    }
627
628    ++iqNonSpecInstsAdded;
629
630    count[new_inst->threadNumber]++;
631
632    assert(freeEntries == (numEntries - countInsts()));
633}
634
635template <class Impl>
636void
637InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
638{
639    memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
640
641    insertNonSpec(barr_inst);
642}
643
644template <class Impl>
645typename Impl::DynInstPtr
646InstructionQueue<Impl>::getInstToExecute()
647{
648    assert(!instsToExecute.empty());
649    DynInstPtr inst = instsToExecute.front();
650    instsToExecute.pop_front();
651    if (inst->isFloating()){
652        fpInstQueueReads++;
653    } else {
654        intInstQueueReads++;
655    }
656    return inst;
657}
658
659template <class Impl>
660void
661InstructionQueue<Impl>::addToOrderList(OpClass op_class)
662{
663    assert(!readyInsts[op_class].empty());
664
665    ListOrderEntry queue_entry;
666
667    queue_entry.queueType = op_class;
668
669    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
670
671    ListOrderIt list_it = listOrder.begin();
672    ListOrderIt list_end_it = listOrder.end();
673
674    while (list_it != list_end_it) {
675        if ((*list_it).oldestInst > queue_entry.oldestInst) {
676            break;
677        }
678
679        list_it++;
680    }
681
682    readyIt[op_class] = listOrder.insert(list_it, queue_entry);
683    queueOnList[op_class] = true;
684}
685
686template <class Impl>
687void
688InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
689{
690    // Get iterator of next item on the list
691    // Delete the original iterator
692    // Determine if the next item is either the end of the list or younger
693    // than the new instruction.  If so, then add in a new iterator right here.
694    // If not, then move along.
695    ListOrderEntry queue_entry;
696    OpClass op_class = (*list_order_it).queueType;
697    ListOrderIt next_it = list_order_it;
698
699    ++next_it;
700
701    queue_entry.queueType = op_class;
702    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
703
704    while (next_it != listOrder.end() &&
705           (*next_it).oldestInst < queue_entry.oldestInst) {
706        ++next_it;
707    }
708
709    readyIt[op_class] = listOrder.insert(next_it, queue_entry);
710}
711
712template <class Impl>
713void
714InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
715{
716    DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
717    // The CPU could have been sleeping until this op completed (*extremely*
718    // long latency op).  Wake it if it was.  This may be overkill.
719    if (isSwitchedOut()) {
720        DPRINTF(IQ, "FU completion not processed, IQ is switched out [sn:%lli]\n",
721                inst->seqNum);
722        return;
723    }
724
725    iewStage->wakeCPU();
726
727    if (fu_idx > -1)
728        fuPool->freeUnitNextCycle(fu_idx);
729
730    // @todo: Ensure that these FU Completions happen at the beginning
731    // of a cycle, otherwise they could add too many instructions to
732    // the queue.
733    issueToExecuteQueue->access(-1)->size++;
734    instsToExecute.push_back(inst);
735}
736
737// @todo: Figure out a better way to remove the squashed items from the
738// lists.  Checking the top item of each list to see if it's squashed
739// wastes time and forces jumps.
740template <class Impl>
741void
742InstructionQueue<Impl>::scheduleReadyInsts()
743{
744    DPRINTF(IQ, "Attempting to schedule ready instructions from "
745            "the IQ.\n");
746
747    IssueStruct *i2e_info = issueToExecuteQueue->access(0);
748
749    DynInstPtr deferred_mem_inst;
750    int total_deferred_mem_issued = 0;
751    while (total_deferred_mem_issued < totalWidth &&
752           (deferred_mem_inst = getDeferredMemInstToExecute()) != 0) {
753        issueToExecuteQueue->access(0)->size++;
754        instsToExecute.push_back(deferred_mem_inst);
755        total_deferred_mem_issued++;
756    }
757
758    // Have iterator to head of the list
759    // While I haven't exceeded bandwidth or reached the end of the list,
760    // Try to get a FU that can do what this op needs.
761    // If successful, change the oldestInst to the new top of the list, put
762    // the queue in the proper place in the list.
763    // Increment the iterator.
764    // This will avoid trying to schedule a certain op class if there are no
765    // FUs that handle it.
766    ListOrderIt order_it = listOrder.begin();
767    ListOrderIt order_end_it = listOrder.end();
768    int total_issued = 0;
769
770    while (total_issued < (totalWidth - total_deferred_mem_issued) &&
771           iewStage->canIssue() &&
772           order_it != order_end_it) {
773        OpClass op_class = (*order_it).queueType;
774
775        assert(!readyInsts[op_class].empty());
776
777        DynInstPtr issuing_inst = readyInsts[op_class].top();
778
779        issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
780
781        assert(issuing_inst->seqNum == (*order_it).oldestInst);
782
783        if (issuing_inst->isSquashed()) {
784            readyInsts[op_class].pop();
785
786            if (!readyInsts[op_class].empty()) {
787                moveToYoungerInst(order_it);
788            } else {
789                readyIt[op_class] = listOrder.end();
790                queueOnList[op_class] = false;
791            }
792
793            listOrder.erase(order_it++);
794
795            ++iqSquashedInstsIssued;
796
797            continue;
798        }
799
800        int idx = -2;
801        int op_latency = 1;
802        ThreadID tid = issuing_inst->threadNumber;
803
804        if (op_class != No_OpClass) {
805            idx = fuPool->getUnit(op_class);
806            issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
807            if (idx > -1) {
808                op_latency = fuPool->getOpLatency(op_class);
809            }
810        }
811
812        // If we have an instruction that doesn't require a FU, or a
813        // valid FU, then schedule for execution.
814        if (idx == -2 || idx != -1) {
815            if (op_latency == 1) {
816                i2e_info->size++;
817                instsToExecute.push_back(issuing_inst);
818
819                // Add the FU onto the list of FU's to be freed next
820                // cycle if we used one.
821                if (idx >= 0)
822                    fuPool->freeUnitNextCycle(idx);
823            } else {
824                int issue_latency = fuPool->getIssueLatency(op_class);
825                // Generate completion event for the FU
826                FUCompletion *execution = new FUCompletion(issuing_inst,
827                                                           idx, this);
828
829                cpu->schedule(execution, curTick() + cpu->ticks(op_latency - 1));
830
831                // @todo: Enforce that issue_latency == 1 or op_latency
832                if (issue_latency > 1) {
833                    // If FU isn't pipelined, then it must be freed
834                    // upon the execution completing.
835                    execution->setFreeFU();
836                } else {
837                    // Add the FU onto the list of FU's to be freed next cycle.
838                    fuPool->freeUnitNextCycle(idx);
839                }
840            }
841
842            DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
843                    "[sn:%lli]\n",
844                    tid, issuing_inst->pcState(),
845                    issuing_inst->seqNum);
846
847            readyInsts[op_class].pop();
848
849            if (!readyInsts[op_class].empty()) {
850                moveToYoungerInst(order_it);
851            } else {
852                readyIt[op_class] = listOrder.end();
853                queueOnList[op_class] = false;
854            }
855
856            issuing_inst->setIssued();
857            ++total_issued;
858
859#if TRACING_ON
860            issuing_inst->issueTick = curTick();
861#endif
862
863            if (!issuing_inst->isMemRef()) {
864                // Memory instructions can not be freed from the IQ until they
865                // complete.
866                ++freeEntries;
867                count[tid]--;
868                issuing_inst->clearInIQ();
869            } else {
870                memDepUnit[tid].issue(issuing_inst);
871            }
872
873            listOrder.erase(order_it++);
874            statIssuedInstType[tid][op_class]++;
875            iewStage->incrWb(issuing_inst->seqNum);
876        } else {
877            statFuBusy[op_class]++;
878            fuBusy[tid]++;
879            ++order_it;
880        }
881    }
882
883    numIssuedDist.sample(total_issued);
884    iqInstsIssued+= total_issued;
885
886    // If we issued any instructions, tell the CPU we had activity.
887    // @todo If the way deferred memory instructions are handeled due to
888    // translation changes then the deferredMemInsts condition should be removed
889    // from the code below.
890    if (total_issued || total_deferred_mem_issued || deferredMemInsts.size()) {
891        cpu->activityThisCycle();
892    } else {
893        DPRINTF(IQ, "Not able to schedule any instructions.\n");
894    }
895}
896
897template <class Impl>
898void
899InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
900{
901    DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
902            "to execute.\n", inst);
903
904    NonSpecMapIt inst_it = nonSpecInsts.find(inst);
905
906    assert(inst_it != nonSpecInsts.end());
907
908    ThreadID tid = (*inst_it).second->threadNumber;
909
910    (*inst_it).second->setAtCommit();
911
912    (*inst_it).second->setCanIssue();
913
914    if (!(*inst_it).second->isMemRef()) {
915        addIfReady((*inst_it).second);
916    } else {
917        memDepUnit[tid].nonSpecInstReady((*inst_it).second);
918    }
919
920    (*inst_it).second = NULL;
921
922    nonSpecInsts.erase(inst_it);
923}
924
925template <class Impl>
926void
927InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid)
928{
929    DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
930            tid,inst);
931
932    ListIt iq_it = instList[tid].begin();
933
934    while (iq_it != instList[tid].end() &&
935           (*iq_it)->seqNum <= inst) {
936        ++iq_it;
937        instList[tid].pop_front();
938    }
939
940    assert(freeEntries == (numEntries - countInsts()));
941}
942
943template <class Impl>
944int
945InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
946{
947    int dependents = 0;
948
949    // The instruction queue here takes care of both floating and int ops
950    if (completed_inst->isFloating()) {
951        fpInstQueueWakeupQccesses++;
952    } else {
953        intInstQueueWakeupAccesses++;
954    }
955
956    DPRINTF(IQ, "Waking dependents of completed instruction.\n");
957
958    assert(!completed_inst->isSquashed());
959
960    // Tell the memory dependence unit to wake any dependents on this
961    // instruction if it is a memory instruction.  Also complete the memory
962    // instruction at this point since we know it executed without issues.
963    // @todo: Might want to rename "completeMemInst" to something that
964    // indicates that it won't need to be replayed, and call this
965    // earlier.  Might not be a big deal.
966    if (completed_inst->isMemRef()) {
967        memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
968        completeMemInst(completed_inst);
969    } else if (completed_inst->isMemBarrier() ||
970               completed_inst->isWriteBarrier()) {
971        memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
972    }
973
974    for (int dest_reg_idx = 0;
975         dest_reg_idx < completed_inst->numDestRegs();
976         dest_reg_idx++)
977    {
978        PhysRegIndex dest_reg =
979            completed_inst->renamedDestRegIdx(dest_reg_idx);
980
981        // Special case of uniq or control registers.  They are not
982        // handled by the IQ and thus have no dependency graph entry.
983        // @todo Figure out a cleaner way to handle this.
984        if (dest_reg >= numPhysRegs) {
985            DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
986                    numPhysRegs);
987            continue;
988        }
989
990        DPRINTF(IQ, "Waking any dependents on register %i.\n",
991                (int) dest_reg);
992
993        //Go through the dependency chain, marking the registers as
994        //ready within the waiting instructions.
995        DynInstPtr dep_inst = dependGraph.pop(dest_reg);
996
997        while (dep_inst) {
998            DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
999                    "PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
1000
1001            // Might want to give more information to the instruction
1002            // so that it knows which of its source registers is
1003            // ready.  However that would mean that the dependency
1004            // graph entries would need to hold the src_reg_idx.
1005            dep_inst->markSrcRegReady();
1006
1007            addIfReady(dep_inst);
1008
1009            dep_inst = dependGraph.pop(dest_reg);
1010
1011            ++dependents;
1012        }
1013
1014        // Reset the head node now that all of its dependents have
1015        // been woken up.
1016        assert(dependGraph.empty(dest_reg));
1017        dependGraph.clearInst(dest_reg);
1018
1019        // Mark the scoreboard as having that register ready.
1020        regScoreboard[dest_reg] = true;
1021    }
1022    return dependents;
1023}
1024
1025template <class Impl>
1026void
1027InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
1028{
1029    OpClass op_class = ready_inst->opClass();
1030
1031    readyInsts[op_class].push(ready_inst);
1032
1033    // Will need to reorder the list if either a queue is not on the list,
1034    // or it has an older instruction than last time.
1035    if (!queueOnList[op_class]) {
1036        addToOrderList(op_class);
1037    } else if (readyInsts[op_class].top()->seqNum  <
1038               (*readyIt[op_class]).oldestInst) {
1039        listOrder.erase(readyIt[op_class]);
1040        addToOrderList(op_class);
1041    }
1042
1043    DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1044            "the ready list, PC %s opclass:%i [sn:%lli].\n",
1045            ready_inst->pcState(), op_class, ready_inst->seqNum);
1046}
1047
1048template <class Impl>
1049void
1050InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
1051{
1052    DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
1053
1054    // Reset DTB translation state
1055    resched_inst->translationStarted = false;
1056    resched_inst->translationCompleted = false;
1057
1058    resched_inst->clearCanIssue();
1059    memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
1060}
1061
1062template <class Impl>
1063void
1064InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
1065{
1066    memDepUnit[replay_inst->threadNumber].replay(replay_inst);
1067}
1068
1069template <class Impl>
1070void
1071InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
1072{
1073    ThreadID tid = completed_inst->threadNumber;
1074
1075    DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
1076            completed_inst->pcState(), completed_inst->seqNum);
1077
1078    ++freeEntries;
1079
1080    completed_inst->memOpDone = true;
1081
1082    memDepUnit[tid].completed(completed_inst);
1083    count[tid]--;
1084}
1085
1086template <class Impl>
1087void
1088InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst)
1089{
1090    deferredMemInsts.push_back(deferred_inst);
1091}
1092
1093template <class Impl>
1094typename Impl::DynInstPtr
1095InstructionQueue<Impl>::getDeferredMemInstToExecute()
1096{
1097    for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
1098         ++it) {
1099        if ((*it)->translationCompleted || (*it)->isSquashed()) {
1100            DynInstPtr ret = *it;
1101            deferredMemInsts.erase(it);
1102            return ret;
1103        }
1104    }
1105    return NULL;
1106}
1107
1108template <class Impl>
1109void
1110InstructionQueue<Impl>::violation(DynInstPtr &store,
1111                                  DynInstPtr &faulting_load)
1112{
1113    intInstQueueWrites++;
1114    memDepUnit[store->threadNumber].violation(store, faulting_load);
1115}
1116
1117template <class Impl>
1118void
1119InstructionQueue<Impl>::squash(ThreadID tid)
1120{
1121    DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1122            "the IQ.\n", tid);
1123
1124    // Read instruction sequence number of last instruction out of the
1125    // time buffer.
1126    squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1127
1128    // Call doSquash if there are insts in the IQ
1129    if (count[tid] > 0) {
1130        doSquash(tid);
1131    }
1132
1133    // Also tell the memory dependence unit to squash.
1134    memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1135}
1136
1137template <class Impl>
1138void
1139InstructionQueue<Impl>::doSquash(ThreadID tid)
1140{
1141    // Start at the tail.
1142    ListIt squash_it = instList[tid].end();
1143    --squash_it;
1144
1145    DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1146            tid, squashedSeqNum[tid]);
1147
1148    // Squash any instructions younger than the squashed sequence number
1149    // given.
1150    while (squash_it != instList[tid].end() &&
1151           (*squash_it)->seqNum > squashedSeqNum[tid]) {
1152
1153        DynInstPtr squashed_inst = (*squash_it);
1154        squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
1155
1156        // Only handle the instruction if it actually is in the IQ and
1157        // hasn't already been squashed in the IQ.
1158        if (squashed_inst->threadNumber != tid ||
1159            squashed_inst->isSquashedInIQ()) {
1160            --squash_it;
1161            continue;
1162        }
1163
1164        if (!squashed_inst->isIssued() ||
1165            (squashed_inst->isMemRef() &&
1166             !squashed_inst->memOpDone)) {
1167
1168            DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
1169                    tid, squashed_inst->seqNum, squashed_inst->pcState());
1170
1171            // Remove the instruction from the dependency list.
1172            if (!squashed_inst->isNonSpeculative() &&
1173                !squashed_inst->isStoreConditional() &&
1174                !squashed_inst->isMemBarrier() &&
1175                !squashed_inst->isWriteBarrier()) {
1176
1177                for (int src_reg_idx = 0;
1178                     src_reg_idx < squashed_inst->numSrcRegs();
1179                     src_reg_idx++)
1180                {
1181                    PhysRegIndex src_reg =
1182                        squashed_inst->renamedSrcRegIdx(src_reg_idx);
1183
1184                    // Only remove it from the dependency graph if it
1185                    // was placed there in the first place.
1186
1187                    // Instead of doing a linked list traversal, we
1188                    // can just remove these squashed instructions
1189                    // either at issue time, or when the register is
1190                    // overwritten.  The only downside to this is it
1191                    // leaves more room for error.
1192
1193                    if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1194                        src_reg < numPhysRegs) {
1195                        dependGraph.remove(src_reg, squashed_inst);
1196                    }
1197
1198
1199                    ++iqSquashedOperandsExamined;
1200                }
1201            } else if (!squashed_inst->isStoreConditional() ||
1202                       !squashed_inst->isCompleted()) {
1203                NonSpecMapIt ns_inst_it =
1204                    nonSpecInsts.find(squashed_inst->seqNum);
1205
1206                if (ns_inst_it == nonSpecInsts.end()) {
1207                    assert(squashed_inst->getFault() != NoFault);
1208                } else {
1209
1210                    (*ns_inst_it).second = NULL;
1211
1212                    nonSpecInsts.erase(ns_inst_it);
1213
1214                    ++iqSquashedNonSpecRemoved;
1215                }
1216            }
1217
1218            // Might want to also clear out the head of the dependency graph.
1219
1220            // Mark it as squashed within the IQ.
1221            squashed_inst->setSquashedInIQ();
1222
1223            // @todo: Remove this hack where several statuses are set so the
1224            // inst will flow through the rest of the pipeline.
1225            squashed_inst->setIssued();
1226            squashed_inst->setCanCommit();
1227            squashed_inst->clearInIQ();
1228
1229            //Update Thread IQ Count
1230            count[squashed_inst->threadNumber]--;
1231
1232            ++freeEntries;
1233        }
1234
1235        instList[tid].erase(squash_it--);
1236        ++iqSquashedInstsExamined;
1237    }
1238}
1239
1240template <class Impl>
1241bool
1242InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
1243{
1244    // Loop through the instruction's source registers, adding
1245    // them to the dependency list if they are not ready.
1246    int8_t total_src_regs = new_inst->numSrcRegs();
1247    bool return_val = false;
1248
1249    for (int src_reg_idx = 0;
1250         src_reg_idx < total_src_regs;
1251         src_reg_idx++)
1252    {
1253        // Only add it to the dependency graph if it's not ready.
1254        if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1255            PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1256
1257            // Check the IQ's scoreboard to make sure the register
1258            // hasn't become ready while the instruction was in flight
1259            // between stages.  Only if it really isn't ready should
1260            // it be added to the dependency graph.
1261            if (src_reg >= numPhysRegs) {
1262                continue;
1263            } else if (regScoreboard[src_reg] == false) {
1264                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1265                        "is being added to the dependency chain.\n",
1266                        new_inst->pcState(), src_reg);
1267
1268                dependGraph.insert(src_reg, new_inst);
1269
1270                // Change the return value to indicate that something
1271                // was added to the dependency graph.
1272                return_val = true;
1273            } else {
1274                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1275                        "became ready before it reached the IQ.\n",
1276                        new_inst->pcState(), src_reg);
1277                // Mark a register ready within the instruction.
1278                new_inst->markSrcRegReady(src_reg_idx);
1279            }
1280        }
1281    }
1282
1283    return return_val;
1284}
1285
1286template <class Impl>
1287void
1288InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
1289{
1290    // Nothing really needs to be marked when an instruction becomes
1291    // the producer of a register's value, but for convenience a ptr
1292    // to the producing instruction will be placed in the head node of
1293    // the dependency links.
1294    int8_t total_dest_regs = new_inst->numDestRegs();
1295
1296    for (int dest_reg_idx = 0;
1297         dest_reg_idx < total_dest_regs;
1298         dest_reg_idx++)
1299    {
1300        PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1301
1302        // Instructions that use the misc regs will have a reg number
1303        // higher than the normal physical registers.  In this case these
1304        // registers are not renamed, and there is no need to track
1305        // dependencies as these instructions must be executed at commit.
1306        if (dest_reg >= numPhysRegs) {
1307            continue;
1308        }
1309
1310        if (!dependGraph.empty(dest_reg)) {
1311            dependGraph.dump();
1312            panic("Dependency graph %i not empty!", dest_reg);
1313        }
1314
1315        dependGraph.setInst(dest_reg, new_inst);
1316
1317        // Mark the scoreboard to say it's not yet ready.
1318        regScoreboard[dest_reg] = false;
1319    }
1320}
1321
1322template <class Impl>
1323void
1324InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
1325{
1326    // If the instruction now has all of its source registers
1327    // available, then add it to the list of ready instructions.
1328    if (inst->readyToIssue()) {
1329
1330        //Add the instruction to the proper ready list.
1331        if (inst->isMemRef()) {
1332
1333            DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1334
1335            // Message to the mem dependence unit that this instruction has
1336            // its registers ready.
1337            memDepUnit[inst->threadNumber].regsReady(inst);
1338
1339            return;
1340        }
1341
1342        OpClass op_class = inst->opClass();
1343
1344        DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1345                "the ready list, PC %s opclass:%i [sn:%lli].\n",
1346                inst->pcState(), op_class, inst->seqNum);
1347
1348        readyInsts[op_class].push(inst);
1349
1350        // Will need to reorder the list if either a queue is not on the list,
1351        // or it has an older instruction than last time.
1352        if (!queueOnList[op_class]) {
1353            addToOrderList(op_class);
1354        } else if (readyInsts[op_class].top()->seqNum  <
1355                   (*readyIt[op_class]).oldestInst) {
1356            listOrder.erase(readyIt[op_class]);
1357            addToOrderList(op_class);
1358        }
1359    }
1360}
1361
1362template <class Impl>
1363int
1364InstructionQueue<Impl>::countInsts()
1365{
1366#if 0
1367    //ksewell:This works but definitely could use a cleaner write
1368    //with a more intuitive way of counting. Right now it's
1369    //just brute force ....
1370    // Change the #if if you want to use this method.
1371    int total_insts = 0;
1372
1373    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1374        ListIt count_it = instList[tid].begin();
1375
1376        while (count_it != instList[tid].end()) {
1377            if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1378                if (!(*count_it)->isIssued()) {
1379                    ++total_insts;
1380                } else if ((*count_it)->isMemRef() &&
1381                           !(*count_it)->memOpDone) {
1382                    // Loads that have not been marked as executed still count
1383                    // towards the total instructions.
1384                    ++total_insts;
1385                }
1386            }
1387
1388            ++count_it;
1389        }
1390    }
1391
1392    return total_insts;
1393#else
1394    return numEntries - freeEntries;
1395#endif
1396}
1397
1398template <class Impl>
1399void
1400InstructionQueue<Impl>::dumpLists()
1401{
1402    for (int i = 0; i < Num_OpClasses; ++i) {
1403        cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1404
1405        cprintf("\n");
1406    }
1407
1408    cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1409
1410    NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1411    NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1412
1413    cprintf("Non speculative list: ");
1414
1415    while (non_spec_it != non_spec_end_it) {
1416        cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
1417                (*non_spec_it).second->seqNum);
1418        ++non_spec_it;
1419    }
1420
1421    cprintf("\n");
1422
1423    ListOrderIt list_order_it = listOrder.begin();
1424    ListOrderIt list_order_end_it = listOrder.end();
1425    int i = 1;
1426
1427    cprintf("List order: ");
1428
1429    while (list_order_it != list_order_end_it) {
1430        cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1431                (*list_order_it).oldestInst);
1432
1433        ++list_order_it;
1434        ++i;
1435    }
1436
1437    cprintf("\n");
1438}
1439
1440
1441template <class Impl>
1442void
1443InstructionQueue<Impl>::dumpInsts()
1444{
1445    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1446        int num = 0;
1447        int valid_num = 0;
1448        ListIt inst_list_it = instList[tid].begin();
1449
1450        while (inst_list_it != instList[tid].end()) {
1451            cprintf("Instruction:%i\n", num);
1452            if (!(*inst_list_it)->isSquashed()) {
1453                if (!(*inst_list_it)->isIssued()) {
1454                    ++valid_num;
1455                    cprintf("Count:%i\n", valid_num);
1456                } else if ((*inst_list_it)->isMemRef() &&
1457                           !(*inst_list_it)->memOpDone) {
1458                    // Loads that have not been marked as executed
1459                    // still count towards the total instructions.
1460                    ++valid_num;
1461                    cprintf("Count:%i\n", valid_num);
1462                }
1463            }
1464
1465            cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1466                    "Issued:%i\nSquashed:%i\n",
1467                    (*inst_list_it)->pcState(),
1468                    (*inst_list_it)->seqNum,
1469                    (*inst_list_it)->threadNumber,
1470                    (*inst_list_it)->isIssued(),
1471                    (*inst_list_it)->isSquashed());
1472
1473            if ((*inst_list_it)->isMemRef()) {
1474                cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
1475            }
1476
1477            cprintf("\n");
1478
1479            inst_list_it++;
1480            ++num;
1481        }
1482    }
1483
1484    cprintf("Insts to Execute list:\n");
1485
1486    int num = 0;
1487    int valid_num = 0;
1488    ListIt inst_list_it = instsToExecute.begin();
1489
1490    while (inst_list_it != instsToExecute.end())
1491    {
1492        cprintf("Instruction:%i\n",
1493                num);
1494        if (!(*inst_list_it)->isSquashed()) {
1495            if (!(*inst_list_it)->isIssued()) {
1496                ++valid_num;
1497                cprintf("Count:%i\n", valid_num);
1498            } else if ((*inst_list_it)->isMemRef() &&
1499                       !(*inst_list_it)->memOpDone) {
1500                // Loads that have not been marked as executed
1501                // still count towards the total instructions.
1502                ++valid_num;
1503                cprintf("Count:%i\n", valid_num);
1504            }
1505        }
1506
1507        cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1508                "Issued:%i\nSquashed:%i\n",
1509                (*inst_list_it)->pcState(),
1510                (*inst_list_it)->seqNum,
1511                (*inst_list_it)->threadNumber,
1512                (*inst_list_it)->isIssued(),
1513                (*inst_list_it)->isSquashed());
1514
1515        if ((*inst_list_it)->isMemRef()) {
1516            cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
1517        }
1518
1519        cprintf("\n");
1520
1521        inst_list_it++;
1522        ++num;
1523    }
1524}
1525