inst_queue_impl.hh revision 4167
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#include <limits> 33#include <vector> 34 35#include "sim/core.hh" 36 37#include "cpu/o3/fu_pool.hh" 38#include "cpu/o3/inst_queue.hh" 39 40template <class Impl> 41InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 42 int fu_idx, 43 InstructionQueue<Impl> *iq_ptr) 44 : Event(&mainEventQueue, Stat_Event_Pri), 45 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false) 46{ 47 this->setFlags(Event::AutoDelete); 48} 49 50template <class Impl> 51void 52InstructionQueue<Impl>::FUCompletion::process() 53{ 54 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1); 55 inst = NULL; 56} 57 58 59template <class Impl> 60const char * 61InstructionQueue<Impl>::FUCompletion::description() 62{ 63 return "Functional unit completion event"; 64} 65 66template <class Impl> 67InstructionQueue<Impl>::InstructionQueue(Params *params) 68 : fuPool(params->fuPool), 69 numEntries(params->numIQEntries), 70 totalWidth(params->issueWidth), 71 numPhysIntRegs(params->numPhysIntRegs), 72 numPhysFloatRegs(params->numPhysFloatRegs), 73 commitToIEWDelay(params->commitToIEWDelay) 74{ 75 assert(fuPool); 76 77 switchedOut = false; 78 79 numThreads = params->numberOfThreads; 80 81 // Set the number of physical registers as the number of int + float 82 numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 83 84 DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs); 85 86 //Create an entry for each physical register within the 87 //dependency graph. 88 dependGraph.resize(numPhysRegs); 89 90 // Resize the register scoreboard. 91 regScoreboard.resize(numPhysRegs); 92 93 //Initialize Mem Dependence Units 94 for (int i = 0; i < numThreads; i++) { 95 memDepUnit[i].init(params,i); 96 memDepUnit[i].setIQ(this); 97 } 98 99 resetState(); 100 101 std::string policy = params->smtIQPolicy; 102 103 //Convert string to lowercase 104 std::transform(policy.begin(), policy.end(), policy.begin(), 105 (int(*)(int)) tolower); 106 107 //Figure out resource sharing policy 108 if (policy == "dynamic") { 109 iqPolicy = Dynamic; 110 111 //Set Max Entries to Total ROB Capacity 112 for (int i = 0; i < numThreads; i++) { 113 maxEntries[i] = numEntries; 114 } 115 116 } else if (policy == "partitioned") { 117 iqPolicy = Partitioned; 118 119 //@todo:make work if part_amt doesnt divide evenly. 120 int part_amt = numEntries / numThreads; 121 122 //Divide ROB up evenly 123 for (int i = 0; i < numThreads; i++) { 124 maxEntries[i] = part_amt; 125 } 126 127 DPRINTF(IQ, "IQ sharing policy set to Partitioned:" 128 "%i entries per thread.\n",part_amt); 129 130 } else if (policy == "threshold") { 131 iqPolicy = Threshold; 132 133 double threshold = (double)params->smtIQThreshold / 100; 134 135 int thresholdIQ = (int)((double)threshold * numEntries); 136 137 //Divide up by threshold amount 138 for (int i = 0; i < numThreads; i++) { 139 maxEntries[i] = thresholdIQ; 140 } 141 142 DPRINTF(IQ, "IQ sharing policy set to Threshold:" 143 "%i entries per thread.\n",thresholdIQ); 144 } else { 145 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 146 "Partitioned, Threshold}"); 147 } 148} 149 150template <class Impl> 151InstructionQueue<Impl>::~InstructionQueue() 152{ 153 dependGraph.reset(); 154#ifdef DEBUG 155 cprintf("Nodes traversed: %i, removed: %i\n", 156 dependGraph.nodesTraversed, dependGraph.nodesRemoved); 157#endif 158} 159 160template <class Impl> 161std::string 162InstructionQueue<Impl>::name() const 163{ 164 return cpu->name() + ".iq"; 165} 166 167template <class Impl> 168void 169InstructionQueue<Impl>::regStats() 170{ 171 using namespace Stats; 172 iqInstsAdded 173 .name(name() + ".iqInstsAdded") 174 .desc("Number of instructions added to the IQ (excludes non-spec)") 175 .prereq(iqInstsAdded); 176 177 iqNonSpecInstsAdded 178 .name(name() + ".iqNonSpecInstsAdded") 179 .desc("Number of non-speculative instructions added to the IQ") 180 .prereq(iqNonSpecInstsAdded); 181 182 iqInstsIssued 183 .name(name() + ".iqInstsIssued") 184 .desc("Number of instructions issued") 185 .prereq(iqInstsIssued); 186 187 iqIntInstsIssued 188 .name(name() + ".iqIntInstsIssued") 189 .desc("Number of integer instructions issued") 190 .prereq(iqIntInstsIssued); 191 192 iqFloatInstsIssued 193 .name(name() + ".iqFloatInstsIssued") 194 .desc("Number of float instructions issued") 195 .prereq(iqFloatInstsIssued); 196 197 iqBranchInstsIssued 198 .name(name() + ".iqBranchInstsIssued") 199 .desc("Number of branch instructions issued") 200 .prereq(iqBranchInstsIssued); 201 202 iqMemInstsIssued 203 .name(name() + ".iqMemInstsIssued") 204 .desc("Number of memory instructions issued") 205 .prereq(iqMemInstsIssued); 206 207 iqMiscInstsIssued 208 .name(name() + ".iqMiscInstsIssued") 209 .desc("Number of miscellaneous instructions issued") 210 .prereq(iqMiscInstsIssued); 211 212 iqSquashedInstsIssued 213 .name(name() + ".iqSquashedInstsIssued") 214 .desc("Number of squashed instructions issued") 215 .prereq(iqSquashedInstsIssued); 216 217 iqSquashedInstsExamined 218 .name(name() + ".iqSquashedInstsExamined") 219 .desc("Number of squashed instructions iterated over during squash;" 220 " mainly for profiling") 221 .prereq(iqSquashedInstsExamined); 222 223 iqSquashedOperandsExamined 224 .name(name() + ".iqSquashedOperandsExamined") 225 .desc("Number of squashed operands that are examined and possibly " 226 "removed from graph") 227 .prereq(iqSquashedOperandsExamined); 228 229 iqSquashedNonSpecRemoved 230 .name(name() + ".iqSquashedNonSpecRemoved") 231 .desc("Number of squashed non-spec instructions that were removed") 232 .prereq(iqSquashedNonSpecRemoved); 233/* 234 queueResDist 235 .init(Num_OpClasses, 0, 99, 2) 236 .name(name() + ".IQ:residence:") 237 .desc("cycles from dispatch to issue") 238 .flags(total | pdf | cdf ) 239 ; 240 for (int i = 0; i < Num_OpClasses; ++i) { 241 queueResDist.subname(i, opClassStrings[i]); 242 } 243*/ 244 numIssuedDist 245 .init(0,totalWidth,1) 246 .name(name() + ".ISSUE:issued_per_cycle") 247 .desc("Number of insts issued each cycle") 248 .flags(pdf) 249 ; 250/* 251 dist_unissued 252 .init(Num_OpClasses+2) 253 .name(name() + ".ISSUE:unissued_cause") 254 .desc("Reason ready instruction not issued") 255 .flags(pdf | dist) 256 ; 257 for (int i=0; i < (Num_OpClasses + 2); ++i) { 258 dist_unissued.subname(i, unissued_names[i]); 259 } 260*/ 261 statIssuedInstType 262 .init(numThreads,Num_OpClasses) 263 .name(name() + ".ISSUE:FU_type") 264 .desc("Type of FU issued") 265 .flags(total | pdf | dist) 266 ; 267 statIssuedInstType.ysubnames(opClassStrings); 268 269 // 270 // How long did instructions for a particular FU type wait prior to issue 271 // 272/* 273 issueDelayDist 274 .init(Num_OpClasses,0,99,2) 275 .name(name() + ".ISSUE:") 276 .desc("cycles from operands ready to issue") 277 .flags(pdf | cdf) 278 ; 279 280 for (int i=0; i<Num_OpClasses; ++i) { 281 std::stringstream subname; 282 subname << opClassStrings[i] << "_delay"; 283 issueDelayDist.subname(i, subname.str()); 284 } 285*/ 286 issueRate 287 .name(name() + ".ISSUE:rate") 288 .desc("Inst issue rate") 289 .flags(total) 290 ; 291 issueRate = iqInstsIssued / cpu->numCycles; 292 293 statFuBusy 294 .init(Num_OpClasses) 295 .name(name() + ".ISSUE:fu_full") 296 .desc("attempts to use FU when none available") 297 .flags(pdf | dist) 298 ; 299 for (int i=0; i < Num_OpClasses; ++i) { 300 statFuBusy.subname(i, opClassStrings[i]); 301 } 302 303 fuBusy 304 .init(numThreads) 305 .name(name() + ".ISSUE:fu_busy_cnt") 306 .desc("FU busy when requested") 307 .flags(total) 308 ; 309 310 fuBusyRate 311 .name(name() + ".ISSUE:fu_busy_rate") 312 .desc("FU busy rate (busy events/executed inst)") 313 .flags(total) 314 ; 315 fuBusyRate = fuBusy / iqInstsIssued; 316 317 for ( int i=0; i < numThreads; i++) { 318 // Tell mem dependence unit to reg stats as well. 319 memDepUnit[i].regStats(); 320 } 321} 322 323template <class Impl> 324void 325InstructionQueue<Impl>::resetState() 326{ 327 //Initialize thread IQ counts 328 for (int i = 0; i <numThreads; i++) { 329 count[i] = 0; 330 instList[i].clear(); 331 } 332 333 // Initialize the number of free IQ entries. 334 freeEntries = numEntries; 335 336 // Note that in actuality, the registers corresponding to the logical 337 // registers start off as ready. However this doesn't matter for the 338 // IQ as the instruction should have been correctly told if those 339 // registers are ready in rename. Thus it can all be initialized as 340 // unready. 341 for (int i = 0; i < numPhysRegs; ++i) { 342 regScoreboard[i] = false; 343 } 344 345 for (int i = 0; i < numThreads; ++i) { 346 squashedSeqNum[i] = 0; 347 } 348 349 for (int i = 0; i < Num_OpClasses; ++i) { 350 while (!readyInsts[i].empty()) 351 readyInsts[i].pop(); 352 queueOnList[i] = false; 353 readyIt[i] = listOrder.end(); 354 } 355 nonSpecInsts.clear(); 356 listOrder.clear(); 357} 358 359template <class Impl> 360void 361InstructionQueue<Impl>::setActiveThreads(std::list<unsigned> *at_ptr) 362{ 363 DPRINTF(IQ, "Setting active threads list pointer.\n"); 364 activeThreads = at_ptr; 365} 366 367template <class Impl> 368void 369InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 370{ 371 DPRINTF(IQ, "Set the issue to execute queue.\n"); 372 issueToExecuteQueue = i2e_ptr; 373} 374 375template <class Impl> 376void 377InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 378{ 379 DPRINTF(IQ, "Set the time buffer.\n"); 380 timeBuffer = tb_ptr; 381 382 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 383} 384 385template <class Impl> 386void 387InstructionQueue<Impl>::switchOut() 388{ 389/* 390 if (!instList[0].empty() || (numEntries != freeEntries) || 391 !readyInsts[0].empty() || !nonSpecInsts.empty() || !listOrder.empty()) { 392 dumpInsts(); 393// assert(0); 394 } 395*/ 396 resetState(); 397 dependGraph.reset(); 398 instsToExecute.clear(); 399 switchedOut = true; 400 for (int i = 0; i < numThreads; ++i) { 401 memDepUnit[i].switchOut(); 402 } 403} 404 405template <class Impl> 406void 407InstructionQueue<Impl>::takeOverFrom() 408{ 409 switchedOut = false; 410} 411 412template <class Impl> 413int 414InstructionQueue<Impl>::entryAmount(int num_threads) 415{ 416 if (iqPolicy == Partitioned) { 417 return numEntries / num_threads; 418 } else { 419 return 0; 420 } 421} 422 423 424template <class Impl> 425void 426InstructionQueue<Impl>::resetEntries() 427{ 428 if (iqPolicy != Dynamic || numThreads > 1) { 429 int active_threads = activeThreads->size(); 430 431 std::list<unsigned>::iterator threads = activeThreads->begin(); 432 std::list<unsigned>::iterator end = activeThreads->end(); 433 434 while (threads != end) { 435 unsigned tid = *threads++; 436 437 if (iqPolicy == Partitioned) { 438 maxEntries[tid] = numEntries / active_threads; 439 } else if(iqPolicy == Threshold && active_threads == 1) { 440 maxEntries[tid] = numEntries; 441 } 442 } 443 } 444} 445 446template <class Impl> 447unsigned 448InstructionQueue<Impl>::numFreeEntries() 449{ 450 return freeEntries; 451} 452 453template <class Impl> 454unsigned 455InstructionQueue<Impl>::numFreeEntries(unsigned tid) 456{ 457 return maxEntries[tid] - count[tid]; 458} 459 460// Might want to do something more complex if it knows how many instructions 461// will be issued this cycle. 462template <class Impl> 463bool 464InstructionQueue<Impl>::isFull() 465{ 466 if (freeEntries == 0) { 467 return(true); 468 } else { 469 return(false); 470 } 471} 472 473template <class Impl> 474bool 475InstructionQueue<Impl>::isFull(unsigned tid) 476{ 477 if (numFreeEntries(tid) == 0) { 478 return(true); 479 } else { 480 return(false); 481 } 482} 483 484template <class Impl> 485bool 486InstructionQueue<Impl>::hasReadyInsts() 487{ 488 if (!listOrder.empty()) { 489 return true; 490 } 491 492 for (int i = 0; i < Num_OpClasses; ++i) { 493 if (!readyInsts[i].empty()) { 494 return true; 495 } 496 } 497 498 return false; 499} 500 501template <class Impl> 502void 503InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 504{ 505 // Make sure the instruction is valid 506 assert(new_inst); 507 508 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %#x to the IQ.\n", 509 new_inst->seqNum, new_inst->readPC()); 510 511 assert(freeEntries != 0); 512 513 instList[new_inst->threadNumber].push_back(new_inst); 514 515 --freeEntries; 516 517 new_inst->setInIQ(); 518 519 // Look through its source registers (physical regs), and mark any 520 // dependencies. 521 addToDependents(new_inst); 522 523 // Have this instruction set itself as the producer of its destination 524 // register(s). 525 addToProducers(new_inst); 526 527 if (new_inst->isMemRef()) { 528 memDepUnit[new_inst->threadNumber].insert(new_inst); 529 } else { 530 addIfReady(new_inst); 531 } 532 533 ++iqInstsAdded; 534 535 count[new_inst->threadNumber]++; 536 537 assert(freeEntries == (numEntries - countInsts())); 538} 539 540template <class Impl> 541void 542InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 543{ 544 // @todo: Clean up this code; can do it by setting inst as unable 545 // to issue, then calling normal insert on the inst. 546 547 assert(new_inst); 548 549 nonSpecInsts[new_inst->seqNum] = new_inst; 550 551 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %#x " 552 "to the IQ.\n", 553 new_inst->seqNum, new_inst->readPC()); 554 555 assert(freeEntries != 0); 556 557 instList[new_inst->threadNumber].push_back(new_inst); 558 559 --freeEntries; 560 561 new_inst->setInIQ(); 562 563 // Have this instruction set itself as the producer of its destination 564 // register(s). 565 addToProducers(new_inst); 566 567 // If it's a memory instruction, add it to the memory dependency 568 // unit. 569 if (new_inst->isMemRef()) { 570 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 571 } 572 573 ++iqNonSpecInstsAdded; 574 575 count[new_inst->threadNumber]++; 576 577 assert(freeEntries == (numEntries - countInsts())); 578} 579 580template <class Impl> 581void 582InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 583{ 584 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 585 586 insertNonSpec(barr_inst); 587} 588 589template <class Impl> 590typename Impl::DynInstPtr 591InstructionQueue<Impl>::getInstToExecute() 592{ 593 assert(!instsToExecute.empty()); 594 DynInstPtr inst = instsToExecute.front(); 595 instsToExecute.pop_front(); 596 return inst; 597} 598 599template <class Impl> 600void 601InstructionQueue<Impl>::addToOrderList(OpClass op_class) 602{ 603 assert(!readyInsts[op_class].empty()); 604 605 ListOrderEntry queue_entry; 606 607 queue_entry.queueType = op_class; 608 609 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 610 611 ListOrderIt list_it = listOrder.begin(); 612 ListOrderIt list_end_it = listOrder.end(); 613 614 while (list_it != list_end_it) { 615 if ((*list_it).oldestInst > queue_entry.oldestInst) { 616 break; 617 } 618 619 list_it++; 620 } 621 622 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 623 queueOnList[op_class] = true; 624} 625 626template <class Impl> 627void 628InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 629{ 630 // Get iterator of next item on the list 631 // Delete the original iterator 632 // Determine if the next item is either the end of the list or younger 633 // than the new instruction. If so, then add in a new iterator right here. 634 // If not, then move along. 635 ListOrderEntry queue_entry; 636 OpClass op_class = (*list_order_it).queueType; 637 ListOrderIt next_it = list_order_it; 638 639 ++next_it; 640 641 queue_entry.queueType = op_class; 642 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 643 644 while (next_it != listOrder.end() && 645 (*next_it).oldestInst < queue_entry.oldestInst) { 646 ++next_it; 647 } 648 649 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 650} 651 652template <class Impl> 653void 654InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 655{ 656 DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum); 657 // The CPU could have been sleeping until this op completed (*extremely* 658 // long latency op). Wake it if it was. This may be overkill. 659 if (isSwitchedOut()) { 660 DPRINTF(IQ, "FU completion not processed, IQ is switched out [sn:%lli]\n", 661 inst->seqNum); 662 return; 663 } 664 665 iewStage->wakeCPU(); 666 667 if (fu_idx > -1) 668 fuPool->freeUnitNextCycle(fu_idx); 669 670 // @todo: Ensure that these FU Completions happen at the beginning 671 // of a cycle, otherwise they could add too many instructions to 672 // the queue. 673 issueToExecuteQueue->access(0)->size++; 674 instsToExecute.push_back(inst); 675} 676 677// @todo: Figure out a better way to remove the squashed items from the 678// lists. Checking the top item of each list to see if it's squashed 679// wastes time and forces jumps. 680template <class Impl> 681void 682InstructionQueue<Impl>::scheduleReadyInsts() 683{ 684 DPRINTF(IQ, "Attempting to schedule ready instructions from " 685 "the IQ.\n"); 686 687 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 688 689 // Have iterator to head of the list 690 // While I haven't exceeded bandwidth or reached the end of the list, 691 // Try to get a FU that can do what this op needs. 692 // If successful, change the oldestInst to the new top of the list, put 693 // the queue in the proper place in the list. 694 // Increment the iterator. 695 // This will avoid trying to schedule a certain op class if there are no 696 // FUs that handle it. 697 ListOrderIt order_it = listOrder.begin(); 698 ListOrderIt order_end_it = listOrder.end(); 699 int total_issued = 0; 700 701 while (total_issued < totalWidth && 702 iewStage->canIssue() && 703 order_it != order_end_it) { 704 OpClass op_class = (*order_it).queueType; 705 706 assert(!readyInsts[op_class].empty()); 707 708 DynInstPtr issuing_inst = readyInsts[op_class].top(); 709 710 assert(issuing_inst->seqNum == (*order_it).oldestInst); 711 712 if (issuing_inst->isSquashed()) { 713 readyInsts[op_class].pop(); 714 715 if (!readyInsts[op_class].empty()) { 716 moveToYoungerInst(order_it); 717 } else { 718 readyIt[op_class] = listOrder.end(); 719 queueOnList[op_class] = false; 720 } 721 722 listOrder.erase(order_it++); 723 724 ++iqSquashedInstsIssued; 725 726 continue; 727 } 728 729 int idx = -2; 730 int op_latency = 1; 731 int tid = issuing_inst->threadNumber; 732 733 if (op_class != No_OpClass) { 734 idx = fuPool->getUnit(op_class); 735 736 if (idx > -1) { 737 op_latency = fuPool->getOpLatency(op_class); 738 } 739 } 740 741 // If we have an instruction that doesn't require a FU, or a 742 // valid FU, then schedule for execution. 743 if (idx == -2 || idx != -1) { 744 if (op_latency == 1) { 745 i2e_info->size++; 746 instsToExecute.push_back(issuing_inst); 747 748 // Add the FU onto the list of FU's to be freed next 749 // cycle if we used one. 750 if (idx >= 0) 751 fuPool->freeUnitNextCycle(idx); 752 } else { 753 int issue_latency = fuPool->getIssueLatency(op_class); 754 // Generate completion event for the FU 755 FUCompletion *execution = new FUCompletion(issuing_inst, 756 idx, this); 757 758 execution->schedule(curTick + cpu->cycles(issue_latency - 1)); 759 760 // @todo: Enforce that issue_latency == 1 or op_latency 761 if (issue_latency > 1) { 762 // If FU isn't pipelined, then it must be freed 763 // upon the execution completing. 764 execution->setFreeFU(); 765 } else { 766 // Add the FU onto the list of FU's to be freed next cycle. 767 fuPool->freeUnitNextCycle(idx); 768 } 769 } 770 771 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x " 772 "[sn:%lli]\n", 773 tid, issuing_inst->readPC(), 774 issuing_inst->seqNum); 775 776 readyInsts[op_class].pop(); 777 778 if (!readyInsts[op_class].empty()) { 779 moveToYoungerInst(order_it); 780 } else { 781 readyIt[op_class] = listOrder.end(); 782 queueOnList[op_class] = false; 783 } 784 785 issuing_inst->setIssued(); 786 ++total_issued; 787 788 if (!issuing_inst->isMemRef()) { 789 // Memory instructions can not be freed from the IQ until they 790 // complete. 791 ++freeEntries; 792 count[tid]--; 793 issuing_inst->clearInIQ(); 794 } else { 795 memDepUnit[tid].issue(issuing_inst); 796 } 797 798 listOrder.erase(order_it++); 799 statIssuedInstType[tid][op_class]++; 800 iewStage->incrWb(issuing_inst->seqNum); 801 } else { 802 statFuBusy[op_class]++; 803 fuBusy[tid]++; 804 ++order_it; 805 } 806 } 807 808 numIssuedDist.sample(total_issued); 809 iqInstsIssued+= total_issued; 810 811 // If we issued any instructions, tell the CPU we had activity. 812 if (total_issued) { 813 cpu->activityThisCycle(); 814 } else { 815 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 816 } 817} 818 819template <class Impl> 820void 821InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 822{ 823 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 824 "to execute.\n", inst); 825 826 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 827 828 assert(inst_it != nonSpecInsts.end()); 829 830 unsigned tid = (*inst_it).second->threadNumber; 831 832 (*inst_it).second->setCanIssue(); 833 834 if (!(*inst_it).second->isMemRef()) { 835 addIfReady((*inst_it).second); 836 } else { 837 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 838 } 839 840 (*inst_it).second = NULL; 841 842 nonSpecInsts.erase(inst_it); 843} 844 845template <class Impl> 846void 847InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid) 848{ 849 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 850 tid,inst); 851 852 ListIt iq_it = instList[tid].begin(); 853 854 while (iq_it != instList[tid].end() && 855 (*iq_it)->seqNum <= inst) { 856 ++iq_it; 857 instList[tid].pop_front(); 858 } 859 860 assert(freeEntries == (numEntries - countInsts())); 861} 862 863template <class Impl> 864int 865InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 866{ 867 int dependents = 0; 868 869 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 870 871 assert(!completed_inst->isSquashed()); 872 873 // Tell the memory dependence unit to wake any dependents on this 874 // instruction if it is a memory instruction. Also complete the memory 875 // instruction at this point since we know it executed without issues. 876 // @todo: Might want to rename "completeMemInst" to something that 877 // indicates that it won't need to be replayed, and call this 878 // earlier. Might not be a big deal. 879 if (completed_inst->isMemRef()) { 880 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 881 completeMemInst(completed_inst); 882 } else if (completed_inst->isMemBarrier() || 883 completed_inst->isWriteBarrier()) { 884 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 885 } 886 887 for (int dest_reg_idx = 0; 888 dest_reg_idx < completed_inst->numDestRegs(); 889 dest_reg_idx++) 890 { 891 PhysRegIndex dest_reg = 892 completed_inst->renamedDestRegIdx(dest_reg_idx); 893 894 // Special case of uniq or control registers. They are not 895 // handled by the IQ and thus have no dependency graph entry. 896 // @todo Figure out a cleaner way to handle this. 897 if (dest_reg >= numPhysRegs) { 898 continue; 899 } 900 901 DPRINTF(IQ, "Waking any dependents on register %i.\n", 902 (int) dest_reg); 903 904 //Go through the dependency chain, marking the registers as 905 //ready within the waiting instructions. 906 DynInstPtr dep_inst = dependGraph.pop(dest_reg); 907 908 while (dep_inst) { 909 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n", 910 dep_inst->readPC()); 911 912 // Might want to give more information to the instruction 913 // so that it knows which of its source registers is 914 // ready. However that would mean that the dependency 915 // graph entries would need to hold the src_reg_idx. 916 dep_inst->markSrcRegReady(); 917 918 addIfReady(dep_inst); 919 920 dep_inst = dependGraph.pop(dest_reg); 921 922 ++dependents; 923 } 924 925 // Reset the head node now that all of its dependents have 926 // been woken up. 927 assert(dependGraph.empty(dest_reg)); 928 dependGraph.clearInst(dest_reg); 929 930 // Mark the scoreboard as having that register ready. 931 regScoreboard[dest_reg] = true; 932 } 933 return dependents; 934} 935 936template <class Impl> 937void 938InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 939{ 940 OpClass op_class = ready_inst->opClass(); 941 942 readyInsts[op_class].push(ready_inst); 943 944 // Will need to reorder the list if either a queue is not on the list, 945 // or it has an older instruction than last time. 946 if (!queueOnList[op_class]) { 947 addToOrderList(op_class); 948 } else if (readyInsts[op_class].top()->seqNum < 949 (*readyIt[op_class]).oldestInst) { 950 listOrder.erase(readyIt[op_class]); 951 addToOrderList(op_class); 952 } 953 954 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 955 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 956 ready_inst->readPC(), op_class, ready_inst->seqNum); 957} 958 959template <class Impl> 960void 961InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 962{ 963 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 964} 965 966template <class Impl> 967void 968InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 969{ 970 memDepUnit[replay_inst->threadNumber].replay(replay_inst); 971} 972 973template <class Impl> 974void 975InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 976{ 977 int tid = completed_inst->threadNumber; 978 979 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n", 980 completed_inst->readPC(), completed_inst->seqNum); 981 982 ++freeEntries; 983 984 completed_inst->memOpDone = true; 985 986 memDepUnit[tid].completed(completed_inst); 987 988 count[tid]--; 989} 990 991template <class Impl> 992void 993InstructionQueue<Impl>::violation(DynInstPtr &store, 994 DynInstPtr &faulting_load) 995{ 996 memDepUnit[store->threadNumber].violation(store, faulting_load); 997} 998 999template <class Impl> 1000void 1001InstructionQueue<Impl>::squash(unsigned tid) 1002{ 1003 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 1004 "the IQ.\n", tid); 1005 1006 // Read instruction sequence number of last instruction out of the 1007 // time buffer. 1008#if ISA_HAS_DELAY_SLOT 1009 squashedSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum; 1010#else 1011 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 1012#endif 1013 1014 // Call doSquash if there are insts in the IQ 1015 if (count[tid] > 0) { 1016 doSquash(tid); 1017 } 1018 1019 // Also tell the memory dependence unit to squash. 1020 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1021} 1022 1023template <class Impl> 1024void 1025InstructionQueue<Impl>::doSquash(unsigned tid) 1026{ 1027 // Start at the tail. 1028 ListIt squash_it = instList[tid].end(); 1029 --squash_it; 1030 1031 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1032 tid, squashedSeqNum[tid]); 1033 1034 // Squash any instructions younger than the squashed sequence number 1035 // given. 1036 while (squash_it != instList[tid].end() && 1037 (*squash_it)->seqNum > squashedSeqNum[tid]) { 1038 1039 DynInstPtr squashed_inst = (*squash_it); 1040 1041 // Only handle the instruction if it actually is in the IQ and 1042 // hasn't already been squashed in the IQ. 1043 if (squashed_inst->threadNumber != tid || 1044 squashed_inst->isSquashedInIQ()) { 1045 --squash_it; 1046 continue; 1047 } 1048 1049 if (!squashed_inst->isIssued() || 1050 (squashed_inst->isMemRef() && 1051 !squashed_inst->memOpDone)) { 1052 1053 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x " 1054 "squashed.\n", 1055 tid, squashed_inst->seqNum, squashed_inst->readPC()); 1056 1057 // Remove the instruction from the dependency list. 1058 if (!squashed_inst->isNonSpeculative() && 1059 !squashed_inst->isStoreConditional() && 1060 !squashed_inst->isMemBarrier() && 1061 !squashed_inst->isWriteBarrier()) { 1062 1063 for (int src_reg_idx = 0; 1064 src_reg_idx < squashed_inst->numSrcRegs(); 1065 src_reg_idx++) 1066 { 1067 PhysRegIndex src_reg = 1068 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1069 1070 // Only remove it from the dependency graph if it 1071 // was placed there in the first place. 1072 1073 // Instead of doing a linked list traversal, we 1074 // can just remove these squashed instructions 1075 // either at issue time, or when the register is 1076 // overwritten. The only downside to this is it 1077 // leaves more room for error. 1078 1079 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1080 src_reg < numPhysRegs) { 1081 dependGraph.remove(src_reg, squashed_inst); 1082 } 1083 1084 1085 ++iqSquashedOperandsExamined; 1086 } 1087 } else if (!squashed_inst->isStoreConditional() || !squashed_inst->isCompleted()) { 1088 NonSpecMapIt ns_inst_it = 1089 nonSpecInsts.find(squashed_inst->seqNum); 1090 assert(ns_inst_it != nonSpecInsts.end()); 1091 1092 (*ns_inst_it).second = NULL; 1093 1094 nonSpecInsts.erase(ns_inst_it); 1095 1096 ++iqSquashedNonSpecRemoved; 1097 } 1098 1099 // Might want to also clear out the head of the dependency graph. 1100 1101 // Mark it as squashed within the IQ. 1102 squashed_inst->setSquashedInIQ(); 1103 1104 // @todo: Remove this hack where several statuses are set so the 1105 // inst will flow through the rest of the pipeline. 1106 squashed_inst->setIssued(); 1107 squashed_inst->setCanCommit(); 1108 squashed_inst->clearInIQ(); 1109 1110 //Update Thread IQ Count 1111 count[squashed_inst->threadNumber]--; 1112 1113 ++freeEntries; 1114 } 1115 1116 instList[tid].erase(squash_it--); 1117 ++iqSquashedInstsExamined; 1118 } 1119} 1120 1121template <class Impl> 1122bool 1123InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1124{ 1125 // Loop through the instruction's source registers, adding 1126 // them to the dependency list if they are not ready. 1127 int8_t total_src_regs = new_inst->numSrcRegs(); 1128 bool return_val = false; 1129 1130 for (int src_reg_idx = 0; 1131 src_reg_idx < total_src_regs; 1132 src_reg_idx++) 1133 { 1134 // Only add it to the dependency graph if it's not ready. 1135 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1136 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1137 1138 // Check the IQ's scoreboard to make sure the register 1139 // hasn't become ready while the instruction was in flight 1140 // between stages. Only if it really isn't ready should 1141 // it be added to the dependency graph. 1142 if (src_reg >= numPhysRegs) { 1143 continue; 1144 } else if (regScoreboard[src_reg] == false) { 1145 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1146 "is being added to the dependency chain.\n", 1147 new_inst->readPC(), src_reg); 1148 1149 dependGraph.insert(src_reg, new_inst); 1150 1151 // Change the return value to indicate that something 1152 // was added to the dependency graph. 1153 return_val = true; 1154 } else { 1155 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1156 "became ready before it reached the IQ.\n", 1157 new_inst->readPC(), src_reg); 1158 // Mark a register ready within the instruction. 1159 new_inst->markSrcRegReady(src_reg_idx); 1160 } 1161 } 1162 } 1163 1164 return return_val; 1165} 1166 1167template <class Impl> 1168void 1169InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst) 1170{ 1171 // Nothing really needs to be marked when an instruction becomes 1172 // the producer of a register's value, but for convenience a ptr 1173 // to the producing instruction will be placed in the head node of 1174 // the dependency links. 1175 int8_t total_dest_regs = new_inst->numDestRegs(); 1176 1177 for (int dest_reg_idx = 0; 1178 dest_reg_idx < total_dest_regs; 1179 dest_reg_idx++) 1180 { 1181 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1182 1183 // Instructions that use the misc regs will have a reg number 1184 // higher than the normal physical registers. In this case these 1185 // registers are not renamed, and there is no need to track 1186 // dependencies as these instructions must be executed at commit. 1187 if (dest_reg >= numPhysRegs) { 1188 continue; 1189 } 1190 1191 if (!dependGraph.empty(dest_reg)) { 1192 dependGraph.dump(); 1193 panic("Dependency graph %i not empty!", dest_reg); 1194 } 1195 1196 dependGraph.setInst(dest_reg, new_inst); 1197 1198 // Mark the scoreboard to say it's not yet ready. 1199 regScoreboard[dest_reg] = false; 1200 } 1201} 1202 1203template <class Impl> 1204void 1205InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1206{ 1207 // If the instruction now has all of its source registers 1208 // available, then add it to the list of ready instructions. 1209 if (inst->readyToIssue()) { 1210 1211 //Add the instruction to the proper ready list. 1212 if (inst->isMemRef()) { 1213 1214 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1215 1216 // Message to the mem dependence unit that this instruction has 1217 // its registers ready. 1218 memDepUnit[inst->threadNumber].regsReady(inst); 1219 1220 return; 1221 } 1222 1223 OpClass op_class = inst->opClass(); 1224 1225 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1226 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1227 inst->readPC(), op_class, inst->seqNum); 1228 1229 readyInsts[op_class].push(inst); 1230 1231 // Will need to reorder the list if either a queue is not on the list, 1232 // or it has an older instruction than last time. 1233 if (!queueOnList[op_class]) { 1234 addToOrderList(op_class); 1235 } else if (readyInsts[op_class].top()->seqNum < 1236 (*readyIt[op_class]).oldestInst) { 1237 listOrder.erase(readyIt[op_class]); 1238 addToOrderList(op_class); 1239 } 1240 } 1241} 1242 1243template <class Impl> 1244int 1245InstructionQueue<Impl>::countInsts() 1246{ 1247#if 0 1248 //ksewell:This works but definitely could use a cleaner write 1249 //with a more intuitive way of counting. Right now it's 1250 //just brute force .... 1251 // Change the #if if you want to use this method. 1252 int total_insts = 0; 1253 1254 for (int i = 0; i < numThreads; ++i) { 1255 ListIt count_it = instList[i].begin(); 1256 1257 while (count_it != instList[i].end()) { 1258 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1259 if (!(*count_it)->isIssued()) { 1260 ++total_insts; 1261 } else if ((*count_it)->isMemRef() && 1262 !(*count_it)->memOpDone) { 1263 // Loads that have not been marked as executed still count 1264 // towards the total instructions. 1265 ++total_insts; 1266 } 1267 } 1268 1269 ++count_it; 1270 } 1271 } 1272 1273 return total_insts; 1274#else 1275 return numEntries - freeEntries; 1276#endif 1277} 1278 1279template <class Impl> 1280void 1281InstructionQueue<Impl>::dumpLists() 1282{ 1283 for (int i = 0; i < Num_OpClasses; ++i) { 1284 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1285 1286 cprintf("\n"); 1287 } 1288 1289 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1290 1291 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1292 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1293 1294 cprintf("Non speculative list: "); 1295 1296 while (non_spec_it != non_spec_end_it) { 1297 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(), 1298 (*non_spec_it).second->seqNum); 1299 ++non_spec_it; 1300 } 1301 1302 cprintf("\n"); 1303 1304 ListOrderIt list_order_it = listOrder.begin(); 1305 ListOrderIt list_order_end_it = listOrder.end(); 1306 int i = 1; 1307 1308 cprintf("List order: "); 1309 1310 while (list_order_it != list_order_end_it) { 1311 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1312 (*list_order_it).oldestInst); 1313 1314 ++list_order_it; 1315 ++i; 1316 } 1317 1318 cprintf("\n"); 1319} 1320 1321 1322template <class Impl> 1323void 1324InstructionQueue<Impl>::dumpInsts() 1325{ 1326 for (int i = 0; i < numThreads; ++i) { 1327 int num = 0; 1328 int valid_num = 0; 1329 ListIt inst_list_it = instList[i].begin(); 1330 1331 while (inst_list_it != instList[i].end()) 1332 { 1333 cprintf("Instruction:%i\n", 1334 num); 1335 if (!(*inst_list_it)->isSquashed()) { 1336 if (!(*inst_list_it)->isIssued()) { 1337 ++valid_num; 1338 cprintf("Count:%i\n", valid_num); 1339 } else if ((*inst_list_it)->isMemRef() && 1340 !(*inst_list_it)->memOpDone) { 1341 // Loads that have not been marked as executed 1342 // still count towards the total instructions. 1343 ++valid_num; 1344 cprintf("Count:%i\n", valid_num); 1345 } 1346 } 1347 1348 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1349 "Issued:%i\nSquashed:%i\n", 1350 (*inst_list_it)->readPC(), 1351 (*inst_list_it)->seqNum, 1352 (*inst_list_it)->threadNumber, 1353 (*inst_list_it)->isIssued(), 1354 (*inst_list_it)->isSquashed()); 1355 1356 if ((*inst_list_it)->isMemRef()) { 1357 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1358 } 1359 1360 cprintf("\n"); 1361 1362 inst_list_it++; 1363 ++num; 1364 } 1365 } 1366 1367 cprintf("Insts to Execute list:\n"); 1368 1369 int num = 0; 1370 int valid_num = 0; 1371 ListIt inst_list_it = instsToExecute.begin(); 1372 1373 while (inst_list_it != instsToExecute.end()) 1374 { 1375 cprintf("Instruction:%i\n", 1376 num); 1377 if (!(*inst_list_it)->isSquashed()) { 1378 if (!(*inst_list_it)->isIssued()) { 1379 ++valid_num; 1380 cprintf("Count:%i\n", valid_num); 1381 } else if ((*inst_list_it)->isMemRef() && 1382 !(*inst_list_it)->memOpDone) { 1383 // Loads that have not been marked as executed 1384 // still count towards the total instructions. 1385 ++valid_num; 1386 cprintf("Count:%i\n", valid_num); 1387 } 1388 } 1389 1390 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1391 "Issued:%i\nSquashed:%i\n", 1392 (*inst_list_it)->readPC(), 1393 (*inst_list_it)->seqNum, 1394 (*inst_list_it)->threadNumber, 1395 (*inst_list_it)->isIssued(), 1396 (*inst_list_it)->isSquashed()); 1397 1398 if ((*inst_list_it)->isMemRef()) { 1399 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1400 } 1401 1402 cprintf("\n"); 1403 1404 inst_list_it++; 1405 ++num; 1406 } 1407} 1408