inst_queue_impl.hh revision 2935
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#include <limits> 33#include <vector> 34 35#include "sim/root.hh" 36 37#include "cpu/o3/fu_pool.hh" 38#include "cpu/o3/inst_queue.hh" 39 40using namespace std; 41 42template <class Impl> 43InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 44 int fu_idx, 45 InstructionQueue<Impl> *iq_ptr) 46 : Event(&mainEventQueue, Stat_Event_Pri), 47 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false) 48{ 49 this->setFlags(Event::AutoDelete); 50} 51 52template <class Impl> 53void 54InstructionQueue<Impl>::FUCompletion::process() 55{ 56 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1); 57 inst = NULL; 58} 59 60 61template <class Impl> 62const char * 63InstructionQueue<Impl>::FUCompletion::description() 64{ 65 return "Functional unit completion event"; 66} 67 68template <class Impl> 69InstructionQueue<Impl>::InstructionQueue(Params *params) 70 : fuPool(params->fuPool), 71 numEntries(params->numIQEntries), 72 totalWidth(params->issueWidth), 73 numPhysIntRegs(params->numPhysIntRegs), 74 numPhysFloatRegs(params->numPhysFloatRegs), 75 commitToIEWDelay(params->commitToIEWDelay) 76{ 77 assert(fuPool); 78 79 switchedOut = false; 80 81 numThreads = params->numberOfThreads; 82 83 // Set the number of physical registers as the number of int + float 84 numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 85 86 DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs); 87 88 //Create an entry for each physical register within the 89 //dependency graph. 90 dependGraph.resize(numPhysRegs); 91 92 // Resize the register scoreboard. 93 regScoreboard.resize(numPhysRegs); 94 95 //Initialize Mem Dependence Units 96 for (int i = 0; i < numThreads; i++) { 97 memDepUnit[i].init(params,i); 98 memDepUnit[i].setIQ(this); 99 } 100 101 resetState(); 102 103 string policy = params->smtIQPolicy; 104 105 //Convert string to lowercase 106 std::transform(policy.begin(), policy.end(), policy.begin(), 107 (int(*)(int)) tolower); 108 109 //Figure out resource sharing policy 110 if (policy == "dynamic") { 111 iqPolicy = Dynamic; 112 113 //Set Max Entries to Total ROB Capacity 114 for (int i = 0; i < numThreads; i++) { 115 maxEntries[i] = numEntries; 116 } 117 118 } else if (policy == "partitioned") { 119 iqPolicy = Partitioned; 120 121 //@todo:make work if part_amt doesnt divide evenly. 122 int part_amt = numEntries / numThreads; 123 124 //Divide ROB up evenly 125 for (int i = 0; i < numThreads; i++) { 126 maxEntries[i] = part_amt; 127 } 128 129 DPRINTF(IQ, "IQ sharing policy set to Partitioned:" 130 "%i entries per thread.\n",part_amt); 131 132 } else if (policy == "threshold") { 133 iqPolicy = Threshold; 134 135 double threshold = (double)params->smtIQThreshold / 100; 136 137 int thresholdIQ = (int)((double)threshold * numEntries); 138 139 //Divide up by threshold amount 140 for (int i = 0; i < numThreads; i++) { 141 maxEntries[i] = thresholdIQ; 142 } 143 144 DPRINTF(IQ, "IQ sharing policy set to Threshold:" 145 "%i entries per thread.\n",thresholdIQ); 146 } else { 147 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 148 "Partitioned, Threshold}"); 149 } 150} 151 152template <class Impl> 153InstructionQueue<Impl>::~InstructionQueue() 154{ 155 dependGraph.reset(); 156#ifdef DEBUG 157 cprintf("Nodes traversed: %i, removed: %i\n", 158 dependGraph.nodesTraversed, dependGraph.nodesRemoved); 159#endif 160} 161 162template <class Impl> 163std::string 164InstructionQueue<Impl>::name() const 165{ 166 return cpu->name() + ".iq"; 167} 168 169template <class Impl> 170void 171InstructionQueue<Impl>::regStats() 172{ 173 using namespace Stats; 174 iqInstsAdded 175 .name(name() + ".iqInstsAdded") 176 .desc("Number of instructions added to the IQ (excludes non-spec)") 177 .prereq(iqInstsAdded); 178 179 iqNonSpecInstsAdded 180 .name(name() + ".iqNonSpecInstsAdded") 181 .desc("Number of non-speculative instructions added to the IQ") 182 .prereq(iqNonSpecInstsAdded); 183 184 iqInstsIssued 185 .name(name() + ".iqInstsIssued") 186 .desc("Number of instructions issued") 187 .prereq(iqInstsIssued); 188 189 iqIntInstsIssued 190 .name(name() + ".iqIntInstsIssued") 191 .desc("Number of integer instructions issued") 192 .prereq(iqIntInstsIssued); 193 194 iqFloatInstsIssued 195 .name(name() + ".iqFloatInstsIssued") 196 .desc("Number of float instructions issued") 197 .prereq(iqFloatInstsIssued); 198 199 iqBranchInstsIssued 200 .name(name() + ".iqBranchInstsIssued") 201 .desc("Number of branch instructions issued") 202 .prereq(iqBranchInstsIssued); 203 204 iqMemInstsIssued 205 .name(name() + ".iqMemInstsIssued") 206 .desc("Number of memory instructions issued") 207 .prereq(iqMemInstsIssued); 208 209 iqMiscInstsIssued 210 .name(name() + ".iqMiscInstsIssued") 211 .desc("Number of miscellaneous instructions issued") 212 .prereq(iqMiscInstsIssued); 213 214 iqSquashedInstsIssued 215 .name(name() + ".iqSquashedInstsIssued") 216 .desc("Number of squashed instructions issued") 217 .prereq(iqSquashedInstsIssued); 218 219 iqSquashedInstsExamined 220 .name(name() + ".iqSquashedInstsExamined") 221 .desc("Number of squashed instructions iterated over during squash;" 222 " mainly for profiling") 223 .prereq(iqSquashedInstsExamined); 224 225 iqSquashedOperandsExamined 226 .name(name() + ".iqSquashedOperandsExamined") 227 .desc("Number of squashed operands that are examined and possibly " 228 "removed from graph") 229 .prereq(iqSquashedOperandsExamined); 230 231 iqSquashedNonSpecRemoved 232 .name(name() + ".iqSquashedNonSpecRemoved") 233 .desc("Number of squashed non-spec instructions that were removed") 234 .prereq(iqSquashedNonSpecRemoved); 235 236 queueResDist 237 .init(Num_OpClasses, 0, 99, 2) 238 .name(name() + ".IQ:residence:") 239 .desc("cycles from dispatch to issue") 240 .flags(total | pdf | cdf ) 241 ; 242 for (int i = 0; i < Num_OpClasses; ++i) { 243 queueResDist.subname(i, opClassStrings[i]); 244 } 245 numIssuedDist 246 .init(0,totalWidth,1) 247 .name(name() + ".ISSUE:issued_per_cycle") 248 .desc("Number of insts issued each cycle") 249 .flags(pdf) 250 ; 251/* 252 dist_unissued 253 .init(Num_OpClasses+2) 254 .name(name() + ".ISSUE:unissued_cause") 255 .desc("Reason ready instruction not issued") 256 .flags(pdf | dist) 257 ; 258 for (int i=0; i < (Num_OpClasses + 2); ++i) { 259 dist_unissued.subname(i, unissued_names[i]); 260 } 261*/ 262 statIssuedInstType 263 .init(numThreads,Num_OpClasses) 264 .name(name() + ".ISSUE:FU_type") 265 .desc("Type of FU issued") 266 .flags(total | pdf | dist) 267 ; 268 statIssuedInstType.ysubnames(opClassStrings); 269 270 // 271 // How long did instructions for a particular FU type wait prior to issue 272 // 273 274 issueDelayDist 275 .init(Num_OpClasses,0,99,2) 276 .name(name() + ".ISSUE:") 277 .desc("cycles from operands ready to issue") 278 .flags(pdf | cdf) 279 ; 280 281 for (int i=0; i<Num_OpClasses; ++i) { 282 stringstream subname; 283 subname << opClassStrings[i] << "_delay"; 284 issueDelayDist.subname(i, subname.str()); 285 } 286 287 issueRate 288 .name(name() + ".ISSUE:rate") 289 .desc("Inst issue rate") 290 .flags(total) 291 ; 292 issueRate = iqInstsIssued / cpu->numCycles; 293 294 statFuBusy 295 .init(Num_OpClasses) 296 .name(name() + ".ISSUE:fu_full") 297 .desc("attempts to use FU when none available") 298 .flags(pdf | dist) 299 ; 300 for (int i=0; i < Num_OpClasses; ++i) { 301 statFuBusy.subname(i, opClassStrings[i]); 302 } 303 304 fuBusy 305 .init(numThreads) 306 .name(name() + ".ISSUE:fu_busy_cnt") 307 .desc("FU busy when requested") 308 .flags(total) 309 ; 310 311 fuBusyRate 312 .name(name() + ".ISSUE:fu_busy_rate") 313 .desc("FU busy rate (busy events/executed inst)") 314 .flags(total) 315 ; 316 fuBusyRate = fuBusy / iqInstsIssued; 317 318 for ( int i=0; i < numThreads; i++) { 319 // Tell mem dependence unit to reg stats as well. 320 memDepUnit[i].regStats(); 321 } 322} 323 324template <class Impl> 325void 326InstructionQueue<Impl>::resetState() 327{ 328 //Initialize thread IQ counts 329 for (int i = 0; i <numThreads; i++) { 330 count[i] = 0; 331 instList[i].clear(); 332 } 333 334 // Initialize the number of free IQ entries. 335 freeEntries = numEntries; 336 337 // Note that in actuality, the registers corresponding to the logical 338 // registers start off as ready. However this doesn't matter for the 339 // IQ as the instruction should have been correctly told if those 340 // registers are ready in rename. Thus it can all be initialized as 341 // unready. 342 for (int i = 0; i < numPhysRegs; ++i) { 343 regScoreboard[i] = false; 344 } 345 346 for (int i = 0; i < numThreads; ++i) { 347 squashedSeqNum[i] = 0; 348 } 349 350 for (int i = 0; i < Num_OpClasses; ++i) { 351 while (!readyInsts[i].empty()) 352 readyInsts[i].pop(); 353 queueOnList[i] = false; 354 readyIt[i] = listOrder.end(); 355 } 356 nonSpecInsts.clear(); 357 listOrder.clear(); 358} 359 360template <class Impl> 361void 362InstructionQueue<Impl>::setActiveThreads(list<unsigned> *at_ptr) 363{ 364 DPRINTF(IQ, "Setting active threads list pointer.\n"); 365 activeThreads = at_ptr; 366} 367 368template <class Impl> 369void 370InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 371{ 372 DPRINTF(IQ, "Set the issue to execute queue.\n"); 373 issueToExecuteQueue = i2e_ptr; 374} 375 376template <class Impl> 377void 378InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 379{ 380 DPRINTF(IQ, "Set the time buffer.\n"); 381 timeBuffer = tb_ptr; 382 383 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 384} 385 386template <class Impl> 387void 388InstructionQueue<Impl>::switchOut() 389{ 390 resetState(); 391 dependGraph.reset(); 392 switchedOut = true; 393 for (int i = 0; i < numThreads; ++i) { 394 memDepUnit[i].switchOut(); 395 } 396} 397 398template <class Impl> 399void 400InstructionQueue<Impl>::takeOverFrom() 401{ 402 switchedOut = false; 403} 404 405template <class Impl> 406int 407InstructionQueue<Impl>::entryAmount(int num_threads) 408{ 409 if (iqPolicy == Partitioned) { 410 return numEntries / num_threads; 411 } else { 412 return 0; 413 } 414} 415 416 417template <class Impl> 418void 419InstructionQueue<Impl>::resetEntries() 420{ 421 if (iqPolicy != Dynamic || numThreads > 1) { 422 int active_threads = (*activeThreads).size(); 423 424 list<unsigned>::iterator threads = (*activeThreads).begin(); 425 list<unsigned>::iterator list_end = (*activeThreads).end(); 426 427 while (threads != list_end) { 428 if (iqPolicy == Partitioned) { 429 maxEntries[*threads++] = numEntries / active_threads; 430 } else if(iqPolicy == Threshold && active_threads == 1) { 431 maxEntries[*threads++] = numEntries; 432 } 433 } 434 } 435} 436 437template <class Impl> 438unsigned 439InstructionQueue<Impl>::numFreeEntries() 440{ 441 return freeEntries; 442} 443 444template <class Impl> 445unsigned 446InstructionQueue<Impl>::numFreeEntries(unsigned tid) 447{ 448 return maxEntries[tid] - count[tid]; 449} 450 451// Might want to do something more complex if it knows how many instructions 452// will be issued this cycle. 453template <class Impl> 454bool 455InstructionQueue<Impl>::isFull() 456{ 457 if (freeEntries == 0) { 458 return(true); 459 } else { 460 return(false); 461 } 462} 463 464template <class Impl> 465bool 466InstructionQueue<Impl>::isFull(unsigned tid) 467{ 468 if (numFreeEntries(tid) == 0) { 469 return(true); 470 } else { 471 return(false); 472 } 473} 474 475template <class Impl> 476bool 477InstructionQueue<Impl>::hasReadyInsts() 478{ 479 if (!listOrder.empty()) { 480 return true; 481 } 482 483 for (int i = 0; i < Num_OpClasses; ++i) { 484 if (!readyInsts[i].empty()) { 485 return true; 486 } 487 } 488 489 return false; 490} 491 492template <class Impl> 493void 494InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 495{ 496 // Make sure the instruction is valid 497 assert(new_inst); 498 499 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %#x to the IQ.\n", 500 new_inst->seqNum, new_inst->readPC()); 501 502 assert(freeEntries != 0); 503 504 instList[new_inst->threadNumber].push_back(new_inst); 505 506 --freeEntries; 507 508 new_inst->setInIQ(); 509 510 // Look through its source registers (physical regs), and mark any 511 // dependencies. 512 addToDependents(new_inst); 513 514 // Have this instruction set itself as the producer of its destination 515 // register(s). 516 addToProducers(new_inst); 517 518 if (new_inst->isMemRef()) { 519 memDepUnit[new_inst->threadNumber].insert(new_inst); 520 } else { 521 addIfReady(new_inst); 522 } 523 524 ++iqInstsAdded; 525 526 count[new_inst->threadNumber]++; 527 528 assert(freeEntries == (numEntries - countInsts())); 529} 530 531template <class Impl> 532void 533InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 534{ 535 // @todo: Clean up this code; can do it by setting inst as unable 536 // to issue, then calling normal insert on the inst. 537 538 assert(new_inst); 539 540 nonSpecInsts[new_inst->seqNum] = new_inst; 541 542 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %#x " 543 "to the IQ.\n", 544 new_inst->seqNum, new_inst->readPC()); 545 546 assert(freeEntries != 0); 547 548 instList[new_inst->threadNumber].push_back(new_inst); 549 550 --freeEntries; 551 552 new_inst->setInIQ(); 553 554 // Have this instruction set itself as the producer of its destination 555 // register(s). 556 addToProducers(new_inst); 557 558 // If it's a memory instruction, add it to the memory dependency 559 // unit. 560 if (new_inst->isMemRef()) { 561 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 562 } 563 564 ++iqNonSpecInstsAdded; 565 566 count[new_inst->threadNumber]++; 567 568 assert(freeEntries == (numEntries - countInsts())); 569} 570 571template <class Impl> 572void 573InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 574{ 575 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 576 577 insertNonSpec(barr_inst); 578} 579 580template <class Impl> 581typename Impl::DynInstPtr 582InstructionQueue<Impl>::getInstToExecute() 583{ 584 assert(!instsToExecute.empty()); 585 DynInstPtr inst = instsToExecute.front(); 586 instsToExecute.pop_front(); 587 return inst; 588} 589 590template <class Impl> 591void 592InstructionQueue<Impl>::addToOrderList(OpClass op_class) 593{ 594 assert(!readyInsts[op_class].empty()); 595 596 ListOrderEntry queue_entry; 597 598 queue_entry.queueType = op_class; 599 600 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 601 602 ListOrderIt list_it = listOrder.begin(); 603 ListOrderIt list_end_it = listOrder.end(); 604 605 while (list_it != list_end_it) { 606 if ((*list_it).oldestInst > queue_entry.oldestInst) { 607 break; 608 } 609 610 list_it++; 611 } 612 613 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 614 queueOnList[op_class] = true; 615} 616 617template <class Impl> 618void 619InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 620{ 621 // Get iterator of next item on the list 622 // Delete the original iterator 623 // Determine if the next item is either the end of the list or younger 624 // than the new instruction. If so, then add in a new iterator right here. 625 // If not, then move along. 626 ListOrderEntry queue_entry; 627 OpClass op_class = (*list_order_it).queueType; 628 ListOrderIt next_it = list_order_it; 629 630 ++next_it; 631 632 queue_entry.queueType = op_class; 633 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 634 635 while (next_it != listOrder.end() && 636 (*next_it).oldestInst < queue_entry.oldestInst) { 637 ++next_it; 638 } 639 640 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 641} 642 643template <class Impl> 644void 645InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 646{ 647 // The CPU could have been sleeping until this op completed (*extremely* 648 // long latency op). Wake it if it was. This may be overkill. 649 if (isSwitchedOut()) { 650 return; 651 } 652 653 iewStage->wakeCPU(); 654 655 if (fu_idx > -1) 656 fuPool->freeUnitNextCycle(fu_idx); 657 658 // @todo: Ensure that these FU Completions happen at the beginning 659 // of a cycle, otherwise they could add too many instructions to 660 // the queue. 661 issueToExecuteQueue->access(0)->size++; 662 instsToExecute.push_back(inst); 663} 664 665// @todo: Figure out a better way to remove the squashed items from the 666// lists. Checking the top item of each list to see if it's squashed 667// wastes time and forces jumps. 668template <class Impl> 669void 670InstructionQueue<Impl>::scheduleReadyInsts() 671{ 672 DPRINTF(IQ, "Attempting to schedule ready instructions from " 673 "the IQ.\n"); 674 675 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 676 677 // Have iterator to head of the list 678 // While I haven't exceeded bandwidth or reached the end of the list, 679 // Try to get a FU that can do what this op needs. 680 // If successful, change the oldestInst to the new top of the list, put 681 // the queue in the proper place in the list. 682 // Increment the iterator. 683 // This will avoid trying to schedule a certain op class if there are no 684 // FUs that handle it. 685 ListOrderIt order_it = listOrder.begin(); 686 ListOrderIt order_end_it = listOrder.end(); 687 int total_issued = 0; 688 689 while (total_issued < totalWidth && 690 iewStage->canIssue() && 691 order_it != order_end_it) { 692 OpClass op_class = (*order_it).queueType; 693 694 assert(!readyInsts[op_class].empty()); 695 696 DynInstPtr issuing_inst = readyInsts[op_class].top(); 697 698 assert(issuing_inst->seqNum == (*order_it).oldestInst); 699 700 if (issuing_inst->isSquashed()) { 701 readyInsts[op_class].pop(); 702 703 if (!readyInsts[op_class].empty()) { 704 moveToYoungerInst(order_it); 705 } else { 706 readyIt[op_class] = listOrder.end(); 707 queueOnList[op_class] = false; 708 } 709 710 listOrder.erase(order_it++); 711 712 ++iqSquashedInstsIssued; 713 714 continue; 715 } 716 717 int idx = -2; 718 int op_latency = 1; 719 int tid = issuing_inst->threadNumber; 720 721 if (op_class != No_OpClass) { 722 idx = fuPool->getUnit(op_class); 723 724 if (idx > -1) { 725 op_latency = fuPool->getOpLatency(op_class); 726 } 727 } 728 729 // If we have an instruction that doesn't require a FU, or a 730 // valid FU, then schedule for execution. 731 if (idx == -2 || idx != -1) { 732 if (op_latency == 1) { 733 i2e_info->size++; 734 instsToExecute.push_back(issuing_inst); 735 736 // Add the FU onto the list of FU's to be freed next 737 // cycle if we used one. 738 if (idx >= 0) 739 fuPool->freeUnitNextCycle(idx); 740 } else { 741 int issue_latency = fuPool->getIssueLatency(op_class); 742 // Generate completion event for the FU 743 FUCompletion *execution = new FUCompletion(issuing_inst, 744 idx, this); 745 746 execution->schedule(curTick + cpu->cycles(issue_latency - 1)); 747 748 // @todo: Enforce that issue_latency == 1 or op_latency 749 if (issue_latency > 1) { 750 // If FU isn't pipelined, then it must be freed 751 // upon the execution completing. 752 execution->setFreeFU(); 753 } else { 754 // Add the FU onto the list of FU's to be freed next cycle. 755 fuPool->freeUnitNextCycle(idx); 756 } 757 } 758 759 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x " 760 "[sn:%lli]\n", 761 tid, issuing_inst->readPC(), 762 issuing_inst->seqNum); 763 764 readyInsts[op_class].pop(); 765 766 if (!readyInsts[op_class].empty()) { 767 moveToYoungerInst(order_it); 768 } else { 769 readyIt[op_class] = listOrder.end(); 770 queueOnList[op_class] = false; 771 } 772 773 issuing_inst->setIssued(); 774 ++total_issued; 775 776 if (!issuing_inst->isMemRef()) { 777 // Memory instructions can not be freed from the IQ until they 778 // complete. 779 ++freeEntries; 780 count[tid]--; 781 issuing_inst->clearInIQ(); 782 } else { 783 memDepUnit[tid].issue(issuing_inst); 784 } 785 786 listOrder.erase(order_it++); 787 statIssuedInstType[tid][op_class]++; 788 iewStage->incrWb(issuing_inst->seqNum); 789 } else { 790 statFuBusy[op_class]++; 791 fuBusy[tid]++; 792 ++order_it; 793 } 794 } 795 796 numIssuedDist.sample(total_issued); 797 iqInstsIssued+= total_issued; 798 799 // If we issued any instructions, tell the CPU we had activity. 800 if (total_issued) { 801 cpu->activityThisCycle(); 802 } else { 803 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 804 } 805} 806 807template <class Impl> 808void 809InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 810{ 811 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 812 "to execute.\n", inst); 813 814 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 815 816 assert(inst_it != nonSpecInsts.end()); 817 818 unsigned tid = (*inst_it).second->threadNumber; 819 820 (*inst_it).second->setCanIssue(); 821 822 if (!(*inst_it).second->isMemRef()) { 823 addIfReady((*inst_it).second); 824 } else { 825 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 826 } 827 828 (*inst_it).second = NULL; 829 830 nonSpecInsts.erase(inst_it); 831} 832 833template <class Impl> 834void 835InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid) 836{ 837 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 838 tid,inst); 839 840 ListIt iq_it = instList[tid].begin(); 841 842 while (iq_it != instList[tid].end() && 843 (*iq_it)->seqNum <= inst) { 844 ++iq_it; 845 instList[tid].pop_front(); 846 } 847 848 assert(freeEntries == (numEntries - countInsts())); 849} 850 851template <class Impl> 852int 853InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 854{ 855 int dependents = 0; 856 857 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 858 859 assert(!completed_inst->isSquashed()); 860 861 // Tell the memory dependence unit to wake any dependents on this 862 // instruction if it is a memory instruction. Also complete the memory 863 // instruction at this point since we know it executed without issues. 864 // @todo: Might want to rename "completeMemInst" to something that 865 // indicates that it won't need to be replayed, and call this 866 // earlier. Might not be a big deal. 867 if (completed_inst->isMemRef()) { 868 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 869 completeMemInst(completed_inst); 870 } else if (completed_inst->isMemBarrier() || 871 completed_inst->isWriteBarrier()) { 872 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 873 } 874 875 for (int dest_reg_idx = 0; 876 dest_reg_idx < completed_inst->numDestRegs(); 877 dest_reg_idx++) 878 { 879 PhysRegIndex dest_reg = 880 completed_inst->renamedDestRegIdx(dest_reg_idx); 881 882 // Special case of uniq or control registers. They are not 883 // handled by the IQ and thus have no dependency graph entry. 884 // @todo Figure out a cleaner way to handle this. 885 if (dest_reg >= numPhysRegs) { 886 continue; 887 } 888 889 DPRINTF(IQ, "Waking any dependents on register %i.\n", 890 (int) dest_reg); 891 892 //Go through the dependency chain, marking the registers as 893 //ready within the waiting instructions. 894 DynInstPtr dep_inst = dependGraph.pop(dest_reg); 895 896 while (dep_inst) { 897 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n", 898 dep_inst->readPC()); 899 900 // Might want to give more information to the instruction 901 // so that it knows which of its source registers is 902 // ready. However that would mean that the dependency 903 // graph entries would need to hold the src_reg_idx. 904 dep_inst->markSrcRegReady(); 905 906 addIfReady(dep_inst); 907 908 dep_inst = dependGraph.pop(dest_reg); 909 910 ++dependents; 911 } 912 913 // Reset the head node now that all of its dependents have 914 // been woken up. 915 assert(dependGraph.empty(dest_reg)); 916 dependGraph.clearInst(dest_reg); 917 918 // Mark the scoreboard as having that register ready. 919 regScoreboard[dest_reg] = true; 920 } 921 return dependents; 922} 923 924template <class Impl> 925void 926InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 927{ 928 OpClass op_class = ready_inst->opClass(); 929 930 readyInsts[op_class].push(ready_inst); 931 932 // Will need to reorder the list if either a queue is not on the list, 933 // or it has an older instruction than last time. 934 if (!queueOnList[op_class]) { 935 addToOrderList(op_class); 936 } else if (readyInsts[op_class].top()->seqNum < 937 (*readyIt[op_class]).oldestInst) { 938 listOrder.erase(readyIt[op_class]); 939 addToOrderList(op_class); 940 } 941 942 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 943 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 944 ready_inst->readPC(), op_class, ready_inst->seqNum); 945} 946 947template <class Impl> 948void 949InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 950{ 951 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 952} 953 954template <class Impl> 955void 956InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 957{ 958 memDepUnit[replay_inst->threadNumber].replay(replay_inst); 959} 960 961template <class Impl> 962void 963InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 964{ 965 int tid = completed_inst->threadNumber; 966 967 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n", 968 completed_inst->readPC(), completed_inst->seqNum); 969 970 ++freeEntries; 971 972 completed_inst->memOpDone = true; 973 974 memDepUnit[tid].completed(completed_inst); 975 976 count[tid]--; 977} 978 979template <class Impl> 980void 981InstructionQueue<Impl>::violation(DynInstPtr &store, 982 DynInstPtr &faulting_load) 983{ 984 memDepUnit[store->threadNumber].violation(store, faulting_load); 985} 986 987template <class Impl> 988void 989InstructionQueue<Impl>::squash(unsigned tid) 990{ 991 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 992 "the IQ.\n", tid); 993 994 // Read instruction sequence number of last instruction out of the 995 // time buffer. 996#if THE_ISA == ALPHA_ISA 997 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 998#else 999 squashedSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum; 1000#endif 1001 1002 // Call doSquash if there are insts in the IQ 1003 if (count[tid] > 0) { 1004 doSquash(tid); 1005 } 1006 1007 // Also tell the memory dependence unit to squash. 1008 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1009} 1010 1011template <class Impl> 1012void 1013InstructionQueue<Impl>::doSquash(unsigned tid) 1014{ 1015 // Start at the tail. 1016 ListIt squash_it = instList[tid].end(); 1017 --squash_it; 1018 1019 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1020 tid, squashedSeqNum[tid]); 1021 1022 // Squash any instructions younger than the squashed sequence number 1023 // given. 1024 while (squash_it != instList[tid].end() && 1025 (*squash_it)->seqNum > squashedSeqNum[tid]) { 1026 1027 DynInstPtr squashed_inst = (*squash_it); 1028 1029 // Only handle the instruction if it actually is in the IQ and 1030 // hasn't already been squashed in the IQ. 1031 if (squashed_inst->threadNumber != tid || 1032 squashed_inst->isSquashedInIQ()) { 1033 --squash_it; 1034 continue; 1035 } 1036 1037 if (!squashed_inst->isIssued() || 1038 (squashed_inst->isMemRef() && 1039 !squashed_inst->memOpDone)) { 1040 1041 // Remove the instruction from the dependency list. 1042 if (!squashed_inst->isNonSpeculative() && 1043 !squashed_inst->isStoreConditional() && 1044 !squashed_inst->isMemBarrier() && 1045 !squashed_inst->isWriteBarrier()) { 1046 1047 for (int src_reg_idx = 0; 1048 src_reg_idx < squashed_inst->numSrcRegs(); 1049 src_reg_idx++) 1050 { 1051 PhysRegIndex src_reg = 1052 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1053 1054 // Only remove it from the dependency graph if it 1055 // was placed there in the first place. 1056 1057 // Instead of doing a linked list traversal, we 1058 // can just remove these squashed instructions 1059 // either at issue time, or when the register is 1060 // overwritten. The only downside to this is it 1061 // leaves more room for error. 1062 1063 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1064 src_reg < numPhysRegs) { 1065 dependGraph.remove(src_reg, squashed_inst); 1066 } 1067 1068 1069 ++iqSquashedOperandsExamined; 1070 } 1071 } else { 1072 NonSpecMapIt ns_inst_it = 1073 nonSpecInsts.find(squashed_inst->seqNum); 1074 assert(ns_inst_it != nonSpecInsts.end()); 1075 1076 (*ns_inst_it).second = NULL; 1077 1078 nonSpecInsts.erase(ns_inst_it); 1079 1080 ++iqSquashedNonSpecRemoved; 1081 } 1082 1083 // Might want to also clear out the head of the dependency graph. 1084 1085 // Mark it as squashed within the IQ. 1086 squashed_inst->setSquashedInIQ(); 1087 1088 // @todo: Remove this hack where several statuses are set so the 1089 // inst will flow through the rest of the pipeline. 1090 squashed_inst->setIssued(); 1091 squashed_inst->setCanCommit(); 1092 squashed_inst->clearInIQ(); 1093 1094 //Update Thread IQ Count 1095 count[squashed_inst->threadNumber]--; 1096 1097 ++freeEntries; 1098 1099 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x " 1100 "squashed.\n", 1101 tid, squashed_inst->seqNum, squashed_inst->readPC()); 1102 } 1103 1104 instList[tid].erase(squash_it--); 1105 ++iqSquashedInstsExamined; 1106 } 1107} 1108 1109template <class Impl> 1110bool 1111InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1112{ 1113 // Loop through the instruction's source registers, adding 1114 // them to the dependency list if they are not ready. 1115 int8_t total_src_regs = new_inst->numSrcRegs(); 1116 bool return_val = false; 1117 1118 for (int src_reg_idx = 0; 1119 src_reg_idx < total_src_regs; 1120 src_reg_idx++) 1121 { 1122 // Only add it to the dependency graph if it's not ready. 1123 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1124 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1125 1126 // Check the IQ's scoreboard to make sure the register 1127 // hasn't become ready while the instruction was in flight 1128 // between stages. Only if it really isn't ready should 1129 // it be added to the dependency graph. 1130 if (src_reg >= numPhysRegs) { 1131 continue; 1132 } else if (regScoreboard[src_reg] == false) { 1133 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1134 "is being added to the dependency chain.\n", 1135 new_inst->readPC(), src_reg); 1136 1137 dependGraph.insert(src_reg, new_inst); 1138 1139 // Change the return value to indicate that something 1140 // was added to the dependency graph. 1141 return_val = true; 1142 } else { 1143 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1144 "became ready before it reached the IQ.\n", 1145 new_inst->readPC(), src_reg); 1146 // Mark a register ready within the instruction. 1147 new_inst->markSrcRegReady(src_reg_idx); 1148 } 1149 } 1150 } 1151 1152 return return_val; 1153} 1154 1155template <class Impl> 1156void 1157InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst) 1158{ 1159 // Nothing really needs to be marked when an instruction becomes 1160 // the producer of a register's value, but for convenience a ptr 1161 // to the producing instruction will be placed in the head node of 1162 // the dependency links. 1163 int8_t total_dest_regs = new_inst->numDestRegs(); 1164 1165 for (int dest_reg_idx = 0; 1166 dest_reg_idx < total_dest_regs; 1167 dest_reg_idx++) 1168 { 1169 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1170 1171 // Instructions that use the misc regs will have a reg number 1172 // higher than the normal physical registers. In this case these 1173 // registers are not renamed, and there is no need to track 1174 // dependencies as these instructions must be executed at commit. 1175 if (dest_reg >= numPhysRegs) { 1176 continue; 1177 } 1178 1179 if (!dependGraph.empty(dest_reg)) { 1180 dependGraph.dump(); 1181 panic("Dependency graph %i not empty!", dest_reg); 1182 } 1183 1184 dependGraph.setInst(dest_reg, new_inst); 1185 1186 // Mark the scoreboard to say it's not yet ready. 1187 regScoreboard[dest_reg] = false; 1188 } 1189} 1190 1191template <class Impl> 1192void 1193InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1194{ 1195 // If the instruction now has all of its source registers 1196 // available, then add it to the list of ready instructions. 1197 if (inst->readyToIssue()) { 1198 1199 //Add the instruction to the proper ready list. 1200 if (inst->isMemRef()) { 1201 1202 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1203 1204 // Message to the mem dependence unit that this instruction has 1205 // its registers ready. 1206 memDepUnit[inst->threadNumber].regsReady(inst); 1207 1208 return; 1209 } 1210 1211 OpClass op_class = inst->opClass(); 1212 1213 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1214 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1215 inst->readPC(), op_class, inst->seqNum); 1216 1217 readyInsts[op_class].push(inst); 1218 1219 // Will need to reorder the list if either a queue is not on the list, 1220 // or it has an older instruction than last time. 1221 if (!queueOnList[op_class]) { 1222 addToOrderList(op_class); 1223 } else if (readyInsts[op_class].top()->seqNum < 1224 (*readyIt[op_class]).oldestInst) { 1225 listOrder.erase(readyIt[op_class]); 1226 addToOrderList(op_class); 1227 } 1228 } 1229} 1230 1231template <class Impl> 1232int 1233InstructionQueue<Impl>::countInsts() 1234{ 1235#if 0 1236 //ksewell:This works but definitely could use a cleaner write 1237 //with a more intuitive way of counting. Right now it's 1238 //just brute force .... 1239 // Change the #if if you want to use this method. 1240 int total_insts = 0; 1241 1242 for (int i = 0; i < numThreads; ++i) { 1243 ListIt count_it = instList[i].begin(); 1244 1245 while (count_it != instList[i].end()) { 1246 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1247 if (!(*count_it)->isIssued()) { 1248 ++total_insts; 1249 } else if ((*count_it)->isMemRef() && 1250 !(*count_it)->memOpDone) { 1251 // Loads that have not been marked as executed still count 1252 // towards the total instructions. 1253 ++total_insts; 1254 } 1255 } 1256 1257 ++count_it; 1258 } 1259 } 1260 1261 return total_insts; 1262#else 1263 return numEntries - freeEntries; 1264#endif 1265} 1266 1267template <class Impl> 1268void 1269InstructionQueue<Impl>::dumpLists() 1270{ 1271 for (int i = 0; i < Num_OpClasses; ++i) { 1272 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1273 1274 cprintf("\n"); 1275 } 1276 1277 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1278 1279 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1280 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1281 1282 cprintf("Non speculative list: "); 1283 1284 while (non_spec_it != non_spec_end_it) { 1285 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(), 1286 (*non_spec_it).second->seqNum); 1287 ++non_spec_it; 1288 } 1289 1290 cprintf("\n"); 1291 1292 ListOrderIt list_order_it = listOrder.begin(); 1293 ListOrderIt list_order_end_it = listOrder.end(); 1294 int i = 1; 1295 1296 cprintf("List order: "); 1297 1298 while (list_order_it != list_order_end_it) { 1299 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1300 (*list_order_it).oldestInst); 1301 1302 ++list_order_it; 1303 ++i; 1304 } 1305 1306 cprintf("\n"); 1307} 1308 1309 1310template <class Impl> 1311void 1312InstructionQueue<Impl>::dumpInsts() 1313{ 1314 for (int i = 0; i < numThreads; ++i) { 1315 int num = 0; 1316 int valid_num = 0; 1317 ListIt inst_list_it = instList[i].begin(); 1318 1319 while (inst_list_it != instList[i].end()) 1320 { 1321 cprintf("Instruction:%i\n", 1322 num); 1323 if (!(*inst_list_it)->isSquashed()) { 1324 if (!(*inst_list_it)->isIssued()) { 1325 ++valid_num; 1326 cprintf("Count:%i\n", valid_num); 1327 } else if ((*inst_list_it)->isMemRef() && 1328 !(*inst_list_it)->memOpDone) { 1329 // Loads that have not been marked as executed 1330 // still count towards the total instructions. 1331 ++valid_num; 1332 cprintf("Count:%i\n", valid_num); 1333 } 1334 } 1335 1336 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1337 "Issued:%i\nSquashed:%i\n", 1338 (*inst_list_it)->readPC(), 1339 (*inst_list_it)->seqNum, 1340 (*inst_list_it)->threadNumber, 1341 (*inst_list_it)->isIssued(), 1342 (*inst_list_it)->isSquashed()); 1343 1344 if ((*inst_list_it)->isMemRef()) { 1345 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1346 } 1347 1348 cprintf("\n"); 1349 1350 inst_list_it++; 1351 ++num; 1352 } 1353 } 1354 1355 cprintf("Insts to Execute list:\n"); 1356 1357 int num = 0; 1358 int valid_num = 0; 1359 ListIt inst_list_it = instsToExecute.begin(); 1360 1361 while (inst_list_it != instsToExecute.end()) 1362 { 1363 cprintf("Instruction:%i\n", 1364 num); 1365 if (!(*inst_list_it)->isSquashed()) { 1366 if (!(*inst_list_it)->isIssued()) { 1367 ++valid_num; 1368 cprintf("Count:%i\n", valid_num); 1369 } else if ((*inst_list_it)->isMemRef() && 1370 !(*inst_list_it)->memOpDone) { 1371 // Loads that have not been marked as executed 1372 // still count towards the total instructions. 1373 ++valid_num; 1374 cprintf("Count:%i\n", valid_num); 1375 } 1376 } 1377 1378 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1379 "Issued:%i\nSquashed:%i\n", 1380 (*inst_list_it)->readPC(), 1381 (*inst_list_it)->seqNum, 1382 (*inst_list_it)->threadNumber, 1383 (*inst_list_it)->isIssued(), 1384 (*inst_list_it)->isSquashed()); 1385 1386 if ((*inst_list_it)->isMemRef()) { 1387 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1388 } 1389 1390 cprintf("\n"); 1391 1392 inst_list_it++; 1393 ++num; 1394 } 1395} 1396